
Computing and Informatics, Vol. 31, 2012, 17–30

MERGING ON-DEMAND HPC RESOURCES
FROM AMAZON EC2 WITH THE GRID:
A CASE STUDY OF A XMIPP APPLICATION

Alejandro Lorca

Instituto de F́ısica de Cantabria, CSIC
Avenida de los Castros s/n, E-39005 Santander, Spain
& Secretaŕıa General Adjunta de Informática, CSIC
Calle del Pinar 19, E-28006 Madrid, Spain
e-mail: alejandro.lorca@cti.csic.es

Javier Mart́ın-Caro

Secretaŕıa General Adjunta de Informática, CSIC
Calle del Pinar 19, E-28006 Madrid, Spain
e-mail: javier.mcaro@orgc.csic.es

Rafael Núñez-Raḿırez

Departmento de F́ısica Macromolecular
Instituto de Estructura de la Materia, CSIC
Calle Serrano 113 bis, E-28006 Madrid, Spain
e-mail: rafa@iem.cfmac.csic.es

Javier Mart́ınez-Salazar

Departmento de F́ısica Macromolecular
Instituto de Estructura de la Materia, CSIC
Calle Serrano 113 bis, E-28006 Madrid, Spain
e-mail: jmsalazar@iem.cfmac.csic.es



18 A. Lorca, J. Mart́ın-Caro, R. Núñez-Ramı́rez, J. Mart́ınez-Salazar

Abstract. We present an infrastructure in which HPC resources from the Amazon

Web Services public cloud are combined with specific grid resources at Ibergrid.
The integration is done transparently for the GridWay users through a daemon
which permanently monitors the pool of available resources and submitted jobs,
managing virtual instances for satisfying the demand under budget restrictions.
The study has been proved with a specific application from the Xmipp package,
which performs image processing from electron microscopy data and requires heavy
high-throughput computing offering parallelization capabilities. The application
was ported successfully for such a hybrid framework with the help of the MPI-Start
package. Some preliminary results from test runs are presented for a controlled
sample of thousand input images. Some inconveniences and troublesome aspects of
the deployment are also reported.

Keywords: Grid, cloud, hpc, resource provisioning, virtualization, parallelization,
image processing

Mathematics Subject Classification 2000: 68M14, 68M20, 68W10, 68W15
68T10, 68U10

1 INTRODUCTION

There is common agreement regarding the status reached by cloud computing being
on top of the peak of expectations according to the Gartner’s hype cycle of tech-
nologies [1]. This differs from what has already happened to grid computing, which
is getting closer to a productivity plateau as required by the Large Hadron Collider
experiments and supported by other scientific communities.

Simultaneously, the development achieved by the architecture of the processor
has brought to the market multi-core servers at very affordable prices even for small-
to-medium research units. Not only the speed, but the parallelization, virtualization
and energy-saving capabilities of the hardware offer compelling reasons to upgrade
the equipment.

The resources offered by the institutions taking part in grid computing are slowly
moving into this direction. Looking at the figures offered by the Ibergrid infrastruc-
ture in February 2011 [2], 12 257 declared logical CPUs (cores) are sustained by 3 359
physical CPUs (processors) averaging 3.65 cores/processor, far above the single-core
architecture. Similar increases have occurred regarding memory and network speed
since the early days of grid computing.

Therefore, it seems natural to port to the grid high performance computing
(HPC) applications or, at least, the so-called many task computing (MTC) ones.
Merging resources coming from the cloud would also appear to be a step forward in
introducing an important degree of flexibility into a relatively rigid infrastructure.



Merging On-Demand HPC Resources from Amazon EC2 with the Grid 19

To this end, the key role of Amazon EC2 1 and other providers of Infrastructure
as a Service utility model have made affordable the use of on-demand virtual in-
stances for the general public. A service based on a static infrastructure which can
be enlarged and reduced dynamically is still a challenge and there are remarkable
European ongoing projects appointed on the subject, focusing on site provisioning2,
virtual environments3 and e-infrastructure enrichment4.

