
Computing and Informatics, Vol. 33, 2014, 281–302

COMPACT INDEXES BASED ON CORE CONTENT
IN PERSONAL DATASPACE MANAGEMENT SYSTEM

Ning Wang, Hongfang Du, Baomin Xu

School of Computer and Information Technology
Beijing Jiaotong University
No. 3 Shangyuancun, Haidian District, 100044 Beijing, China
e-mail: {nwang, 09120533, bmxu}@bjtu.edu.cn

Guojun Dai

Computer School, Hangzhou Dianzi University
Hangzhou, 310018, China
e-mail: daigj@hdu.edu.cn

Abstract. A Personal DataSpace Management System is a platform to manage
personal data with heterogeneous data types, in which keyword query is a primary
query form for users who know little about the structure of the dataspace. Unlike
exploratory queries in web search, a user in a personal dataspace usually has a spe-
cific search target and wants to find some known items in mind. To improve result
quality in terms of query relevance in a personal dataspace, we propose the concept
of compact index in this paper. We refer to the most important and representative
semantics from documents as core content, and build compact index on it. We
propose algorithm for selecting core content from a document based on semantic
analysis, which can process English and Chinese documents uniformly. Further-
more, a software platform named Versatile is introduced for flexible personal data
management, in which core content is extracted for building compact indexes and
generating query-biased snippet efficiently and accurately. Finally, extensive ex-
periments have been conducted to show the effectiveness and feasibility of compact
indexes in personal dataspace management system.

Keywords: Keyword query, indexing, result quality, semantic analysis, personal
dataspace management system

282 N. Wang, H. Du, B. Xu, G. Dai

1 INTRODUCTION

Nowadays, with explosion of the amount of digital information, individual computer
users have developed their own vast data on their desktops and varied electronic de-
vices such as laptops, PDAs, cellphones. A Personal DataSpace Management System
(PDSMS) is a platform to manage personal data with heterogeneous data types [1].
Unlike data integration systems with a unified integration schema, dataspaces do
not have a single schema beforehand upon which users can pose queries. Initially,
keyword queries can be used for users with little knowledge about structure infor-
mation. As users know more about the dataspace, they should be able to pose more
sophisticated queries.

For keyword search, search engines usually build indexes based on full text in
order to return a comprehensive list of results,which may require much time and
space for large datasets. The most crucial problem is to achieve result relevance.
Sometimes users could not easily find relevant results from a long list of results
spanning many pages, and they are reluctant to view the results listed beyond the
first page [2]. In order to let users easily find relevant information, various rank
algorithms [3, 4] have then been studied so that documents which are considered to
match users’ intention can be listed as early in the list as possible. Also, query-biased
snippets are presented by web search engines to give the user a sneak preview of the
document contents and to help him/her make selections [5]. However, query-biased
snippets are generated dynamically online, which will impose high computational
cost when large amounts of results need to be processed.

Several recent attempts have been made on query model [6] and a range of query
facilities [7] in personal dataspace management systems, and extended inverted list
has been developed in Semex [8] for improving query efficiency. However, none of
the above work has addressed the problem how to improve result quality in terms
of query relevance in PDSMS.

We observe that unlike exploratory queries in web search, a user in a per-
sonal dataspace usually has a specific search target and wants to find some known
items, which are stored by themselves [7]. In this situation, the user expects to
retrieve items (which are documents in most cases) whose topics are relevant to
given query keywords. The topic of a document is represented by the core con-
tent of a document. Inspired by the partial index technique in relational database
management system [9], we propose an alternative approach for improving result
relevance in personal dataspaces. We build compact indexes based on core con-
tent which can catch the most important and representative semantics in docu-
ments.

Being concentrated on most important semantics in a document, a compact
index is succinct and with low space cost. In order to build a compact index, we
extract core sentences from documents based on semantics, and those core sentences
can also be used for producing query-biased snippets. The major contributions are
summarized as follows:

Compact Indexes Based on Core Content 283

1. To our best knowledge, we are the first to use a compact index on core content
in documents to address keyword search effectiveness problem in PDSMS. Un-
like common inverted indexes based on full text, a compact index is built on
core content which can catch most important and representative semantics in
documents.

2. We present algorithms for selecting core content based on semantic analysis,
which can catch the most important semantics from documents and can process
English and Chinese documents uniformly.

3. We introduce Versatile, a personal dataspace management system, in which our
compact inverted indexes can capture not only core content but also structure
information so that queries combining keyword and structure can also be sup-
ported. The Versatile system can also provide query-biased snippets based on
core content, which can be generated more quickly and accurately than the ones
using the whole documents.

4. Our comprehensive experiments show that the performance of processing key-
word queries using a compact index is better than that using a full-text index
in a personal dataspace. Because compact indexes are built on a small amount
of core sentences, not only query precision but also response time are improved,
which is significant for very large personal dataspaces. By our coverage exper-
iments, compact indexes are proved feasible because topic keywords which can
capture the most important and representative semantics in a document can be
covered by compact indexes built on core sentences.

This paper is structured as follows. Section 2 introduces related work. Section 3
describes the method to build compact indexes based on core sentences in a per-
sonal dataspace. Section 4 gives an overview of Versatile – a personal dataspace
management system architecture. Section 5 presents experimental results. Finally,
Section 6 concludes this paper.

