
Computing and Informatics, Vol. 29, 2010, 93–115

ACHIEVING COST-EFFECTIVE SOFTWARE

RELIABILITY THROUGH SELF-HEALING

Alessandra Gorla, Mauro Pezzè, Jochen Wuttke

University of Lugano

Lugano, Switzerland

e-mail: {gorlaa, mauro.pezze, wuttkej}@usi.ch

Leonardo Mariani, Fabrizio Pastore

University of Milano Bicocca

Milano, Italy

e-mail: {mariani, fabrizio.pastore}@disco.unimib.it

Revised manuscript received 16 October 2009

Abstract. Heterogeneity, mobility, complexity and new application domains raise
new software reliability issues that cannot be met cost-effectively only with classic
software engineering approaches. Self-healing systems can successfully address these
problems, thus increasing software reliability while reducing maintenance costs.
Self-healing systems must be able to automatically identify runtime failures, locate
faults, and find a way to bring the system back to an acceptable behavior. This
paper discusses the challenges underlying the construction of self-healing systems
with particular focus on functional failures, and presents a set of techniques to build
software systems that can automatically heal such failures. It introduces techniques
to automatically derive assertions to effectively detect functional failures, locate the
faults underlying the failures, and identify sequences of actions alternative to the
failing sequence to bring the system back to an acceptable behavior.

Keywords: Self-healing, autonomic computing, software reliability

Mathematics Subject Classification 2000: 68M15, 68N01

94 A. Gorla, M. Pezzè, J. Wuttke, L. Mariani, F. Pastore

1 INTRODUCTION

Software systems are growing in complexity and size, and new software paradigms
support new forms of heterogeneity and dynamic evolution of software applications.
Many modern software systems are composed of subsystems that are developed and
maintained by different providers, and are dynamically linked to satisfy different
needs. Carzaniga et al. use the term societies of digital systems to refer to systems
that are dynamically composed of heterogeneous multi-layered elements, and identify
in the verification and validation of such systems one of the challenges for software
engineering [9].

Classic verification and validation approaches try to reveal failures, and remove
faults before deployment, and require the availability of the source code and the
ability to control the system execution. In many modern software systems, deve-
lopers do not own all the source codes, and cannot predict all configurations and
environment settings that may be responsible of anomalous and faulty behaviors.
Moreover, classic maintenance cycles that require human experts to debug software
applications and fix faults are expensive and time consuming, and do not meet the
reliability requirements of many modern applications.

Consider, for example, a system composed of servers, clients and subsystems
that are dynamically bound to produce the desired results, such as complex book-
ing systems composed on many servers and customer devices, or traffic alert systems
based on the cooperation of sensors, cars and traffic elements. The different com-
ponents may be deployed and maintained by different organizations, none of which
owns the whole application. In complex booking systems, companies may own server
applications, customers may own client applications, and device manufacturers may
own the software applications running on different mobile devices. In traffic alert
systems, car manufacturers may own the subsystems on the vehicles, while the cities
may own the traffic elements and the sensors. The execution conditions depend on
dynamically changing configurations and environment conditions that may be dif-
ficult or even impossible to predict and reproduce locally both at deployment and
maintenance time. The behavior of complex booking systems depends on the current
events and the stationary and mobile devices connected to the systems, while the
behavior of traffic alert systems depends on the traffic conditions, the devices avail-
able on the vehicles and the functioning of the involved sensors. Failures may derive
from incompatibilities between inexpensive components, like applications running
on mobile devices or systems running on different cars. Faults in small and inexpen-
sive components, like an application running on a mobile device or a car subsystem,
that are dynamically bound to the system may be hard to detect and expensive
to repair on time. Even short maintenance cycles that require the intervention of
human experts may cause the abort of the current requests that may not be valid
any more when the systems is repaired.

Failure tracking systems like the ones used by software companies active in the
end-user market and the ones recently studied in research laboratories can help
developers prioritize fault analysis and corrective maintenance actions, and can mi-

Cost-Effective Software Reliability Through Self-Healing 95

tigate, but not solve consumer problems [27, 12]. If for example the browser or the
application running on a mobile device fails in integrating with the booking system,
the software release that corrects the fault can eliminate future failures, but may
not solve the contingent problems in a timely manner.

Developing fault-free software is and remains a chimera, and some software fail-
ures are and will be unavoidable, and will require expensive maintenance cycles.
However, it is possible to automatically detect and heal some faults, thus alleviating
the problems that stem from software failures, reducing maintenance costs and in-
creasing the reliability of software applications. Research towards techniques and
mechanisms to automatically identify failures, diagnose and heal faults is quite re-
cent and takes different names. Horn [20] and Kephart and Chess [23] use the
term autonomic computing to identify systems that can guarantee some minimal
functionality even in unexpected execution conditions, Kramer and Magee use the
term self-managed systems to indicate systems that can automatically react to un-
expected changes in the execution conditions [24], others use the term self-adaptive

systems to indicate systems that automatically adjust to different execution con-
ditions. In this paper we use the term self-adaptive systems to indicate systems
that automatically adapt to different execution conditions, and the term self-healing

systems to indicate systems that can automatically identify failures and diagnose
and heal faults, and we focus on functional failures that we define as results that
differ from the expected ones.

The problem of recovering from unexpected functional failures has been ad-
dressed by fault tolerant mechanisms that have been widely investigated in the
domain of safety-critical applications [15, 43]. Most mechanisms and techniques for
fault tolerance affect software design, require disciplined programming and impact
significantly on the overall software cost. While cost is not a problem in safety critical
applications, it represents a strong limitation in many application domains, where
they represent a major factor and disciplined design and implementation cannot be
fully enforced.

Self-healing systems introduce approaches that can heal some classes of faults
at runtime without impacting on design, coding and cost significantly. In this pa-
per, we discuss the problems of building self-healing mechanisms and we illustrate
a possible solution by introducing techniques for revealing failures, diagnosing faults
and healing them.

2 AUTOMATICALLY HEALING FUNCTIONAL FAULTS

Many self-adaptive approaches, and in particular self-healing systems, share control
loops as a core design element, as advocated as the key characteristic of engineering
self-adaptive systems by Brun et al. [7]. Figure 1 shows the MAPE-K (monitor-
analyze-plan-execute over a knowledge base) cycle as presented in one of the early
papers on autonomic computing by Kephart and Chess [23]. The MAPE-K cycle
assumes the availability of sensors and effectors to gather information about the

96 A. Gorla, M. Pezzè, J. Wuttke, L. Mariani, F. Pastore

current behavior and influence the future behavior of the managed resources. It
also requires functionality to monitor the sensed data, analyze the current status,
and plan corrective actions to be executed through the effectors. The core func-
tionalities share knowledge about the managed resources and their behavior. The
shared knowledge is used to act properly.