In this paper we present a simple model of hybrid infrastructure grid-cloud in
Section 2, with emphasis in a transparent experience for the user. An application
used for molecular imaging is described in Section 3 since it has been used whilst de-
veloping the framework. The porting of the application to the hybrid infrastructure
is detailed in Section 4. Some preliminary results are shown in Section 5 for both,
technical and scientific interest with comments on some issues which appear during
the implementation of the infrastructure. We summarize the study in Section 6 with
some recommendations and future work.

2 THE GRID-CLOUD MODEL

2.1 Architecture

In our model, an heterogeneous grid composed out Ibergrid nodes is considered
under the following restrictions:

1. gLite 3.1 lcg-type computing elements (CEs),

2. support of any of the Ibergrid VOs or CSIC VOs,

3. capability of handling MPI jobs.

The available CEs are shown in Table 1.

ARCH CPU MEM Cores LRMS Endpoint Site
(bits) (MHz) (MB)

64 2 400 4 058 36 lcgsge ce01.up.pt UPorto
64 3 200 15 636 1 456 sge egeece01.ifca.es IFCA-LCG2
64 3 200 15 636 1 456 sge egeece02.ifca.es IFCA-LCG2
64 3 200 15 636 1 456 sge egeece03.ifca.es IFCA-LCG2
64 3 200 2 048 416 lcgpbs ce.iaa.csic.es IAA-CSIC
32 2 330 512 12 lcgpbs ce.cp.di.uminho.pt UMinho-CP

Table 1. Resources from LCG-CEs in Ibergrid with MPI support

1 http://aws.amazon.com/ec2
2 Stratuslab. http://www.stratuslab.eu
3 Venus-C. http://www.venus-c.eu
4 Siena Inititative. http://www.sienainitiative.eu



20 A. Lorca, J. Mart́ın-Caro, R. Núñez-Ramı́rez, J. Mart́ınez-Salazar

Additionally, we consider many particular High CPU Extra Large instances of
Amazon EC2, described in Table 2. The virtual machines are launched according
to a customized Amazon Machine Image (AMI) and are capable of handling MPI
jobs through the Open MPI suite and secure-shell. The AMI has been saved in an
Amazon S3 bucket during the usage of the infrastructure.

ARCH CPU MEM Cores LRMS API name Region Price
(bits) (EC2 CU) (MB) ($/hour)

64 2.50 7 000 8 none c1.xlarge US-EAST 0.68

Table 2. Resource type used from Amazon EC2

The last element required in order to submit jobs is the user interface. It is
a dedicated machine physically located at the institute SGAI-CSIC and accessible
to the users.

2.2 Middleware

2.2.1 The User Interface

It hosts the middleware handling the submission of jobs, and thus needs to provide
the different services which are required by the lcg-CE computing elements: creation
of proxies, verification from a VO, file transfer mechanism, command execution, etc.
An installation of the gLite User Interface5 and the Globus Toolkit6 suffices for these
purposes.

On top of that, a job scheduler different from the gLite WMS is required,
since the power coming from the cloud has to be locally managed. The GridWay
metascheduler [3] is a tool designed for the submission, scheduling, control and mo-
nitor of jobs from a single access point. In the last available version at the start of
the study7 it includes a ssh plugin, gaining remote access to cloud instances.

2.2.2 The GW EC2 Service Manager

A deeper analysis on the many grid-cloud enabling mechanisms has been discussed
elsewhere [4], proposing also a general framework based on GridWay where a “Ser-
vice Manager” would take care of the interoperability with cloud resources. So far we
have no evidence of any implementation of such service, and thus our contribution
is a novel attempt which validates the framework. It consists of four modules:

1. Amazon Web Services account, where the system administrator (GridWay ad-
ministrator) has access to in order to launch instances and be subsequently
billed. The module can read the certificates off for issuing such operations.