2 RELATED WORK

There are three categories of work most related to ours, which are partial indexes
in relational database management system, extended inverted lists in dataspace
management system and automatic text summarization.

The partial index technique is proposed by Michael Stonebraker, which has now
been implemented in some relational database management systems such as SQL
Server, Postgres [9, 10]. A partial index is built over a subset of table rows, which is
defined by a conditional expression and contains entries only for those table rows that
satisfy the conditional expression. The aim of building partial indexes in RDBMS is
obvious for reducing the space cost and improving query efficiency, which is different
from our main aim of building compact indexes in PDSMS for improving keyword
search quality.

284 N. Wang, H. Du, B. Xu, G. Dai

Dataspaces are collections of heterogeneous and partially unstructured data. In-
dexes based on extended inverted lists, which incorporate attribute labels, relations
between data items and hierarchies of schema elements, have been proposed to sup-
port queries that combine keywords and structure [8]. Extended inverted indexes
can improve the efficiency of queries combining keywords and structure in PDSMS;
result quality in terms of query relevance has not been addressed in this paper.
In the meantime, the space cost for extended inverted indexes is high. With the
increase of personal data, volume of inverted indexes will become very large.

The goal of text summarization is to create compressed summaries which contain
the most important and representative information [11]. There are two types of
text summarization called extractive summarization and abstractive summarization.
While an abstractive summarization aims to produce a grammatical summary and
requires advanced language generation technique, most of researches focus on the
technique of extractive summarization which relies on extraction of sentences. In
order to obtain an extractive summary, statistics and machine learning technique
are usually used [12, 13]. In order to improve the quality of summaries, the method
based on semantic analysis [14, 15] is proposed by using semantic dictionary like
Wordnet [16] and Hownet [17].

We are the first to introduce the idea of partial index into personal dataspace
management system. Just like a partial index that does not contain all rows in
a table, a compact index is a kind of extended inverted list built on core con-
tent that are the most representative and informative part in a document. Un-
like partial indexes built on tables in RDBMS, a compact index is built on a re-
source net [18] which is a uniform data model to describe various resources and
associations between resources in a personal dataspace, and can answer keyword
queries with structure specifications more accurately and efficiently. In the pro-
cess of core content extraction, we use text summarization technique for reference,
but our system is semantic-based and can process English and Chinese documents
uniformly.

3 COMPACT INDEXES BASED ON CORE SENTENCES

3.1 A Framework for Implementing a Compact Index

A compact index is a kind of extended inverted list which can capture keyword and
structure in a personal dataspace, but it is concise because we build it on a set of
selected sentences in documents which are called core sentences.

Figure 1 gives the framework for implementing compact indexes. The key prob-
lem is how to extract core sentences. We follow four steps to finish the extraction
work. Text preprocessing is the first step, which includes tokenizing, removing stop
words, and stemming. After that, similarities between pairs of sentences are calcu-
lated based on similarities between words. Then, in the third step, sentences are
clustered based on improved K-Medoids clustering algorithm. Last, centroids of

Compact Indexes Based on Core Content 285

Index construction based on core sentences

Text
Preprocessing

Similarity
Calculation
between
sentences

Clustering

Sentences

Extracting
Core
sentences

Core sentences extraction

Figure 1. A framework for implementing compact indexes

clusters are selected as core sentences. Compact indexes are extended inverted lists
built on selected core sentences.

3.2 Similarity Calculation between Sentences

In four steps for extracting core sentences, the technology of text preprocessing is
common as in the area of natural language processing (NLP), so our work focuses
on similarity calculation for sentences and clustering.

The selection of core sentences is based on centroids of clusters, and the basis
of clustering is similarity calculation for sentences. There exist several methods for
calculating sentences’ similarity, of which the method based on semantic dictionary
is used in Versatile because it takes semantics of words and expressions into account.

Sentence-sentence similarity can be calculated according to word-word simi-
larity based on semantic dictionaries like Wordnet [16] and Hownet [17]. Hybrid
method [19] is adopted to calculate word-word similarity based on Wordnet for
English sentences in Versatile. For Chinese sentences, Hownet is used to calcu-
late the similarity between a pair of Chinese words. The typical algorithm is
proposed by Qun Liu and Sujian Li, based on the observation that the higher
probability that words could be replaced in different contexts and the semantic
structure of sentences could not be changed, the higher the similarity between two
words [20].

Algorithm 1 gives sentence-sentence similarity calculation in Versatile. In order
to simplify the algorithm, the most informative words are selected to take part in the
calculation.The input parameters are two sentences S1 and S2, a language flag F .
Algorithm 1 executes the following three steps and returns SIM as similarity value
between S1 and S2.

286 N. Wang, H. Du, B. Xu, G. Dai

First, it finishes tokenizing and identifying the different parts of speech by using
the technology of NLP, then getting two nouns sets (AttrN1, AttrN2) and two
verbs sets (AttrV1, AttrV2) from S1 and S2, respectively (Lines 2–5). In addition,
Adjectives sets (AttrA1, AttrA2) are also obtained if input sentences are in Chinese
(Lines 6–9).