Execute

PlanAnalyze

Monitor Knowledge

Autonomic manager

Managed element

Fig. 1. The MAPE-K self-adaptive cycle as proposed by IBM [23]

In self-healing systems, monitors detect and, when possible, predict failures,
analyzers diagnose faults and locate errors, and planners identify the healing strate-
gies that must be executed. Each of these phases presents specific challenges and
problems.

The self-healing cycle starts with detecting failures, which are actual behaviors
that differ from the expected ones. Automatically detecting failures can be as easy
as revealing system crashes or catching exceptions, but timely detection of func-
tional failures can become very difficult. For example, even simple failures like the
wrong computation of the cost of a service cannot be reduced to generic events,
like crashes or exceptions, but require detailed knowledge of the expected results,
like the correct cost of the services. Detecting software problems when the system
fails may be too late for executing effective healing actions. For example, recovering
from system crashes by restoring the user sessions may be hard or even impossible.
Detecting erroneous states before the actual failures can prevent irrecoverable con-
sequences and enable effective healing mechanisms. While many current healing
mechanisms rely on simple failure detectors (e.g. [35]), in Section 4 we show how to
create complex failure detectors with a mechanism to automatically translate rele-
vant design level properties to effective code level assertions to early detect subtle
runtime failures.

Once failures are detected or, even better, predicted, self-healing systems must
automatically identify the corresponding faults, that is, code elements whose execu-
tion produces erroneous states and consequent system failures. Unfortunately the
relation between faults and failures is not straightforward: The same fault can result
in many failures, the same failure can be caused by several faults, faults may cause

Cost-Effective Software Reliability Through Self-Healing 97

failures only under specific execution conditions, faults may mask each other, and
the effect of faults may result in failures only after long executions, as for instance
memory leaks may cause failures long after the execution of the faulty code [34].
This is why locating faults is extremely difficult and time consuming. The recent
impressive progress of debugging techniques has facilitated debugging [47], but hu-
man expertise still remains a key element of the debugging process. Self-healing
approaches require techniques to automatically locate faults, but fortunately may
rely on approximate information about fault locations. While developers need to
identify the exact faulty statements to correct them, self-healing systems may use
information about likely faulty modules to try to exclude them from the compu-
tation. Although some classic healing approaches, like checkpoint-and-recovery or
reboot-based mechanisms, do not even try to locate the faults, but simply re-execute
the code possibly under different conditions to try avoiding the problems [15, 8], lo-
cating possibly faulty modules with some precision can enable more effective healing
mechanisms. In Section 5 we illustrate a mechanism to identify likely faulty com-
ponents by comparing failing executions with models of correct behaviors.

To complete the self-healing control loop, self-healing systems must identify and
execute suitable healing actions. Correcting the actual faults may be difficult, may
require detailed semantic information about the systems, and may ask for specific
knowledge of the faults that is not always produced by automatic fault localizers.
Often self-healing systems do not fix the faults, which can be a hard task, but try
to either avoid executing the faulty statements and thus preventing the failure oc-
currence, or recover from the effects of failures, which are often easier tasks. Classic
healing approaches, like the ones based on checkpoint-and-recovery, reboot and ex-
ception handling, require little knowledge about the faults and their localization, but
neither targets specific problems (checkpoint-and-recovery and reboot), and either
reacts to emerging problems only to the extent the developers can predict them (ex-
ception handlers) [14]. New self-healing approaches try to exploit dynamic linking
and system redundancy. For instance, several approaches to recover from service
failures take advantage of the possibility of dynamically binding to different service
implementations [4]. In Section 6 we show how to exploit the intrinsic redundancy
of software systems to automatically recover from unexpected failures.

3 RUNNING EXAMPLE

In the next sections we illustrate the approaches to detect failures, diagnose and
heal faults referring to a known fault that affected the Tomcat web server for se-
veral months, from version 6.0.0 to 6.0.101. The fault concerns the initialization of
a factory class: When a web application calls the factory method JspFactory.get-

DefaultFactory() during initialization, the method returns a null value that causes
a NullPointerException, thus preventing the application startup.

1 Tomcat Bugzilla bug database: ID 40820, https://issues.apache.org/bugzilla/
show_bug.cgi?id=40820

98 A. Gorla, M. Pezzè, J. Wuttke, L. Mariani, F. Pastore

Figure 2 shows the sequence of actions that lead to the failure during the
Tomcat bootstrap: The method Catalina.start() initiates the web server in-
stance, and starts the web applications installed on the server by calling the method
HostConfig.deployApps(). After deploying the web application, Tomcat calls the
method StandardContext.start() that loads the class JspRuntimeContext, and
initializes the listeners of the web application.

Fig. 2. The failing Tomcat bootstrap sequence

When, during the listener initialization, the web application invokes the method
JspFactory.getDefaultFactory(), the method does not find an initialized JspFac-
tory and returns null, thus triggering a NullPointerException. Tomcat catches
the exception, suspends the deployment of the application, and completes the server
initialization without starting the web application.

The static initializer of the class JspRuntimeContext is in charge of setting the
default JspFactory. In Java, static initializers are invoked either just before the first
use of the class or after calling the method Class.forName(String) to load the
class.

During the Tomcat initialization, the class JspRuntimeContext is loaded by
calling the method ClassLoader.loadClass(String), which does not force the
execution of the static initializer. Because of that, the singleton instance of class
JspFactory is not set to the default value, and thus getDefaultFactory() returns
a null value if invoked. Tomcat uses the class JspRuntimeContext before the ter-
mination of the initialization, thus it initializes the class JspFactory correctly for
future uses.

Tomcat developers fixed the fault by replacing the call to ClassLoader.load-

Class(‘‘org.apache.jasper.compiler.JspRuntimeContext’’) with a call to
Class.forName(‘‘org.apache.jasper.compiler.JspRuntimeContext’’): this

Cost-Effective Software Reliability Through Self-Healing 99

new invocation anticipates the class initialization and prevents the null pointer de-
referencing.