5 gLite UI v3.2.8-0. http://glite.cern.ch/glite-UI/
6 Globus Toolkit v4.0.8. http://www.globus.org/toolkit/downloads/4.0.8/
7 GridWay v5.6.1. http://gridway.org, http://dev.gridway.org



Merging On-Demand HPC Resources from Amazon EC2 with the Grid 21

Fig. 1. Scheme of the middleware design. The enclosing light-gray box represents the user
interface for job submission where the local components are installed. The left solid
block stands for the GridWay package situated above the execution plugins to interact
with the resources. The novel contribution (GW EC2) is placed on the right showing
the four existing modules.

2. Budget policy, regarding the limits to start and finish instances. Here we propose
a simple budget rate scheme where the rate limit is input in terms of amount of
money per time unit.

3. Provider database, making the system aware of the different machine types
offered by the provider and its pricing. This information could be properly
updated at running time.

4. A daemon, monitoring both the job and the resource pools from GridWay and
communicating with the provider. According to some configuration parameters
and the other modules, it decides when the pending jobs deserve dedicated
machines for their execution and how many to launch. It does also the opposite
action: to keep an eye if the job queue gets empty and shutdown the instances.
The daemon uses the Amazon EC2 API Tools8 for this purpose.

The interaction of the different components is depicted in Figure 1.

2.3 HPC-Enabler

Due to the heterogeneous environment found in the grid, the necessity of a single
interface to process parallel jobs arises. MPI-Start [5] proposes an interface to
hide the implementation details for the submitted jobs. It is composed by a set

8 http://aws.amazon.com/developertools/351.



22 A. Lorca, J. Mart́ın-Caro, R. Núñez-Ramı́rez, J. Mart́ınez-Salazar

of scripts which process all the life cycle of the job, including MPI implementation
and the additional features needed before and after the parallel execution. Because
it can be installed also on single machines without a local resource manager, the
implementation favors the usage of the Amazon EC2 multi-core instances.

For the study we prepared a private AMI based on the Amazon Linux AMI, with
Open MPI and MPI-Start. A specific set of users was created with passwordless ssh-
access from the user interface through public keys.

3 SCIENTIFIC USAGE

3.1 Specific Problem

As an example of a scientific problem which requires high computational resources
we have used image processing of electron microscopy images of biological macro-
molecules. This technique allows the visualization and characterization of the struc-
ture of large macromolecular complexes. Due to the requirement of a low electron
dose to minimize radiation damage during image recording, the images typically
suffer from low signal to noise ratio.

In the last few years several image processing algorithms have been developed
in order to improve the signal to noise ratio of these images [6]. Basically, these al-
gorithms consist of 2D translational and rotational alignments of the images which
yield an averaged image with an improved signal to noise ratio. Such averaging is
only possible if the experimental images correspond to the same orientation of the
same macromolecule. However, it is very common for electron microscopy data sets
to contain more than one different 2D structure. For that reason several classifi-
cation methods have been developed which curiously require that the images are
aligned beforehand. This paradoxical situation has been solved with the developing
of algorithms which combine 2D alignment with classification iteratively, known as
multi-reference alignment. The outputs of these algorithms are averaged images
with improved signal to noise ratio for each of the subgroups in the original data
sets (Figure 2).

3.2 Xmipp

The Xmipp package is a suite of electron microscopy image processing programs [7].
Among others, Xmipp includes an algorithm for 2D alignment and classification
widely used by the electron microscopy community, named maximum likelihood
multi-reference refinement (ML2D). The details and mathematical background of
ML2D are explained in [8].