Second, word-word similarity values are calculated for each pair of nouns from S1

and S2 and maintained in a two-dimensional array ArrN12 (Line 10). The most
matched noun pairs with maximal similarity value are found, and similarity values
of every matched noun pairs are put into an array ArrMaxN (Lines 11–16). We then
calculate similarity value SimN for nouns according to similarity values in ArrMaxN
(Line 17). In the same way, similarity value SimV for verbs can be calculated
(Lines 18–25). For Chinese sentences, similarity value SimA for adjectives is also
calculated (Lines 26–34).

Third, the sentence-sentence similarity value is obtained by calculating weighted
average of SimN, SimV and SimA for a Chinese sentence (Line 35) and by calculating
weighted average of SimN and SimV for an English sentence (Line 37).

3.3 Selecting Core Sentences

After getting sentence-sentence similarity values, we get core sentences by clustering.
In various clustering algorithms, k-means algorithm is usually used to process large
data set but can be sensitive to outliers (or noise). By using the most central object
as a representative point of each cluster, k-medoids algorithm is generally more
robust to outliers. One of the main factors to limit the use of k-medoids algorithm
is its inefficiency compared with k-means. This drawback can be overcome with
the aid of an efficient sampling scheme [21]. An improved k-medoids algorithm is
proposed, in which initial centroids of clusters are decided based on the Min-Max
clustering principle [22].

Core sentences extraction is centroid-based in general, and Algorithm 2 gives
the details. The input parameters are: a set of initial sentences ArrS, number of
initial sentences N , the proportion of core sentences R. The algorithm executes in
three steps.

First, the number of clusters K is decided according to the input proportion of
core sentences (Line 2), and initial centroids of clusters are selected based on the
Min-Max clustering principle (Line 3).

Second, after getting centroids, we partition the remaining sentences into K clus-
ters based on the maximal similarity principle. That is, a sentence is put into
a cluster when the centroid of the cluster is the most similar with this sentence
(Lines 6–19). In each cluster, we replace the original centroid with other sentences
in turn, and calculate delta which is an increased summation of similarity value in
the cluster every time. We select the sentence as a new centroid in a cluster if it can
make delta be maximum (Lines 21–33). If any centroid is changed, this step will be
executed repeatedly from the beginning.

Compact Indexes Based on Core Content 287

Algorithm 1 Sentence-sentence Similarity Calculation Algorithm
1: procedure getSimSS(S1, S2, F, SIM)
2: ArrN1 ← getNouns(S1, F)
3: ArrN2 ← getNouns(S2, F)
4: ArrV1 ← getVerbs(S1, F)
5: ArrV2 ← getVerbs(S2, F)
6: if F = ‘Chinese’ then
7: ArrA1 ← getAdjs(S1)
8: ArrA2 ← getAdjs(S2)
9: end if

10: ArrN12← getSimWW (ArrN1,ArrN2, F)
11: k ← 0
12: while exists(ArrN12) do
13: ArrMaxN ← getMax (ArrN12, i, j)
14: k ← k+1
15: setArr(ArrN12, i, j)
16: end while
17: SimN ← sumMax (ArrMaxN)/K
18: ArrV 12← getSimWW (ArrV1,ArrV2, F)
19: k ← 0
20: while exists(ArrV 12) do
21: ArrMaxV ← getMax (ArrV 12, i, j)
22: k ← k + 1
23: setArr(ArrV 12, i, j)
24: end while
25: SimV ← sumMax (ArrMaxV)/k
26: if F = ‘Chinese’ then
27: ArrA12← getSimWW (ArrA1,ArrA2, F)
28: k ← 0
29: while exists(ArrA12) do
30: ArrMaxA← getMax (ArrA12, i, j)
31: k ← k + 1
32: setArr(ArrA12, i, j)
33: end while
34: SimA← sumMax (ArrMaxA)/k
35: SIM ← α1 × SimN + α2 × SimV + α3 × SimA
36: else
37: SIM ← β1 × SimN + β2 × SimV
38: end if
39: return SIM
40: end procedure

288 N. Wang, H. Du, B. Xu, G. Dai

Algorithm 2 Core Sentences Extraction Algorithm
1: procedure getCoreSentence(ArrS,N,R,CS)
2: K ← dN ×Re
3: Medoids ← getInitCent(ArrS,K)
4: F ← True
5: while F do
6: for all S ∈ Arrs do
7: if S 6∈ Medoids then
8: maxSim ← 0
9: N ← 0

10: for i← 0,K do
11: simSS ← getSimSS(Medoids[i], S)
12: if simSS > maxSim then
13: N ← i
14: maxSim ← simSS
15: end if
16: end for
17: Cluster [N]← S
18: end if
19: end for
20: F ← False
21: for i← 0,K do
22: sumSim ← getSum(Medoids[i],Cluster [i])
23: delta ← 0
24: for all S ∈ Cluster [i] do
25: repMed(Cluster [i],Medoids[i], S);
26: newsumSim ← getSum(S,Cluster [i])
27: if (newsumSim − sumSim) > delta then
28: delta ← newsumSim − sumSim
29: Medoids[i]← S
30: F ← True
31: end if
32: end for
33: end for
34: end while
35: CS ← Medoids
36: return CS
37: end procedure

Compact Indexes Based on Core Content 289

Third, after all centroids are not changed any more, they can be returned as
core sentences (Lines 35–36).