4 DETECTING FAILURES

As discussed in Section 2, detecting failures or preferably erroneous states before the
actual failures is a critical and hard functionality of self-healing systems. Many de-
sign and implementation approaches introduce assertions to monitor system execu-
tions, and detect violations of software properties at runtime. Assertions can detect
erroneous states early, often before irrecoverable consequences, and have been shown
to work well as fine-grained checks of invariants and pre- and post-conditions [38].
However, experiments indicate that it is often difficult to define the right set of
assertions to monitor a given property [41]. Moreover, there are many useful design-
level properties whose violations manifest as functional failures, and our experiments
show that often design-level properties require many checks to be distributed across
large parts of the code.

For example, the Singleton design pattern that prescribes a structural approach
to solve a specific design problem, implicitly introduces the constraint that when
the static examplar method is called, it will return a fully initialized instance of
the singleton class [17]. The class JspFactory in Tomcat is a classical example for
a singleton. At the design level, this is easy enough to understand and express,
while at the code level, it results in many assertions that are spread widely in the
code and are hard to get consistent and correct. In the implementation of Tomcat,
the singleton instance does not follow the standard practice of the design pattern,
and this implementation decision led to the fault discussed in the previous section.
This is a typical example of functional problems due to the semantic gap between
the design level and the systems implementation.

In this section, we illustrate an approach to bridge the gap between easily ex-
pressible design level properties and hardly manageable code level assertions. The
approach provides property templates to guide the annotation of design models of the
systems with the relevant design properties that are used to automatically generate
the code level assertions needed to detect violations of the design properties before
system failures [33]. Property templates are based on the observation that in many
cases violations of constraints implied by design decisions manifest in similar kinds
of systems failures, and encode the information needed to automatically generate
monitors for typical design-level properties.

Table 1 illustrates some sample property templates that are identified by a name
and a set of parameters, an informal description and some examples. Although pro-
perty templates can be defined independently from the specific design notation, in
this paper, we refer to design specifications expressed as UML specifications, and
we represent property templates as stereotypes in a suitable UML profile. Soft-
ware designers annotate the UML model of the system with stereotypes expressing
the desired properties. The stereotypes are mapped onto assertions encapsulated

100 A. Gorla, M. Pezzè, J. Wuttke, L. Mariani, F. Pastore

in aspects and inserted into the system using dynamic load-time weaving. Using
these techniques, adding monitors to any system is non-intrusive and can also check
properties that involve third-party libraries.

Property Description Example Specification

immutable A constrained entity may not
change its visible state once it is
created.

[. . .] it is illegal for the calling
Thread to attempt to modify the
ServletResponse object.

initialized A constrained entity must com-
plete all custom initialization
before becoming accessible to
clients.

The initialize() method is
called to initialize an uninitialized
PageContext so that it may be
used by a JSP implementation.

language <L> A constrained entity must be a
string and must match a regular
expression defining the language
L.

parseExpression() prepares an
expression for later evaluation.

unique A constrained entity must be
unique within its context. If the
constrained entity is a relation,
tuples in the relation must be
unique.

Each tag in a JSP page has a
unique jspId.

explicit <I> A constrained class must di-
rectly implement interface I.

Table 1. Selected classes of constraints for property templates and examples taken from
the Java Server Pages specification

Figure 3 shows the excerpt of the Tomcat design with class JspFactory anno-
tated with the <<initialized>> stereotype. The excerpt includes all the informa-
tion required to generate the runtime monitor. The <<initialized>> stereotype
takes an optional parameter that allows developers to specify which method of the
annotated class is considered to be the initializer. The generated runtime monitor
checks that the initializer method has been called at least once before any other
method of the class is used.

The code generated for the stereotype consists of two parts: 1) infrastructure
classes and callbacks that allow detailed monitoring of the system state, and 2) asser-
tions checking invariants and method pre- and post-conditions over the system state
together with the additional information gathered by the monitoring infrastructure.

The code generated for the <<initialized>> property does not require addi-
tional monitoring infrastructure. Figure 4 shows the most relevant parts of the
generated code. The pointcut in lines 5 and 6 specifies the initializer, and the corre-
sponding aspect in lines 7 and 8 sets a hidden flag when this method is called. The
pointcut in lines 11–13 captures all other methods of the annotated class and the
aspect in lines 14–18 checks that the initializer has been called. When the property
is violated, that is the initialized flag is false, the fault diagnosis component

Cost-Effective Software Reliability Through Self-Healing 101

Fig. 3. Excerpt of the UML design of Tomcat annotated with the <<initialized>> stereo-
type

1 public aspect JspFactory_Initialized {

2

3 private boolean initialized = false;

4

5 pointcut initMethod ():

6 call(static * JspFactory. setDefaultFactory(..));

7 after() returning: initMethod (){

8 initialized=true;

9 }

10

11 pointcut checkedMethods ():

12 call(static * JspFactory .*(..))

13 && !cflow(initMethod ());

14 before(): checkedMethods () {

15 if (! initialized){

16 // notify fault localization

17 }

18 }

19 }

Fig. 4. Excerpt of the code generated for JspFactory

102 A. Gorla, M. Pezzè, J. Wuttke, L. Mariani, F. Pastore

is notified. The monitor passes on information about the violated property, the
current stack trace, and references to the objects involved in the violation.

5 LOCATING FAULTS

When detecting failures or erroneous states, for example invariant violations, self-
healing systems must locate the faults. As discussed in the former sections, detecting
faults is difficult because of the complex relation between failures and faults, and
because of the unpredictable distance between symptoms of failures and the execu-
tion of faulty program elements. Debugging approaches produce accurate results,
but require human judgment. Fault localization techniques trade precision for au-
tomation: They may identify the faulty elements with some degree of imprecision
or uncertainty, but do not need human intervention.

In this section, we illustrate a fault localization approach that locates execution
elements that likely led to erroneous states by comparing failing to correct execu-
tions. The method relies on models of correct program behavior, and locates possible
faults by studying the violations of models during failing executions.

The availability of accurate and detailed models of correct program behavior
is crucial for locating faults. We build accurate albeit partial models of correct
program behavior automatically by analyzing successful program executions, for
example while running a successful system test suite.

When executing successful test cases, we capture interactions between compo-
nents and we record both the sequences of inter-component method invocations and
the data exchanged between components. We record all the outgoing invocations
that can be observed when a component service is executed. For instance, when
Tomcat executes the method start() implemented by Catalina, we may record
the sequence Lifecycle.start(), CatalinaShutDownHook(Catalina), Standard-
Server(), StandardServer.initialize(), StandardServer.await().