Briefly, the set of images are compared to a predefined number of reference ima-
ges, which are assumed to represent the structural diversity of the data. Each experi-
mental image is compared and aligned with respect to all references and a probability
is assigned to each combination of alignment and reference. Since each experimen-
tal image is compared to all references in all possible rotations and translations, the



Merging On-Demand HPC Resources from Amazon EC2 with the Grid 23

Macromolecular

complex

Experimental

images

Observation under

Electron Microscopy

2D Alignment

Classification

Averages

Fig. 2. Schematic representation of multi-reference alignment procedure. The 3D struc-
ture of the macromolecular complex is observed under the electron microscope as
very noisy 2D images. Thousands of these images are processed by multi-reference

alignment procedures to obtain average images with improved signal to noise ratio.

searching space became huge. This makes ML2D computationally expensive and
high performance computing is advantageous.

In this work we have tested the availability of grid computing for ML2D. We
have used as experimental data electron microscopy images of GroEL, a large macro-
molecular complex from Escherichia coli bacteria.

4 APPLICATION PORTING

The aforementioned Xmipp application was ported from cluster computing to the
grid-cloud infrastructure by creating a self-contained pack of scripts, input files and
the Xmipp package. The strategy was to perform a dedicated remote compilation
of the xmipp mpi ml align2d program using, whenever possible, as many parallel
threads as were asked for. The user submits a template like this:

NAME = ml2d_1000_8

EXECUTABLE = mpi-start-wrapper.sh

ARGUMENTS = ml2d OPENMPI 8

TYPE = "single"

NP = 8

INPUT_FILES = mpi-start-wrapper.sh,mpi-hooks.sh,ml2d,images-1000.tgz,Xmipp-2.4-src.tar.gz

OUTPUT_FILES = ml2d.tgz

STDOUT_FILE = ml2d.out

STDERR_FILE = ml2d.err

altogether with a set of files:



24 A. Lorca, J. Mart́ın-Caro, R. Núñez-Ramı́rez, J. Mart́ınez-Salazar

• Two mpi scripts: the first one is the wrapper executable and it is almost the
same for every job (mpi-start-wrapper.sh) accepting as arguments the file to run
in parallel (ml2d), the MPI flavour to use (OPENMPI) and the parallelization
degree for the case of ssh execution (8), otherwise the NP parameter will be
used. The other script (mpi-hooks.sh) deals with additional features before and
after the MPI execution.

• The script for run (ml2d) sets the library paths and calls the application with
the configuration parameters.

• The compressed files, including the input images (images-1000.tgz) for process-
ing and the package distribution (Xmipp-2.4-src.tar.gz).

MPI-Start

Get environment:

MPI flavour, Batch System, Filesystem

Job

submission

Pre-hook:

untar files and compilation

Done
without
errors

Done
without
errors

Post-hook:

tar output files

Done
without
errors

yes

yes

End

Parallel

processing

yes

no

no

no

without errors

with errors

Fig. 3. The MPI-Start plays a wrapper role between the middleware and hardware stacks

The submission and job control in then handled by GridWay automatically,
according to its own configuration. When the job is submitted and accepted by
a resource, i.e. when the MPI-Start takes care of the correct settings, it prepares the



Merging On-Demand HPC Resources from Amazon EC2 with the Grid 25

execution in the “pre-hook” phase and, after the parallel processing, it does a similar
“post-hook” action in order to retrieve the output. The flow control is sketched in
Figure 3.

5 RESULTS AND DISCUSSION

5.1 Application Profile

1 2 4 8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

ml2d

1000 input images

Epilog

Post-hook (compression)

Execution

Pre-hook (uncompress and
compilation)

Prolog

NumberofCores

E
la
p
s
e
d
T
im
e
[s
]

Fig. 4. Scaling of the application for an input sample of thousand images averaged to
four reference output images. The columns indicate the total elapsed time for each
job, consisting of input transfer (prolog), pre-execution (pre-hooks), execution, post-
execution (post-hooks) and output transfer (epilog). The four jobs were exclusively
run in the same Amazon instance at different times.