4 VERSATILE PERSONAL DATASPACE MANAGEMENT
SYSTEM ARCHITECTURE

Personal Information contains not only data created and managed by different ap-
plications, but also web data that a user often accesses. To offer users a flexible
platform for personal information management, we are building the Versatile Sys-
tem, which provides a logical view of one’s personal information and a flexible query
model based on the logical view.

As shown in Figure 2, the architecture of Versatile contains 3 layers: data sources
layer, Versatile PDSMS layer, and user interface layer. Our work focuses on the
Versatile PDSMS layer, which is composed of 4 components (Information extrac-
tion & association construction manager, Index builder, Schema extraction & sum-
marization manager, Versatile query language processor) and 5 repositories (Re-
source net repository, Core content repository, Compact inverted index, Resource
summary repository, Metadata catalog).

Information Extraction & Association Construction Manager (IEACM) works
for extracting information from various data sources such as local file system, DBMS,
email system, and constructing semantic associations predefined by Versatile or de-
fined by users while the system is running. The output of IEACM is a resource
net [18], which is a graph with nodes representing resources in a personal dataspace
and edges describing associations between resources. The resource net is put into
resource net repository.

Based on the resource net, Index Builder (IB) extracts core content from re-
sources and builds compact inverted indexes. Like extended inverted lists imple-
mented in Semex [8], our compact inverted indexes can also capture structure infor-
mation so that queries combining keyword and structure can be supported. Unlike
an ordinary inverted index built on full text, a compact inverted index is based on
core sentences which are the most informative and representative based on seman-
tics.

Schema Extraction & Summarization Manager (SESM) works for extracting
schema from a resource net and then generating its resource summary. A resource
summary can provide a succinct overview of the entire personal dataspace and help
structured query construction and optimization. While generating the resource sum-
mary, SESM also generates some mappings between schema and schema summary
and puts them into metadata catalog.

Personal dataspace users often want to relocate expected items, but in most
cases, their requirements could not be satisfied by keyword queries. Versatile pro-
vides a query language called VQL which can combine keyword and structure, and
Versatile Query Language Processor analyses VQL and generates an execution plan
based on 5 repositories.

290 N. Wang, H. Du, B. Xu, G. Dai

User Interface

Index
Builder

Schema
Extraction&
Summarization
Manager

Information Extraction & Association Construction Manager

Email SystemDBMS …

Application
Layer

Versatile
PDSMS
Layer

Data
Source
Layer

Local File
System

Resource Net Repository

Compact
Inverted
Index

Resource
Summary
Repository

Metadata
Catalog

Versatile Query Language Processor

Core
Content
Repository

Figure 2. Versatile architecture

Compared with existing personal dataspace management system prototypes [6,
8, 7], Versatile has four innovative characteristics.

1. Compact inverted indexes are implemented based on core content. Using com-
pact inverted indexes in personal dataspaces, keyword queries can be answered
more accurately and quickly while index space cost and maintenance cost are
reduced.

2. Our Versatile system can provide query-biased snippets upon core content which
has been extracted during construction of compacted indexes. Compared with
snippets upon whole documents, our query-biased snippets can be generated
more quickly and accurately, because core content is concise in volume and
concentrates on the most important semantics in a document.

3. Schema extraction and summarization based on user interests is implemented
in Versatile PDSMS. Unlike XML schema extraction and summarization [23],
Versatile considers uncertainty and user interests when extracting schema and
building a resource summary.

4. Versatile provides a query language called VQL, which combines structured
query with keyword query. Unlike iMeMex Query Language (iQL) based on
large resource view graph [24], VQL can be written based on a concise resource
summary. Not only actual schema element but also abstract schema element
can be presented in VQL path expressions.

Compact Indexes Based on Core Content 291

5 EVALUATING COMPACT INDEXES

The main aim of building a compact index is to improve the quality of keyword
queries, especially the precision of return results in personal dataspaces. Unlike web
search, a user in a personal dataspace usually wants to find some known items stored
by him/herself. In this situation, the purpose of the user is to find a few documents
whose core content contains keywords s/he issues, in other words, s/he only expects
to get documents whose topics are relevant to given keywords.

The evaluation experiments are divided into two parts. One part of experiments
aims at evaluating the effectiveness and efficiency of a compact index in personal
dataspace system, by comparing its performance for queries with an inverted in-
dex based on full text. We have tested two metrics to compare the performance:
the quality of the search results measured by precision, recall and F-measure, the
response time for query. Another part of experiments aims at evaluating the fea-
sibility of a compact index. By the experiments, we can see that topic keywords
which can capture the most important and representative semantics in a document
can be covered by a compact index built on a small fraction of core sentences.

We implemented the indexing module using the Lucene indexing tool [25]. We
implemented our algorithms in Java, and conducted all the experiments on a 2.2 GHz
Intel machine running Windows 7, with 2 CPUs, 2 GB memory and 320 GB hard
disk.

5.1 Comparison with Full-text Indexes

In order to evaluate the effectiveness and efficiency of a compact index in personal
dataspace system, we compare its performance for keyword queries with an inverted
index based on full text.

5.1.1 Experimental Data

Experiments for search effectiveness and efficiency were conducted on dataset DS0
which is composed of English data set and Chinese data set. English data set
contains 400 documents which cover 15 topics from Reuters-21578 [26], and Chinese
data set contains 200 documents which cover 10 topics from the Internet. Each
document contains about 40 sentences.