We record also the data values passed as parameters and the return values.
When the data to be recorded are objects, we recursively extract the values stored
within their attributes. For example, when monitoring invocations to method
MBeanServer.isRegistered that accepts an object ObjectName as parameter and
returns a Boolean value, we record both the return value (for example returnValue
= false) and the data stored by the attributes of the ObjectName object (for ex-
ample, ObjectName. canonicalName="Catalina", ObjectName.compat = true).

We use the information about sequences of method invocations and data ex-
changed during interactions to infer models that summarize and generalize the ob-
served executions. We generalize observations because concrete values observed dur-
ing testing may not correspond completely to the values observed in the field, but
can be used to identify general properties that should hold for all legal executions.
We generate two types of models that capture properties: 1) Boolean properties on
parameter and return values that capture properties about the data exchanged by
components, and 2) finite state automata that specify sequences of method calls.

Cost-Effective Software Reliability Through Self-Healing 103

We generate Boolean properties on parameters and return values by elaborating
the data exchanged during executions with Daikon [16]. For example, Daikon can
elaborate the values of the parameters of invocations of method JspFactory.get-

DefaultFactory(), and can automatically generate the properties returnValue !=

null and returnValue.pool.current < returnValue.pool.max, which indicate
that method JspFactory.getDefaultFactory() never returned null, and that the
current size of its pool attribute (defined in field returnValue.pool.current) is
always less than its maximum allowed size (defined in returnValue.pool.max).

We generate finite state automata that represent the observed component inter-
actions with kBehavior [30]. For example, kBehavior can elaborate the sequences of
calls observed during the initialization of class JspRuntimeContext, and can auto-
matically generate the simple finite state automaton shown in Figure 5, that models
the only sequence of interactions observed during the initialization.

q0 q1q1 q2 q3

JspFactory.<clinit>()

JspFactoryImpl.<clinit>()

JspFactoryImpl.<init>()

JspFactory.setDefaultFactory(JspFactory)

Fig. 5. The finite state automaton for the JspRuntimeContext class initializer

These models are neither complete nor consistent, but identify partial proper-
ties of correct behaviors that can help us automatically locate potential faults. We
locate faults automatically by comparing executions that produce erroneous states
to the models built during correct executions. Executions that lead to erroneous
states differ from correct executions, and thus violate one or more models of cor-
rect behaviors. We assume that model violations are related to the execution of
faulty components. Our experiments confirm that executions that produce erro-
neous states violate several models. For example, Table 2 shows the model viola-
tions, hereafter anomalies, during the failing initialization of a factory class discussed
in Section 3.

ID Method Description

A1 StandardContext.start() Unexpected call to JspFactory.<clinit> in
state q28

A2 JspFactory.getDefaultFactory() Unexpected null value returned
A3 JspRuntimeContext<clinit>() Missing call to JspFactory<clinit>in state

q0
A4 ThreadPool$ControlRunnable.run() Unexpected call to Logger.getLog() in

state q2

Table 2. Model violations (anomalies) detected by BCT

In general we may observe many model violations (anomalies) that may not
be easy to analyze. We also observe that not all anomalies relate to the execution

104 A. Gorla, M. Pezzè, J. Wuttke, L. Mariani, F. Pastore

of faulty elements, and that relevant anomalies may correspond to different fault
locations. We filter irrelevant anomalies by ignoring anomalies that are observed in
both successful and failing executions, and thus are likely false positives.

We then aggregate anomalies according to likelihood that they refer to a same
run-time problem. We observe that an initial anomaly often causes a cascade of
anomalies. For example an exception may violate many interaction and data mo-
dels, before being handled by the application. Thus, we cluster anomalies according
to their mutual distance on the dynamic call tree. The distance between two anoma-
lous events detected during the execution of methods m1 and m2 is measured as the
minimum number of nodes that need to be traversed to move from the node that
corresponds to m1 to the node that corresponds to m2 in the dynamic call tree [1]
of the failing execution. We then cluster anomalies with the Within Clustering Dis-
persion algorithm [18]. Each cluster represents a possible explanation of a different
run-time problem and thus locate a fault.

We prioritize clusters of anomalies according to their size, based on the obser-
vation that complex clusters frequently describe complex and highly unexpected
executions incorrectly handled by the system. The nodes of the cluster are ordered
according to occurrence of the corresponding events. Each cluster is characterized by
at least a root node and a set of links that indicate the cause-effect relation between
anomalies. Figure 6 shows the two clusters identified for the Tomcat case study.
The bigger cluster includes the methods responsible for the investigated failure, and
provides enough information to approximately locate the fault.

Fig. 6. Clustered anomalies for the Tomcat case study

Cost-Effective Software Reliability Through Self-Healing 105

6 HEALING FAULTS

Once one or more faults have been (partially) located in the code, self-healing sys-
tems try to automatically heal them. In the former sections, we discussed the
difficulty of finding precise fixes and the limitations of classic debugging approaches
that often require human judgement, and we showed how automatic fault localiza-
tion techniques may locate faults only with some degree of imprecision. This is
why self-healing systems often investigate easier alternatives to precise fault fixing,
in particular fault avoidance and error recovery. Fault avoidance approaches try
to exclude the likely faulty elements from the executions by looking for alterna-
tive elements, for example by dynamically binding to new services equivalent to the
faulty ones. Error recovery approaches try to solve the problems caused by faults,
for example by executing suitable exception handlers. The choices of healing ap-
proaches depend on the kind of faults, the precision of the information related to the
faults and the type of the applications. For example, exception handlers are simple
healing approaches that can deal with predefined classes of faults identified by clas-
sic exception mechanisms, but cannot deal with unpredictable failures of unknown
nature.

In this section, we illustrate a technique that exploits the implicit redundancy
of software systems to automatically identify alternative executions, and exclude
faulty components. The technique requires the system to be in a correct state,
either because interrupted before executing a faulty component or because rolled
back after a faulty execution, and some information about the failing sequence,
like the one produced by the fault localization technique discussed in the former
section [10].

The approach is grounded on the observation that often complex software sys-
tems implement similar functionalities in different ways. For example in Tomcat,
the operations startTomcat, restartTomcat, loadApp(app) and loadAllApps()

load deployed applications, and if suitably invoked, they may provide alternative
operations when some of them fail partially or completely.2.