The application was run in many occasions, obtaining more averaged images
and testing the underlying infrastructure. A very nice feature observed was the
scaling for the speed-up due to parallelization. In Figure 4 equivalent test runs for
the application were considered, taking 1 000 input images and 4 reference output
images. In comparison to the single-core run, the 2-cores run takes 54% of time,
which gets quite close to the theoretical half-time limit. Equally the 4-cores time
corresponds to a 57% of the 2-cores time and the 8-cores job takes 57% of the time
employed by 4-cores task. We measured a standard deviation for the total time taken
by the same jobs of about 10%. Note that also the pre-execution time gets reduced



26 A. Lorca, J. Mart́ın-Caro, R. Núñez-Ramı́rez, J. Mart́ınez-Salazar

due to the multi-threaded option at compile for the Xmipp package. Runs at the
lcg-CEs showed a much larger deviation (20%) with high failure rate, depending on
the hardware and cluster availability. They also suffer from the undesirable waiting
time for free slots, but, in general, one could expect jobs being done at IFCA-CSIC
taking slightly more time than the invested in Amazon EC2. For the other sites we
were unable to run the jobs successfully. A more detailed summary of job runs is
given in Table 3.

Job SITE Cores Prolog Pre-hook Execution Post-hook Epilog Total
[hh:mm:ss]

ml2d 1000 1 AWS EC2 1 2:46 3:13 2:26:38 0:01 1:01 2:33:49
ml2d 1000 2 AWS EC2 2 2:30 1:54 1:17:26 0:01 1:42 1:23:33
ml2d 1000 4 AWS EC2 4 3:01 1:26 0:41:25 0:01 1:15 0:47:08
ml2d 1000 8 AWS EC2 8 2:39 0:57 0:22:07 0:01 1:15 0:26:59
ml2d 1000 4 IFCA-CSIC 4 0:04 3:30 0:48:41 0:05 0:02 0:52:22
ml2d 1000 8 IFCA-CSIC 8 0:04 4:57 0:29:26 0:05 0:02 0:34:34
ml2d 1000 16 IFCA-CSIC 16 0:04 3:33 0:16:11 0:02 0:02 0:19:52

Table 3. Detailed elapsed time at the different phases for each job. For the IFCA-CSIC
the pending time on the remote queue has not been taken into account.

During execution, all the cores were used to a very large degree consuming all the
available CPU cycles. On the contrary, memory was not a limitation for the kind of
hardware tested. Access to disk became relevant uncompressing the package at the
pre-execution stage, lowering the performance of the application in those systems
with slow I/O access. Networked shared file-systems without low-latency suffered
performance degradation as well, due to the saturation of the MPI communication
layer.

5.2 Daemon Behavior

The GW EC2 being still experimental delivered a very smooth behavior. It mo-
nitors the pool of jobs and resources known to GridWay at each configuration step
time (one minute by default). From there on, if there are pending jobs in the queue,
several Amazon instances are launched in order to satisfy the jobs conditions. The
daemon stops launching new instances if there are no more jobs waiting on the local
system or if the policy budget rate has been reached, leading to a maximum amount
of enrolled machines. We deployed an infrastructure with a running costs limited to
$ 10/h, using at most 14 simultaneous instances as shown in Table 4.

The enrolment of the instances into the GridWay pool of resources happens
as soon as the GridWay daemon is scheduled to do a discovery of new hosts.
Because this is a costly action, the daemon realizes about new resources every
DISCOVERY INTERVAL and we set that value to 60 s. When there are neither more
jobs in a given cloud resource nor pending in the local queue, then the instance is



Merging On-Demand HPC Resources from Amazon EC2 with the Grid 27

marked for shutdown but kept as long as it approaches the billed hour, just for the
case of new entering jobs. The daemon keeps a historic log of the machines but
currently cost savings are only spared and not used at a later moment.