5.1.2 Precision, Recall &F-measure

To evaluate keyword query quality, we use precision, recall, and F-measure, defined
in Equations (1), (2) and (3):

Precision =
|Rel ∩ Ret |
|Ret |

(1)

Recall =
|Rel ∩ Ret |
|Rel |

(2)

292 N. Wang, H. Du, B. Xu, G. Dai

F =
(1 + α)× Precision × Recall

α× Precision + Recall
(3)

Precision measures the percentage of the output documents that are desired, and
recall measures the percentage of the desired documents that are output. F-measure
is the weighted harmonic mean of precision and recall, in which precision and recall
are evenly weighted if α = 1. Additional two commonly used F-measures are α =
0.5, assigning a larger weight to precision, and α = 2, assigning a larger weight to
recall.

In Equations (1) and (2), Rel is the set of relevant documents which are desired,
and Ret is the set of output documents. A key problem is how to judge if a docu-
ment is related to the query. In order to remove the difference between different
standards from various users, top-n keyword query results based on a full-text index
constructed by Lucene indexing tool are set as ground truth of Rel. The top-n query
results, which are the most relevant in all outputs, are decided by Lucene ranking
mechanism, and n is set according to the number of documents in data set.

5.1.3 Experiments and Results

In the following experiments, a full-text index and a compact index are constructed
for DS0 using Lucene indexing tool. For building a compact index, we try to extract
about 10 core sentences in each document. As for how many core sentences are
suitable for building a compact index, we will get suggestions from experiments
in 5.2. We set the parameter of the number of returned documents as 1 000 so that
every search result meeting search condition can be returned, and set n as one third
of the number of all returned documents for a query using full-text indexes. Under
the above assumptions, the values of recall for queries using a full-text index will
be unified as 1, and the values of precision for queries using a full-text index will be
about 0.33.

Before experiments, documents in DS0 are analyzed manually and 10 most rep-
resentative keywords are extracted from each document as topic keywords which can
reflect the most important semantics of the document. After that, we select 5 topics
from English and Chinese data sets, and we select randomly 2 or 3 topic keywords
from each topic to compose 10 query cases. We select topic keywords to compose
query cases in our experiments just for getting enough results.

10 keyword queries are evaluated, and their precision,recall and response time
under two index approaches on DS0 are calculated and shown in Figures 3 a), 3 b)
and 3 d). Furthermore, we compute the F-measure of each approach according to
the average precision and recall across all the test queries with parameter α = 0.5,
1 and 2, as presented in Figure 3 c).

From Figure 3, we have following observations:

1. The precision of queries using a compact index is obviously higher than that
using a full-text index, because only semantically more important sentences are
selected and used to build a compact index.

Compact Indexes Based on Core Content 293

2. For F-measures with 3 different parameter values assigning different weight to
precision and recall, our approach always outperforms the approach using a full-
text index, although the recall of some query cases under a compact index is
a little lower than that under a full-text index. Because we use top-n key-
word query results based on a full-text index constructed by Lucene indexing
tool as ground truth of Rel, it is nothing surprising that the value of recall is
biased towards full-text indexes. In fact, we can improve query recall by the
way of extracting more core sentences for building compact indexes. In 5.2,
some suggestions will be given about the setting for suitable number of core
sentences.

3. Queries based on a compact index are more efficient than those based on a full-
text index, because the volume of a compact index built on core sentences is
greatly reduced.

As we can see, when using compact indexes in PDSMS, the comprehensive
performance of queries is higher than using full-text indexes. Because compact
indexes are built on a small amount of core sentences, not only query precision
but also response time are improved, which is significant for very large personal
dataspaces.

All that was missing was recall. In PDSMS, a user issues keyword queries
and just wants to get a small amount of objects which are most relevant to topic
keywords. For a document, topic keywords are limited and their coverage rate in
a compact index can be improved through extracting more core sentences. Of course,
we can also develop new algorithms for extracting core sentences with high quality,
which is our future work.

5.2 Coverage of Topic Keywords

In order to improve the recall of keyword queries based on a compact index, we
can select more core sentences. However, the question we are interested in is how
many core sentences can cover topic keywords, and it is also about the feasibility
of compact indexes. To keep its advantage, a compact index has to be built on
a small amount of core sentences. In this section, we will validate this conclusion
by experiments.

5.2.1 Experimental Data

Experimental data set DS1 is composed of 210 documents collected from a personal
desktop, which contain 105 English documents and 105 Chinese documents. To make
experimental results representative, documents are selected according to 5 types.
There are two types of short documents, which are about 1–2 pages or 4–6 pages;
medium-length documents are about 12 pages; long documents are about 60 pages;
super-long documents are about 200 pages.

294 N. Wang, H. Du, B. Xu, G. Dai

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Query Case

Pr
ec

is
io

n
Full-text Index Compact Index

a)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10
Query Case

R
ec

al
l

Full-text Index Compact Index

b)

Our experiments totally process 10 types of documents, and the statistics thereof
is shown in Table 1. For the same type of documents, we select those with the number
of sentences as close as possible, so # of Sentences in Table 1 is an average sentence
number for the same type of documents.