Sequences of operations are equivalent to others if they have the same intended
effect of the other operations according to the specifications. We define such se-
quences of operations as specification-equivalent. Since the equivalence holds at the
specification level, the sequences of operations may not be equivalent in the actual
implementation. When a particular sequence fails due to a fault, there might be
another specification-equivalent sequence that succeeds because it is not affected
by the fault. We call this particular sequence a workaround. Thus a workaround

2 These operations, as all the operations listed in Figure 7, are macro-
operations that map to more complex sequences of actual implemented me-

thods. The operation startTomcat(), for example, is a concise way to
represent the actual sequence of methods that is executed when Tomcat is
started: Lifecycle.start(), CatalinaShutDownHook(Catalina), StandardServer(),
StandardServer.initialize(), StandardServer.await()

106 A. Gorla, M. Pezzè, J. Wuttke, L. Mariani, F. Pastore

is a sequence of operations that is both specification-equivalent to the sequence of
operations that leads to a failure, and does not cause failures during the execution.

We look for workarounds by automatically identifying sequences of operations
equivalent to the failing ones, and selecting one that does not fail. We identify
equivalent sequences from (partial) specifications of the system. The technique
depends on the specification framework. Here we illustrate the approach referring
to the Statecharts specifications of the Tomcat Web application loader shown in
Figure 7.

TC stopped

TC running

startTomcat()

stopTomcat()

restartTomcat()

restartTomcat()

WA deployed

WA loaded

WA stopped

WA not
deployed

undeployApp()

undeployApp()

[TC running] loadApp()
[TC running] loadAllApps()
[TC stopped] startTomcat()

restartTomcat()

[TC running] stopApp()
[TC running] stopAllApps()
[TC running] stopTomcat()

 deployApp()

startTomcat() Start the servlet container. All deployed Web applications are loaded
stopTomcat() Stop the servlet container. All running Web applications are stopped
restartTomcat() The servlet container is stopped and restarted
deployApp(app) Deploy a Web application
undeployApp(app) Undeploy a Web application
loadApp(app) Load a Web application
stopApp(app) Stop a Web application
loadAllApps() Load all deployed Web applications
stopAllApps() Stop all running Web applications

Fig. 7. The Statecharts specification of the Tomcat Web applications loader

In Statecharts specifications, sequences of operations correspond to paths be-
tween states. We consider two sequences of operations to be equivalent if the
paths both start from the same state and terminate in the same state. For ex-
ample in the Statecharts of Figure 7, the paths deployApp(),startTomcat() and
startTomcat(),deployApp(),loadApp() start from the AND-state 〈TC stopped,

WA not deployed〉 and terminate in the AND-state 〈TC running, WA loaded〉,

Cost-Effective Software Reliability Through Self-Healing 107

and are thus equivalent. Even in simple specifications, there may be many equiva-
lent sequences. Table 3 lists some sample equivalent sequences for some states of the
Statecharts shown in Figure 7. Equivalent sequences can be inferred automatically
from a (partial) state based specification.

〈Tomcat stopped, Web Application not deployed〉
startTomcat() ≡ restartTomcat()
startTomcat() ≡ startTomcat(), stopTomcat(), startTomcat()
startTomcat() ≡ startTomcat(), restartTomcat()
startTomcat() ≡ startTomcat(), restartTomcat(), stopTomcat(), startTomcat()
restartTomcat() ≡ startTomcat()
restartTomcat() ≡ startTomcat(), stopTomcat(), startTomcat()
deployApp() ≡ deployApp(), undeployApp(), deployApp()
deployApp(), startTom-
cat()

≡ startTomcat(), deployApp(), loadApp()

.

〈Tomcat running, Web Application not deployed〉
restartTomcat() ≡ stopTomcat(), startTomcat()
restartTomcat() ≡ stopTomcat(), restartTomcat()
restartTomcat() ≡ restartTomcat(), stopTomcat(), startTomcat()
deployApp() ≡ deployApp(), undeployApp(), deployApp()
deployApp() ≡ deployApp(), loadApp(), stopApp()
deployApp(), loadApp() ≡ deployApp(), stopApp(), loadApp()
.

〈Tomcat stopped, Web Application deployed〉
startTomcat() ≡ restartTomcat()
startTomcat() ≡ startTomcat(), stopTomcat(), startTomcat()
startTomcat() ≡ startTomcat(), restartTomcat()
startTomcat() ≡ startTomcat(), restartTomcat(), stopTomcat(), startTomcat()
startTomcat() ≡ startTomcat(), loadApp()
startTomcat() ≡ startTomcat(), loadAllApps()
.

〈Tomcat running, Web Application deployed〈
restartTomcat() ≡ stopTomcat(), startTomcat()
restartTomcat() ≡ stopTomcat(), restartTomcat()
restartTomcat() ≡ restartTomcat(), stopTomcat(), startTomcat()
loadApp() ≡ stopApp(), loadApp()
stopApp() ≡ stopAllApp()
stopApp() ≡ loadAllApp(), stopAllApp()
.

Table 3. Some equivalent sequences that can be inferred from the Statechart in Figure 7

Not all specification-equivalent sequences are valid workarounds. Many may exe-
cute the same or other faulty modules and thus lead to failures. Randomly executing
equivalent-sequences may be extremely inefficient, thus we need effective ways to
identify valid workarounds. In general, we cannot identify workarounds without in-
formation on the actual code execution, but we can prioritize specification-equivalent
sequences to identify the sequences that are most likely valid workarounds. Priori-
ty policies may be based on the occurrences of modules that are marked as likely
faulty, differences with respect to the failing sequence, length of the sequence and
history information about the occurrence of subsequences in successful executions.
The sequences shown in bold in Figure 7 are valid workarounds for the problem with

108 A. Gorla, M. Pezzè, J. Wuttke, L. Mariani, F. Pastore

the Tomcat Web application loader illustrated in Section 3. They are all given high
priority by simple algorithms based on the length of the sequences and the infor-
mation about faulty modules produced by the technique illustrated in the previous
section.

7 RELATED WORK

Autonomic and self-managed systems have been widely studied in the last years.
The interested readers can refer to the paper by Huebscher and McCann for a recent
survey on autonomic computing [21].

In this paper, we advocate a self-healing cycle composed of techniques to detect
failures, locate and heal faults and we illustrate the feasibility of each phase through
example techniques. In this section, we survey the main techniques that support
the three main phases of the self-healing cycle.