HID OS ARCH MHZ %CPU MEM(F/T ) DISK(F/T) N(U/F/T) LRMS HOSTNAME

0 LinuxUnknown x86_6 2667 100 7000/7000 1690000/1690000 4/8/8 jobmanager-ssh ec2-50-16-72-188.compute-1.amazonaws.com

1 LinuxUnknown x86_6 2667 100 7000/7000 1690000/1690000 4/8/8 jobmanager-ssh ec2-184-72-161-10.compute-1.amazonaws.com

2 LinuxUnknown x86_6 2667 100 7000/7000 1690000/1690000 8/8/8 jobmanager-ssh ec2-50-16-182-233.compute-1.amazonaws.com

3 ScientificCERNS x86_6 3200 0 15636/15636 0/0 0/1456/1456 jobmanager-sge egeece01.ifca.es

4 ScientificCERNS x86_6 3200 0 15636/15636 0/0 7/1456/1456 jobmanager-sge egeece03.ifca.es

5 ScientificCERNS i386 2330 0 512/512 0/0 0/12/12 jobmanager-lcgpbs ce.cp.di.uminho.pt

6 LinuxUnknown x86_6 2667 100 7000/7000 1690000/1690000 4/8/8 jobmanager-ssh ec2-174-129-180-84.compute-1.amazonaws.com

7 LinuxUnknown x86_6 2667 100 7000/7000 1690000/1690000 8/8/8 jobmanager-ssh ec2-174-129-78-66.compute-1.amazonaws.com

8 ScientificCERNS x86_6 3200 0 2048/2048 0/0 3/406/416 jobmanager-lcgpbs ce.iaa.csic.es

9 LinuxUnknown x86_6 2667 100 7000/7000 1690000/1690000 8/8/8 jobmanager-ssh ec2-50-17-116-131.compute-1.amazonaws.com

10 LinuxUnknown x86_6 2667 100 7000/7000 1690000/1690000 8/8/8 jobmanager-ssh ec2-75-101-219-12.compute-1.amazonaws.com

11 LinuxUnknown x86_6 2667 100 7000/7000 1690000/1690000 8/8/8 jobmanager-ssh ec2-50-16-128-24.compute-1.amazonaws.com

12 LinuxUnknown x86_6 2667 100 7000/7000 1690000/1690000 8/8/8 jobmanager-ssh ec2-174-129-114-17.compute-1.amazonaws.com

13 LinuxUnknown x86_6 2667 100 7000/7000 1690000/1690000 8/8/8 jobmanager-ssh ec2-184-72-169-195.compute-1.amazonaws.com

14 ScientificSLSL x86_6 2400 0 4058/4058 0/0 0/36/36 jobmanager-lcgsge ce01.up.pt

15 LinuxUnknown x86_6 2667 100 7000/7000 1690000/1690000 8/8/8 jobmanager-ssh ec2-174-129-60-28.compute-1.amazonaws.com

16 LinuxUnknown x86_6 2667 100 7000/7000 1690000/1690000 4/8/8 jobmanager-ssh ec2-184-73-25-138.compute-1.amazonaws.com

17 LinuxUnknown x86_6 2667 100 7000/7000 1690000/1690000 8/8/8 jobmanager-ssh ec2-67-202-16-53.compute-1.amazonaws.com

18 LinuxUnknown x86_6 2667 100 7000/7000 1690000/1690000 8/8/8 jobmanager-ssh ec2-50-16-115-39.compute-1.amazonaws.com

Table 4. Output of the gwhost command from the user interface showing the hybrid grid-
cloud resources. A set of 14 Amazon instances are enrolled in the pool with the
hosts of the lcg-CEs with MPI-Support in Ibergrid.

5.3 Image Classification and Averaging

After the executions of ML2D algorithm in the grid the output data are transferred
to a local machine for further analysis. The algorithm produces averaged images and
“doc” files for each iteration. The doc files provide detailed information about the
classification and alignment process, for example, the proportion of experimental
images belonging to each average, the rotations and translation of each image to
be aligned, etc. The averaged images must be visualized with specific graphical
applications available in the Xmipp package.