5.2.2 Selection of Topic Keywords

Before experiments, the first thing we have to make clear is how to select topic key-
words. Topic keywords for a document are topic oriented and can reflect the most

Compact Indexes Based on Core Content 295

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

α=0.5 α=1 α=2

Full-text Index Compact Index

c)

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10
Query Case

Q
ue

ry
 T

im
e(

m
s)

Full-text Index Compact Index

d)

Figure 3. Precision, Recall, F-Measure and Response Time under two index approaches:
a) precision measurement, b) recall measurement, c) F-measurement with different
α values, d) query time

important content of this document. Generally speaking, the content of a document
can be observed upon three layers, just like a journal paper, which are keywords,
abstract and full text. Full text can perfectly describe the whole content, but quite
most words are not vital to identify the subject of the document. Keywords and
abstract are two other layers of a document which can describe the most important
content of the document succinctly. For a journal paper, the number of keywords
is about 5, and does not exceed 10. Further observations show that 30 keywords

296 N. Wang, H. Du, B. Xu, G. Dai

of Sentences (per document) # of documents

Short document1 (English) 40 25

Short document2 (English) 100 25

Medium-length document (English) 200 25

Long document (English) 300 25

Super-long document (English) 1 500 5

Short document1 (Chinese) 40 25

Short document2 (Chinese) 100 25

Medium-length document (Chinese) 200 25

Long document (Chinese) 300 25

Super-long document (Chinese) 1 500 5

Table 1. Dataset DS1 statistics

are enough to cover whole content of the abstract of a common paper. Topic key-
words of a document are classified into 3 types based on the number of keywords.
In the following paper, the set of 5 topic keywords is called primary topic keywords;
the set of 10 topic keywords is called secondary topic keywords; the set of 30 topic
keywords is called extensive topic keywords. In fact, extensive topic keywords con-
tain secondary topic keywords, and secondary topic keywords contain primary topic
keywords which are the most pivotal for a document.

We enlisted three users to generate “gold standard” topic keywords for DS1.
Based on understanding the main meaning of each document, users wrote down
3 types of topic keywords independently. In fact, because short documents have less
sentences, it is unnecessary to provide extensive topic keywords. Finally, for each
document, a user consensus topic keyword list for a particular type is generated by
combining all users’ topic keywords and retaining only keywords selected by most
users (in this case, at least two users).

5.2.3 Experimental Results

For each type of English or Chinese documents, we extracted different number of core
sentences from each document, and measured the coverage rate of 3 types of topic
keywords in core sentences. The primary coverage rate is defined as the percentage
of 5 primary topic keywords occurring in core sentences; the secondary coverage
rate is defined as the percentage of 10 secondary topic keywords occurring in core
sentences; the extensive coverage rate is defined as the percentage of 30 extensive
topic keywords occurring in core sentences. For short documents, we have not
measured their extensive coverage rates.

Tables 2 and 3 show the average primary coverage rates and secondary coverage
rates respectively for 8 types of documents under different numbers of core sentences.
For medium-length documents and long documents, Table 4 gives their average
extent coverage rates. Finally, Table 5 gives 3 types of average coverage rates for
super-long documents.

Compact Indexes Based on Core Content 297

Core
Sentences

Short Doc1 Short Doc2 M-length Doc Long Doc
En Ch En Ch En Ch En Ch

4 0.752 0.824 0.687 0.824 0.576 0.733 0.555 0.752
6 0.784 0.904 0.722 0.816 0.616 0.883 0.600 0.768
8 0.872 0.896 0.730 0.888 0.656 0.875 0.691 0.808
10 0.904 0.976 0.757 0.944 0.744 0.883 0.700 0.896
20 0.968 0.992 0.870 0.968 0.856 0.952 0.818 0.944
30 1 1 0.930 0.984 0.920 0.983 0.873 0.968
50 1 1 0.983 0.992 0.984 1 0.973 0.976

Table 2. Primary coverage rate

Core
Sentences

Short Doc1 Short Doc2 M-length Doc Long Doc
En Ch En Ch En Ch En Ch

4 0.664 0.632 0.613 0.676 0.444 0.596 0.500 0.676
6 0.656 0.736 0.609 0.656 0.504 0.738 0.550 0.668
8 0.772 0.760 0.630 0.752 0.564 0.792 0.618 0.704
10 0.828 0.836 0.691 0.856 0.640 0.796 0.609 0.804
20 0.948 0.932 0.791 0.920 0.784 0.888 0.759 0.844
30 0.992 0.996 0.878 0.968 0.868 0.913 0.868 0.904
50 1 1 0.961 0.988 0.976 0.965 0.955 0.952

Table 3. Secondary coverage rate

Core
Sentences

M-length Doc Long Doc
En Ch En Ch

6 0.368 0.472 0.414 0.541
8 0.401 0.535 0.494 0.572
10 0.513 0.557 0.515 0.637
20 0.664 0.661 0.662 0.713
30 0.744 0.768 0.732 0.801
50 0.917 0.867 0.870 0.865
80 0.927 0.931 0.911 0.923

Table 4. Extensive coverage rate

Core
Sentences

Primary Topic Key Secondary Topic Key Extensive Topic Key
En Ch En Ch En Ch

30 0.92 0.94 0.90 0.91 0.713 0.763
50 0.96 0.96 0.94 0.95 0.853 0.877
80 0.96 0.98 0.98 0.98 0.900 0.913
100 1 1 0.98 0.99 0.933 0.943
150 1 1 1 1 0.980 0.987

Table 5. Coverage rates for super-long documents

298 N. Wang, H. Du, B. Xu, G. Dai

From Tables 2 through 5, we have the following observations:

1. Except for very few instances, the more core sentences have been extracted, the
higher the coverage rates are. Exceptions occur when not much difference exists
in the number of core sentences between two extractions.