Detecting failures is the main objective of testing and analysis techniques, but
most testing and analysis research focuses on test case generation and code analy-
sis, and assumes suitable oracles exist, while automatic failure detection relies on
runtime monitoring and checks [34].

Runtime monitoring covers a wide range of applications, for example monitoring
service-level agreements or structural and architectural constraints of systems. Wang
and Shen describe an approach to detect violations of constraints intrinsic in UML
class diagrams [42]. They instrument Java programs with calls to a monitoring
infrastructure that uses assertion-like statements to check if the running system
maintains invariants like association multiplicities. Stirewalt and Rugaber present
an approach to enforce OCL invariants at runtime [40]. They use specified invariants
to generate wrappers around the classes that are referred to in the invariants. These
wrappers notify all classes involved in the constraints about changes in values, and
suitably update the related objects.

Many researchers have explored the usefulness of assertions as runtime check-
ers [31, 38]. The obvious value added to software systems by assertions encouraged
the development of several industrial strength assertion languages (for example JML
and Spec# [5, 26]). While the usefulness of well-designed code assertions is gen-
erally undisputed, these assertions are typically created by developers while they
implement systems. Voas and Miller address the question at which locations in the
code assertions are most effective [41]. Their results indicate that intuitive solutions,
which developers may come up with, are not always optimal. Assertion languages
are well suited to express assertions at specific program locations that represent
implementation decisions, but do not easily capture design-level decisions that may
involve several program locations. In this paper we introduce a technique to deal
effectively with software requirements that constrain the whole system, and involve
several design components.

Locating faults is the main objective of debugging techniques, but most de-
bugging techniques assume the ability to repeatedly execute the faulty system in

Cost-Effective Software Reliability Through Self-Healing 109

a controlled testing environment and ultimately rely on human judgement [47]. The
self-healing cycle must rely on fully automatic approaches and cannot assume full
repeatability of system executions. Recently, some research effort has been devoted
to the development of automated and semi-automated fault localization techniques
that focus on the identification of either suspicious code blocks or faulty behaviors.

Techniques that focus on the identification of faulty code blocks use coverage
information in order to identify the instructions that likely caused the failures [37,
22]. These techniques typically return a list of possible faulty statements as result,
the returned list is sorted according to the likelihood of a statement to be faulty and
the list must be inspected by the developers. Such techniques considerably reduce
the effort required to locate faults, but are not completely automated yet.

Techniques that focus on the identification of anomalous behaviors, like the one
proposed in this paper, use automatically inferred models in order to identify model
violations at runtime and present such violations as possible explanations for the
failure cause [19, 46, 44].

Behavioral models are inferred using data recorded during monitored executions
at testing time. There exist many techniques for dynamic model inference, even if
not all of them focus on the usage of such models to identify anomalies: Daikon
derives Boolean expressions describing relations between program variables [16];
Several approaches derive finite state automata that identify constraints on the
ordering of events [6, 13, 29]. The empirical nature of the inferred models produces
many false positives that reduce the efficacy of such techniques. In this paper we
discussed a technique to filter false positives and cluster related anomalies based on
the distance in the dynamic call tree.

Healing faults and avoiding failures that may derive from faults have been core
goals of research in fault tolerant systems. Classic fault handling approaches rely on
design diversity principles, which lead to the development of several independently
designed and implemented versions of the same components. Classic approaches
include N-version programming [3], recovery-blocks [36] and self-checking program-
ming [25]. N-version programming, recovery-blocks, and self-checking programming
mechanisms have been extended to different domains, in particular to Web ser-
vices [28].

Some recent approaches to automatic fault healing rely on the use of registries
and wrappers. Registries augment applications with lists of failures and correspond-
ing recovery actions [4, 32]. Wrappers capture the interactions between components
to solve integration problems [11, 39]. Both registries and wrappers can effectively
handle failures at runtime under the assumption that these elements have been
designed to cope with the erroneous conditions that led to the failures.

Many approaches have been proposed to cope with non-deterministic failures.
Checkpoint and recovery techniques periodically save consistent states to be used as
safe roll backs [15]. When a failure occurs, the system is brought back to the latest
consistent state, and the following operations are re-executed. These approaches
solve temporary problems that may have been caused by accidental, transient con-
ditions in the environment. Qin et al. improved checkpoint and recovery by partially

110 A. Gorla, M. Pezzè, J. Wuttke, L. Mariani, F. Pastore

re-executing failing programs under modified environment conditions to recover from
deterministic as well as non deterministic faults [35]. Similarly Candea et al. pro-
pose micro-reboots as an efficient way to cope with non-deterministic failures, in
particular memory leaks [8]. The intuition that brought Candea et al. to propose
micro-reboots were already present in previous approaches of software rejuvenation
that rely on the observation that some software systems fail due to age, and that
proper system reinitializations can avoid such failures [43].

Recently both Weimer et al. and Arcuri et al. investigated genetic programming

as a way to automatically fix software faults [45, 2]. When the software system
fails, the run-time framework automatically generates a population of variants of
the original faulty program. Genetic algorithms evolve the initial population guided
by the results of test cases that select a new correct version of the program.

8 CONCLUSIONS

Modern software systems are growing in complexity and importance. Classic testing
and analysis techniques are still extremely useful, but cannot cope with many new
problems that derive from specific configuration and environment conditions that can
change dynamically at run-time. In this paper, we indicate self-healing approaches
as a way to cope with new run-time problems in a cost-effective way. We introduced
the self-healing cycle as an instance of the MAPE-K autonomic cycle. We indicated
techniques to detect failures, locate and heal faults, and we illustrated them with
a common example, a well known Tomcat problem.

The design and implementation of self healing cycles open additional problems
related to the check for consistency of the healing solutions. The design of sophisti-
cated self-healing systems requires new approaches to protect the system from new
hazards that may be induced by unplanned actions of healing systems and unex-
pected interactions of different healing mechanisms that may act on different parts
of the same open system.

REFERENCES

[1] Ammons, G.—Ball, T.—Larus, J. R.: Exploiting Hardware Performance Coun-
ters With Flow and Context Sensitive Profiling. In: Proceedings of the Conference
on Programming Language Design and Implementation, Las Vegas, NV, USA, 1997,
pp. 85–96.