Figure 5 shows an example of these results. Whereas the original experimental
images are noisy and featureless, the ML2D output averages display an increased
signal to noise ratio which allows the description of structural details of the macro-
molecular complex. Several parameters of the macromolecule such as size, shape,
geometry, number of subunits, etc. can be inferred from the averaged images. This
information is extremely useful for molecular biologists since the structure and func-
tion are parameters strongly related in biological macromolecules. Thus, the analysis
of the averaged images of a macromolecular complex could shed light on how this
complex works. In our example, the ML2D classification and alignment of 1 000 ex-
perimental images yield two types of averaged images, one of them circular and with
seven main masses and the other one square and with four parallel strips. Based
in this information we are able to state that GroEL is a macromolecule organized
as a cylinder with a seven-fold symmetry axis as has been observed in numerous
previous works.



28 A. Lorca, J. Mart́ın-Caro, R. Núñez-Ramı́rez, J. Mart́ınez-Salazar

Fig. 5. ML2D classification of 1 000 electron microscopy experimental images into 4 final
improved images after a typical run of the application

5.4 Troubleshooting

During the deployment of the research infrastructure, some technical issues arose dif-
ficulting the successful interoperability of the grid-cloud platform. Let us summarize
the most relevant aspects:

GridWay ssh MAD. We had some troubles when using it under a multi-user
environment. Some log files were written by one user into /tmp/ssh.log and
/tmp/ssh tm.log but they could not be overwritten by other users, rendering
the MAD useful for a single user only.

GRAM2 and MPI-Start versioning at sites. Because each site deploys a dif-
ferent version, some of the jobs described through a rsl job submission format
used by GridWay did not run properly. It happened that in IAA-CSIC and
UMinho-CP sites, instead of receive NP processors, a single processor was given,
narrowing the availability of resources. Curiously enough, those sites did not
show any problem whatsoever to run parallel jobs with the same version of
MPI-Start used and the gLite JDL.

Firewall. The fact that the CSIC uses a firewall for controlling the access and the
behavior of net traffic makes distributed computing more difficult. We dealt
with unexpected time-outs due to inactive sessions which were still waiting for
updates on job status, causing frequent errors. We found out that inactive
connections are killed shortly after one hour, and for this reason we could not
keep alive ssh connections longer without patching the GridWay ssh MAD.

Memory and network restriction in the user interface. The GridWay me-
tascheduler required a lot of memory to keep track of an enlarged pool with
jobs connecting through ssh to cloud resources. We experienced unstabilities
coming from saturated ethernet connections and large memory usage, causing
the kernel to kill the gwd daemon due to “out of memory” on a stress proof.
The user interface had 2GB of RAM and 1GB of swap, but regardless of the
hardware specifications, a tuning of the configuration parameters is required to
ensure full stability and permanent handling of the jobs.



Merging On-Demand HPC Resources from Amazon EC2 with the Grid 29

6 SUMMARY

A working model of a service manager in which grid resources are combined with
HPC resources from Amazon Web Services has been presented in this paper. The
restrictions regarding MPI and VO support were high, leading to a shortage on
available resources from the grid.

To provide more power, Amazon instances have been customized and used on-
demand. A novel component which interfaces with both, Amazon EC2 cloud and
GridWay, allows for a utility usage after the saturation of grid resources but is limited
to budget rate and system stability. The approach established has been a simple
one and some work must be done in order to allow for more complex policies, such
as prioritizing jobs or to use adaptive frameworks for minimizing expenditure. It is
also mandatory to consider more machine types and providers. The use of a single
type of instance (c1.xlarge) could be overcome with the recently announced Amazon
“Cluster Compute Instances”, capable to handle a single customizable larger cluster.