2. In order to approach one coverage rate, less proportion of core sentences are
needed for longer documents. We can use secondary coverage rates for English
documents as an example. For short documents with about 40 sentences, when
25 % sentences (10 sentences) are extracted from a document as core sentences,
average coverage rate is 0.828. However, for medium-length documents with
about 200 sentences, when 15 % sentences (30 sentences) are extracted as core
sentences, average coverage rate can reach 0.868. For the same average coverage
rate 0.868, only 10 % sentences (30 sentences) need to be extracted from long
documents with about 300 sentences. Finally, in super-long documents with
about 1500 sentences, when 2 % sentences (30 sentences) are extracted, average
coverage rate can reach 0.9. It is obvious that our algorithm for building compact
indexes is scalable to the length of documents.

3. Under the condition of extracting the same number of core sentences, the cover-
age rates for Chinese documents are usually a little higher than those for English
documents. The reasons are manifold, but can be reduced to two. First, three
enlisted users are all Chinese, so it is taken for granted that “gold standard”
topic keywords for Chinese documents are more accurate than those for English.
Second, our algorithm of extracting core sentences based on semantics performs
a little better for Chinese documents than that for English ones. It is our future
research plan to improve the effectiveness of compact indexes by exploring new
algorithms for extracting core sentences.

4. Absolutely most topic keywords can be covered by extracting a few core sen-
tences. As we can observe, if 50 core sentences are extracted, average primary
coverage rates for all types of documents are over 96 %, average secondary cov-
erage rates for them are over 94 %, and average extensive coverage rates for
them are over 85 %. In most cases, 10 secondary topic keywords are enough to
cover the subject of a document. In other words, a compact index building upon
a few core sentences (50 sentences for example) can meet most of the needs from
users.

In fact, our method is mainly targeted for result accuracy but not query coverage.
In this point, it is like Hilltop algorithm [27] which uses expert documents to assess
relevancy. When there are not enough expert sites, Hilltop returns no results. For
applications where query coverage is important, two steps could be taken in query
processing. First we can use compact index to find high quality results efficiently,
then we can resort full-text index for more results to improve recall.

Compact Indexes Based on Core Content 299

6 CONCLUSION AND FUTURE WORK

In order to improve the search precision and efficiency of keyword query over personal
dataspaces, we propose to construct compact indexes based on core content of docu-
ments. By extracting core sentences based on semantics from documents, a compact
inverted index will concentrate on the most important semantics in a document, so
it is succinct, with low space cost. Furthermore, we present algorithm for selecting
core sentences based on semantic analysis, which can process English and Chinese
documents uniformly. In particular, core sentences can also be used for producing
query-biased snippets efficiently and accurately, which can give users a sneak pre-
view of the document contents and help them to make selections. The results of a set
of experiments show that the search precision and efficiency for keyword queries can
be improved by using compact indexes in PDSMS. Last, the feasibility of compact
indexes is validated by our coverage experiments, which reveal that a compact index
building upon a few core sentences can meet most of the needs from users.

In the future, we plan to improve our algorithm of extracting core sentences to
make it more efficient and effective, and we will study how to make use of query log
to adjust the compact index so that the content that a user is more interested in
will be indexed in order to further improve search quality. We hope the application
scope of our method can be extended to vertical search engines in the near future.

Acknowledgments

This work was supported by the National Natural Science Foundation of China
under Grant No. 61370060, Jiangsu Provincial Natural Science Foundation of China
under Grant No. BK2011454 and the Open Foundation from Computer Application
Technology in the Most Important Subjects of Zhejiang under Grant No. 10Y0001.

REFERENCES

[1] Franklin, M.—Halevy, A.—Maier, D.: From Databases to Dataspaces: A New
Abstraction for Information Management. SIGMOD Record, Vol. 34, 2005, No. 4,
pp. 27–33.

[2] White, R.W.—Ruthven, I.—Jose, J.M.: Finding Relevant Documents Using
Top Ranking Sentences: An Evaluation of Two Alternative Schemes. In: Proceedings
of SIGIR ’02 Conference, 2002, pp. 57–64.

[3] Xiang, B.—Jiang, D.—Pei, J.—Sun, X.—Chen, E.—Li, H.: Context-Aware
Ranking in Web Search. In: Proceedings of SIGIR ’10, 2010, pp. 451–458.

[4] Dong, A.—Chang, Y.—Zheng, Z.—Mishne, G.—Bai, J.—Zhang, R. et al:
Towards Recency Ranking in Web Search. In: Proceedings of WSDM ’10, 2010,
pp. 11–20.

300 N. Wang, H. Du, B. Xu, G. Dai

[5] Ceccarelli, D.—Lucchese, C.—Orlando, S.—Perego, R.—Silvestri, F.:
Caching Query-Biased Snippets for Efficient Retrieval. In: Proceedings of EDBT
2011, 2011, pp. 93–104.

[6] Dittrich, J.-P.—Vaz Salles, M.A.—Blunschi, L.: iMeMex: From Search to
Information Integration and Back. IEEE Data Engineering Bulletin, Vol. 32, 2009,
No. 2, pp. 28–35.