[2] Arcuri, A.—Yao, X.: A Novel Co-Evolutionary Approach to Automatic Software
Bug Fixing. In: CEC ’08: Proceedings of the IEEE Congress on Evolutionary Com-
putation, 2008, pp. 162–168.

[3] Avizienis, A: The N-Version Approach to Fault-Tolerant Software. IEEE Transac-
tions on Software Engineering, Vol. 11, 1985, No. 12, pp. 1491–1501.

[4] Baresi, L.—Guinea, S.—Pasquale, L.: Self-Healing BPEL Processes with Dy-
namo and the JBoss Rule Engine. In: ESSPE ’07: International Workshop on Engi-

Cost-Effective Software Reliability Through Self-Healing 111

neering of Software Services for Pervasive Environments, New York, NY, USA, 2007,

pp. 11–20.

[5] Barnett, M.—Leino, K.R.M.—Schulte, W.: The Spec# Programming Sys-
tem: An Overview. In: G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and
T. Muntean, editors, Proceedings of the International Workshop on the Construc-
tion and Analysis of Safe, Secure, and Interoperable Systems, CASSIS 2004, 2004,
pp. 49–69.

[6] Biermann, A.—Feldman, J.: On the Synthesis of Finite State Machines from
Samples of Their Behavior. IEEE Transactions on Computer, Vol. 21, June 1972,
pp. 592–597.

[7] Brun, Y.—di Marzo Serugendo, G.—Gacek, C.—Giese, H.—Kienle, H.—

Litoiu, M.—Müller, H.—Pezzè, M.—Shaw, M.: Engineering Self-Adaptive
Systems Through Feedback Loops. In: Software Engineering for Self-Adaptive Sys-
tems, 2009, pp. 48–70.

[8] Candea, G.—Kiciman, E.—Zhang, S.—Keyani, P.—Fox, A.: JAGR: An Au-
tonomous Self-Recovering Application Server. In: Active Middleware Services, IEEE
Computer Society, 2003, pp. 168–178.

[9] Carzaniga, A.—Denaro, G.—Pezzè, M.—Estublier, J.—Wolf, A.: Toward
Deeply Adaptive Societies of Digital Systems. In: ICSE ’09 Companion: Proceedings
of the 31st International Conference on Software Engineering, Vancouver, CA, 2009.

[10] Carzaniga, A.—Gorla, A.—Pezzè, M.: Healing Web Applications Through

Automatic Workarounds. International Journal on Software Tools for Technology
Transfer, Vol. 10, December 2008, No. 6, pp. 493–502.

[11] Chang, H.—Mariani, L.—Pezzè, M.: In-Field Healing of Integration Problems
with COTS Components. In: ICSE ’09: Proceeding of the 31st International Confer-
ence on Software Engineering, Vancouver, CA, 2009, pp. 166–176.

[12] Clause, J.—Orso, A.: A Technique for Enabling and Supporting Debugging of
Field Failures. In: ICSE ’07: Proceedings of the 29th IEEE and ACM SIGSOFT
International Conference on Software Engineering, Minneapolis, MN, USA, 2007,
pp. 261–270.

[13] Cook, J. E.—Wolf, A. L.: Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology, Vol. 7,
1998, No. 3, pp. 215–249.

[14] Cristian, F.: Exception Handling and Software Fault Tolerance. IEEE Transactions
on Computer, Vol. 31, 1982, No. 6, pp. 531–540.

[15] Elnozahy, M.—Alvisi, L.—Wang, Y.—Johnson, D.B.: A Survey of Rollback-
Recovery Protocols in Message-Passing Systems. ACM Computing Surveys, Vol. 34,
2002, No. 3, pp. 375–408.

[16] Ernst, M.D.—Cockrell, J.—Griswold, W.G.—Notkin, D.: Dynamically
Discovering Likely Program Invariants to Support Program Evolution. IEEE Trans-

actions on Software Engineering, Vol. 27, February 2001, No. 2, pp. 99–123.

[17] Gamma, E.—Helm, R.—Johnson, R.—Vlissides, J.: Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

[18] Gordon A.: Classification. Chapman and Hall/CRC, 2nd edition, 1999.

112 A. Gorla, M. Pezzè, J. Wuttke, L. Mariani, F. Pastore

[19] Hangal, S.—Lam, M. S.: Tracking Down Software Bugs Using Automatic Anomaly

Detection. In: ICSE ’02: Proceedings of the 24th International Conference on Software
Engineering, Orlando, FL, USA, 2002, pp. 291–301.

[20] Horn P.: Autonomic Computing: IBM’s Perspective on the State of Information

Technology. Technical report, International Business Machines, 2001.

[21] Huebscher, M.C.—McCann, J.A.: A Survey of Autonomic Computing – De-

grees, Models, and Applications. ACM Computing Surveys, Vol. 40, 2008, No. 3,
pp. 1–28.

[22] Jones, J.A.—Harrold, M. J.—Stasko, J. T.: Visualization of Test Information

to Assist Fault Localization. In: ICSE ’02: Proceedings of the Internation Conference
on Software Engineering, Orlando, FL, USA, 2002, pp. 467–477.

[23] Kephart, J.O.—Chess, D.M.: The Vision of Autonomic Computing. IEEE Com-

puter, Vol. 36, 2003, No. 1, pp. 41–50.

[24] Kramer, J.—Magee, J.: Self-Managed Systems: An Architectural Challenge. In:

Future of Software Engineering, FOSE ’07, 2007, pp. 259–268.

[25] Laprie, J.-C.—Béounes, C.—Kanoun, K.: Definition and Analysis of Hardware-
and Software-Fault-Tolerant Architectures. IEEE Computer, Vol. 23, 1990, No. 7,

pp. 39–51.

[26] Leavens, G. T.—Baker, A. L.—Ruby, C.: JML: A Notation for Detailed Design.

In: Haim Kiloc, Bernhard Rumpe, and Ian Simmonds, editors, Behavioral Specifica-
tions of Businesses and Systems, Chapter 12, Kluwer, 1999, pp. 175–188.

[27] Li, P. L.—Ni, M.—Xue, S.—Mullally, J. P.—Garzia, M.—Khambatti, M.:

Reliability Assessment of Mass-Market Software: Insights from Windows Vista R©.
In: ISSRE ’08: Proceedings of the 2008 19th International Symposium on Software
Reliability Engineering, Washington, DC, USA, 2008, pp. 265–270.