A real HPC application coming from the Xmipp package has been used in this
context. The application provides image processing from microscopy and has been
ported to the grid-cloud environment taking advantage of the parallel processing
thanks to the MPI-start suite. We compared a deterministic run of thousand images
depending on the number of cores used and site. The results make some interesting
conclusions noticeable: the application parallelization is quite good, as the execution
time geometrically decreases with the number of cores used. However, typical real
scenarios would use larger input data sets, one order of magnitude larger which
require, in turn, to solve the inactive connection problems and better management
of input storage.

Acknowledgements

This research was founded by the AWS in Education Research Grants program9 by
Amazon LTD., the GRID-CSIC project founded by the Spanish National Research
Council-CSIC and by the Grant MAT2009-12364 from the CICYT (Comisión Inter-
ministerial de Ciencia y Tecnoloǵıa, Spain).

We are grateful to Javier Fontán for the advice using the ssh plugin for Grid-
Way and debugging. We would like to thank as well to the site administrators
of the different Ibergrid sites: Tiago Sá from UMinho, Rui Ramos from UP, José
Ramón Rodón from IAA-CSIC and Álvaro Fernández from IFIC-CSIC10 regarding
the support offered for the mpi jobs and VO duties. We are also indebted to the
IFCA-CSIC staff and in particular to Enol Fernández, without whose support with
the MPI-Start package this study could not have been carried out.

9 http://aws.amazon.com/education/aws-in-education-research-grants/
10 The IFIC-CSIC lcg-CE ce02.ific.uv.es was upgraded to CREAM during the research

period.



30 A. Lorca, J. Mart́ın-Caro, R. Núñez-Ramı́rez, J. Mart́ınez-Salazar

REFERENCES

[1] Gartner’s Hype Cycle Special Report for 201011. Gartner, Inc., 5 August 2010.

[2] Availability and Reliability monthly statistics. EGI document 402, February 2011.

[3] Huedo, E.—Montero, R. S.—Llorente, I.M.: A Framework for Adaptive
Execution on Grids. Software – Practice and Experience, Vol. 34, 2004, No. 7,
pp. 631–651.

[4] Vázquez, C.—Huedo, E.—Montero, R. S.—Llorente, I.M.: On the Use
of Clouds for Grid Resource Provisioning. Future Generation Computer Systems,
Vol. 27, 2011, No. 5, pp. 600–605.

[5] Dichev, K.—Stork, S.—Keller, R.—Fernández, E.: Mpi Support on the
Grid. Computing and Informatics, Vol. 27, 2008, No. 3, pp. 213–222.

[6] Frank, J.: Three-Dimensional Electron Microscopy of Macromolecular Assemblies:
Visualization of Biological Molecules in Their Native State. New York, Oxford Uni-
versity Press 2006.

[7] Sorzano, C.O. S.—Marabini, R.—Velázquez-Muriel, J.—Bilbao-

Castro, J. R.—Scheres, S.H.W.—Carazo, M.—Pascual-Montano, A.:
J. Struct. Biol. Vol. 148, 2004, No. 2, pp. 194–204.

[8] Scheres, S.H.W.—Valle, M.—Núñez, R.—Marabini, R.—

Sorzano, C.O. S.—Herman, G. T.—Carazo, J.M.:. J. Mol. Biol., Vol. 348,
2005, No. 1, pp. 139–149.

Alejandro Lora graduated from University of Granada in
2000 in theoretical physics and received his Ph.D. from Biele-
feld University in 2005 in the field of high-energy physics phe-
nomenology. He worked in different fields like electroweak in-
teractions of particle physics, automation of computer algebra
and grid computing at DESY, Freiburg University and Com-
plutense University of Madrid. Currently, he is fully involved in
the GRID-CSIC project coordinated by the Instituto de F́ısica
de Cantabria. He is a member of the IEEE Computer Society
and Real Sociedad Española de Fsica.