[7] Li, Y.—Meng, X.—Kou, Y.: An Efficient Method for Constructing Personal
Dataspace. In: Proceedings of the 6th Web Information Systems and Applications
Conference, 2009, pp. 3–8.

[8] Dong, X.—Halevy, A.: Indexing Dataspaces. In: Proceedings of SIGMOD ’07
Conference, 2007, pp. 43–54.

[9] Seshadri, P.—Swami, A.: Generalized Partial Indexes. In: Proceedings of
ICDE ’95, 1995, pp. 420–427.

[10] Stonebraker, M.: The Case for Partial Indexes. ACM SIGMOD Record, Vol. 18,
1989, No. 4, pp. 4–11.

[11] Das, D.—Martins, A.: A Survey on Automatic Text Summarization. Technical
Report, Language Technologies Institute, Carnegie Mellon University, 2007.

[12] Conroy, J.M.—O’Leary, D. P.: Text Summarization via Hidden Markov Models.
In: Proceedings of SIGIR ’01, 2001, pp. 406–407.

[13] Radev, D.R.—Hovy, E.—McKeown, K.: Introduction to the Special Issue on
Summarization. Computational Linguistics, Vol. 28, 2002, No. 4, pp. 399–408.

[14] Silber, H.G.—McCoy, K. F.: Efficiently Computed Lexical Chains as an Inter-
mediated Representation for Automatic Text Summarization. Computational Lin-
guistics, Vol. 28, 2002, No. 4, pp. 487–496.

[15] Chen, Y.—Liu, B.—Wang, X.: Automatic Text Summarization Based on Textual
Cohesion. Journal of Electronics (China), Vol. 24, 2002, No. 3, pp. 338–346.

[16] Miller, G.A.: Wordnet: A Lexical Database for English. Communications of the
ACM, Vol. 38, 1995, No. 11, pp. 39–41.

[17] Hownet web site. Availaible on: http://keenage.com/.

[18] Ning, W.—De, X.—Baomin, X.: Collaborative Integration and Management of
Community Information in the Cloud. In: Proceedings of International Conference
on E-Business and E-Government, Guangzhou, 2010, pp. 1406–1409.

[19] Jiang, J. J.—Conrath, D.W.: Semantic Similarity Based on Corpus Statistics
and Lexical Taxonomy. In: Proceedings of International Conference on Research in
Computational Linguistics, 1997, pp. 19–33.

[20] Liu, Q.—Li, S.: Word Similarity Computing Based on How-Net. Computational
Linguistics and Chinese Language Processing, Vol. 7, 2002, No. 2, pp. 59–76.

[21] Chu, Sh.-Ch.—Roddick, J. F.—Pan, J.-Sh.: Novel Multi-Centroid, Multi-Run
Sampling Schemes for k-Medoids-Based Algorithms. KES Journal, Vol. 8, 2004, No. 1,
PP. 45–56.

[22] Ding, Ch.H.Q.—He, X.—Zha, H.—Gu, M.—Simon, H.D.: A Min-Max Cut
Algorithm for Graph Partitioning and Data Clustering. In: Proceedings of 2011 IEEE
International Conference on Data Mining, 2011, pp. 107–114.

Compact Indexes Based on Core Content 301

[23] Cong Yu, H.V.: Jagadish: Schema Summarization. In: Proceedings of VLDB 2006,
2006, pp. 319–330.

[24] Dittrich, J.-P.—Vaz Salles, M.A.: iDM: A Unified and Versatile Data Model
for Personal Dataspace Management. In: Proceedings of the VLDB0́6 Conference,
2006, pp. 367–378.

[25] Lucene web site. Availaible on: http://jakarta.apache.org/lucene/docs/index.
html.

[26] Reuters web site. Availaible on: http://kdd.ics.uci.edu/databases/

reuters21578/reuters21578.html.

[27] Hilltop web site. Availaible on: ftp://ftp.cs.toronto.edu/pub/reports/csri/

405/hilltop.html.

Ning Wang received her Ph. D. degree in computer science in
1998 from Southeast University in Nanjing, China. She is cur-
rently serving as an Associate Professor in School of Computer
and Information Technology, Beijing Jiaotong University, China.
Her research interests include web data integration, web search,
XML keyword search and personal information management.

Hongfang Du received her Master degree in computer science
from Beijing Jiaotong University in 2011 and currently works
in Software Center of Bank of China. Her research interests
include web data integration, data mining and personal infor-
mation management.

Baomin Xu received his Ph. D. degree in computer science in
2000 from the Institute of Computing Technology at the Chi-
nese Academy of Sciences, China. He is currently serving as
an Associate Professor in School of Computer and Information
Technology, Beijing Jiaotong University, China. His research ar-
eas include data mining, distributed computing including cloud
computing and P2P.

302 N. Wang, H. Du, B. Xu, G. Dai

Guojun Dai received his Ph. D. degree from the College of Elec-
trical Engineering, Zhejiang University in 1998. He is currently
a Professor and the Deputy Dean of the College of Computer
Science, Hangzhou Dianzi University, Hangzhou, China. He is
the author or co-author of more than 20 papers and books in
recent years, and holds more than 10 patents. His research in-
terests include biomedical signal processing, computer vision,
embedded systems design, and wireless sensor networks.