[28] Looker, N.—Munro, M.—Xu, J.: Increasing Web Service Dependability
Through Consensus Voting. In: COMPSAC ’05: Proceedings of the 29th Annual
International Computer Software and Applications Conference, COMPSAC ’05, Vo-
lume 2, Washington, DC, USA, 2005, pp. 66–69.

[29] Lorenzoli, D.—Mariani, L.—Pezzè, M.: Automatic Generation of Software
Behavioral Models. In: ICSE ’08: Proceedings of the 30th International Conference
on Software Engineering, Leipzig, Germany, 2008, pp. 501–510.

[30] Mariani, L.—Pezzè, M.: Dynamic Detection of COTS Components Incompatibi-
lity. IEEE Software, Vol. 24, 2007, No. 5, pp. 76–85.

[31] Meyer, B.: Object-Oriented Software Construction. Prentice Hall, 1988.

[32] Modafferi, S.—Mussi, E.—Pernici, B.: SH-BPEL: A Self-Healing Plug-In for
WS-BPEL Engines. In: MW4SOC ’06: Proceedings of the 1st Workshop on Middle-
ware for Service Oriented Computing, New York, NY, USA, 2006, pp. 48–53.

[33] Pezzè, M.—Wuttke, J.: Automatic Generation of Runtime Failure Detectors from
Property Templates. In: Betty H.C. Cheng, Rogerio de Lemos, Holger Giese, Paola
Inverardi, and Jeff Magee, editors, Software Engineering for Self-Adaptive Systems,
Springer Verlag, 2009, pp. 229–264.

[34] Pezzè, M.—Young, M.: Software Test and Analysis: Process, Principles and Tech-
niques. John Wiley and Sons, 2008.

Cost-Effective Software Reliability Through Self-Healing 113

[35] Qin, F.—Tucek, J.—Zhou, Y.—Sundaresan, J.: Rx: Treating Bugs as Allergies

– A Safe Method to Survive Software Failures. ACM Transactions on Computer
Systems, Vol. 25, 2007, No. 3, pp. 1–33.

[36] Randell, B.: System Structure for Software Fault Tolerance. In: Proceedings

of the International Conference on Reliable Software, New York, NY, USA, 1975,
pp. 437–449.

[37] Renieris, M.—Reiss, S. P.: Fault Localization With Nearest Neighbor Queries.

In: Proceedings of the Internation Conference on Automated Software Engineering,
2003, pp. 30–39.

[38] Rosenblum, D. S.: A Practical Approach to Programming With Assertions. IEEE
Transactions on Software Engineering, Vol. 21, 1995, No. 1, pp. 19–31.

[39] Salles, F.—Rodriguez, M.—Fabre, J.-C.—Arlat, J.: Metakernels and Fault
Containment Wrappers. In: International Symposium on Fault-Tolerant Computing,
Los Alamitos, CA, USA, 1999, pp. 22–29.

[40] Stirewalt, K.—Rugaber, S.: Automated Invariant Maintenance via OCL Com-
pilation. In: 8th International Conference on Model Driven Engineering Languages
and Systems, MoDELS 2005, 2005, pp. 616–632.

[41] Voas, J.M.—Miller, K.W.: Putting Assertions in Their Place. In: Proceeding of
the 5th International Symposium on Software Reliability Engineering (ISSRE), 1994,
pp. 152–157.

[42] Wang, K.—Shen, W.: Runtime Checking of UML Association-Related Constraints.
In: Proceedings of the 5th International Workshop on Dynamic Analysis, 2007, p. 3.

[43] Wang, Y.-M.—Huang, Y.—Vo, K.-P.—Chung, P.-Y.—Kintala, C.: Check-
pointing and Its Applications. In: FTCS ’95: Proceedings of the 25th International
Symposium on Fault-Tolerant Computing, Washington, DC, USA, 1995, pp. 22–31.

[44] Wasylkowski, A.—Zeller, A.—Lindig, C.: Detecting Object Usage Anoma-
lies. In: Proceedings of the Joint Meeting of the European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Dubrovnik,
Croatia, 2007, pp. 35–44.

[45] Weimer, W.—Le Goues, C.—Nguyen, T.—Forrest, S.: Automatically Find-
ing Patches Using Genetic Programming. In: ICSE ’09: Proceeding of the 31st Inter-
national Conference on Software Engineering, Vancouver, CA, 2009, pp. 364–374.

[46] Yilmaz, C.—Paradkar, A.—Williams, C.: Time Will Tell: Fault Localization
Using Time Spectra. In: ICSE ’08: Proceedings of the 30th International Conference
on Software Engineering, Leipzig, Germany, 2008, pp. 81–90.

[47] Zeller, A.—Hildebrandt, R.: Simplifying and Isolating Failure-Inducing Input.
IEEE Transactions on Software Engineering, Vol. 28, 2002, No. 2, pp. 183–200.

114 A. Gorla, M. Pezzè, J. Wuttke, L. Mariani, F. Pastore

Alessandra Gorla is a Ph.D. candidate in computer science

at the University of Lugano (Switzerland). She holds a Bachelor
and M. Sc. degree in computer science, both from the University
of Milano Bicocca (Italy). Her research interests include software
testing and analysis, and self-healing systems.

Mauro Pezz�e is a Professor of computer science at the Univer-
sity of Milano Bicocca (Italy) and at the University of Lugano
(Switzerland). He is associate editor of ACM Transactions
on Software Engineering and Methodology and member of the
Steering Committee of the ACM International Conference on
Software Testing and Analysis.

Jochen Wuttke is a Ph.D. candidate in computer science
at the University of Lugano (Switzerland). He holds an M. Sc.
degree in computer science from the University of Munich (Ger-
many) and an MBA from the Kent Business School at Canter-
bury, UK. His research interests include software quality, auto-
nomic systems, and formal approaches to software engineering.

Leonardo Mariani is a researcher at the University of Milano
Bicocca (Italy). His research interests include software engineer-
ing, testing and analysis of component-based systems, dynamic
analysis, design and development of self-healing solutions, test
and analysis of service-based applications, and design and deve-
lopment of autonomous and adaptive systems.

Cost-Effective Software Reliability Through Self-Healing 115

Fabrizio Pastore is a Ph.D. candidate in informatics at the

University of Milano Bicocca (Italy). His research interests in-
clude dynamic analysis and self-healing systems. He is currently
working on the development of a self-healing framework as part
of the EU funded project Shadows.

