
Computing and Informatics, Vol. 29, 2010, 73–91

EXPLORATORY COMPARISON OF EXPERT
AND NOVICE PAIR PROGRAMMERS

Andreas Höfer

Universität Karlsruhe (TH)
Fakultät für Informatik
Am Fasanengarten 5
D-76131 Karlsruhe, Germany
e-mail: andreas.hoefer@kit.edu

Revised manuscript received 16 October 2009

Abstract. We conducted a quasi-experiment comparing novice pair programmers
to expert pair programmers. The expert pairs wrote tests with a higher instruction,
line, and method coverage than the novice pairs and changed the given program
skeleton to a larger extent. However, the expert pairs were also slower than the
novice pairs. The pairs within both groups switched keyboard and mouse possession
frequently. Furthermore, most pairs did not share the input devices equally but
rather had one partner who is more active than the other.

Keywords: Pair programming, experts and novices, quasi-experiment

Mathematics Subject Classification 2000: 68N99, 68N19, 68M15

1 INTRODUCTION

Pair programming has been investigated in several studies in recent years. The
experience of the subjects with pair programming in these studies varies widely:
On the one extreme are novices with no or little pair programming experience who
have just been trained in agile programming techniques, on the other extreme are
experts with several years of experience with agile software development in industry.
It seems rather obvious that expertise has an effect on the pair programming process
and therefore on the outcome of a study comparing pair programming to some



74 A. Höfer

other technique. Yet, the nature of the differences between experts and novices has
not been investigated so far. Nevertheless, knowing more about these differences
is interesting for the training of agile techniques as well as for the assessment of
studies on this topic. This study presents an exploratory analysis of the data of
nine novice and seven expert pairs, exposing differences between the groups as well
as identifying common attributes of their pair programming processes.

2 RELATED WORK

When it comes to research on pair programming, a large part of the studies focus
on the effectiveness of pair programming. Research on that topic has produced sig-
nificant results as summarized in a meta-study by Dyb̊a et al. [10]. They analyzed
the results of 15 studies comparing pair and solo programming and conclude that
quality and duration favor pair programming while effort favors solo programming.
Arisholm et al. [1] conducted a quasi-experiment with 295 professional Java consul-
tants in which they examined the effect of programmer expertise and task complexity
on the effectiveness of pair programming compared to solo programming. They mea-
sured the duration for task completion, effort and correctness of the solutions. The
participants had three different levels of expertise, namely junior, intermediate and
senior and worked on maintenance tasks on two functionally equivalent Java appli-
cations with differing control style. The authors conclude that pair programming is
not beneficial in general because of the observed increase in effort. Nevertheless, the
results indicate positive effects of pair programming for inexperienced programmers
solving complex tasks: The junior consultants had 149 percent increase in correct-
ness when solving the maintenance tasks on the Java application with the more
complex, delegated control style.

Other studies have taken an experimental approach to identify programmer char-
acteristics critical to pair success: Domino et al. [9] examined the importance of the
cognitive ability and conflict handling style. In their study, 14 part-time students
with industrial programming experience participated. Cognitive ability was mea-
sured with the Wonderlic Personal Test (WPT), conflict handling style with the
Rahim Organizational Conflict Inventory (ROCI-II). The performance of a pair was
neither correlated with its cognitive ability nor its conflict handling style. Chao
et al. [6] first surveyed professional programmers to identify the personality traits
perceived as important for pair programming. They then conducted an experiment
with 58 undergraduate students to identify the crucial personality traits for pair
success. The experiment yielded no statistically significant results. Katira et al. [16]
examined the compatibility of student pair programmers among 564 freshman, un-
dergraduate, and graduate students. They found a positive correlation between
the students’ perception of their partners’ skill level and the compatibility of the
partners. Pairs in the freshman course were more compatible if the partners had
different Myers-Briggs personality types. Sfetsos et al. [20] present the results of two
experiments comparing the performance of 22 student pairs with different Keirsey



Comparison of Expert and Novice Pair Programmers 75

temperaments to 20 student pairs with the same Keirsey temperament. The pairs
with different temperaments performed better with respect to the total time needed
for task completion and points earned for the tasks. The pairs with different tem-
peraments also communicated more than the pairs with the same temperament.

Furthermore, there are several field studies reporting on data from professional
programmers, some of them including video analysis of pair programming sessions.
None of these studies were designed to produce statistically significant results, but
the observations made are valuable, because they show how pair programmers be-
have in typical working environments. Bryant [3] presents data from fourteen pair
programming sessions in an internet banking company, half of which were video-
taped. Initial findings suggest that expert pair programmers interact less than pair
programmers with less expertise. Additionally, partners in expert pairs showed con-
sistent behavior no matter which role they played, whereas less experienced pair pro-
grammers showed no stable activity pattern and acted differently from one another.
Bryant et al. [5] studied 36 pair programming sessions of professional programmers
working in their familiar work environment. They classified programmers’ verba-
lizations according to sub-task (e.g. write code, test, debug, etc.). They conclude
that pair programming is highly collaborative, although the level of collaboration
depends on the sub-task. In a follow-up study Bryant et al. [4] report on data of
24 pair programming sessions. The authors observe that the commonly assumed
roles of the navigator acting as a reviewer and working on a higher level of abstrac-
tion do not occur. They propose an alternative model for pair interaction in which
the roles are rather equal. Chong and Hurlbutt [7] are also skeptical about the
existence of the driver and navigator role. They observed two development teams in
two companies for four months. They state that the observed behavior of the pair
programmers is inconsistent with the common description of the roles driver and
navigator. Both programmers in a pair were mostly at the same level of abstraction
while discussing; different roles could not be observed.

3 STUDY

The following sections describe the study which was motivated by the following
research hypotheses:

RHtime The expert pairs need less time to complete a task than the novice pairs.
This research hypothesis is based on the results from a quasi-experiment com-
paring the test-driven development processes of expert and novice solo program-
mers [18] where the experts were significantly faster than the novices.

RHcov The expert pairs achieve a higher test coverage than the novice pairs. Like
the research hypothesis above, this one is based on the findings in [18].

RHchg The expert pairs change the given program skeleton to a different extent than
the novice pairs. We thought of two opposing effects of the greater experience of
the expert pairs: Their experience could make them less reluctant to change the



76 A. Höfer

given code base if they would find something they dislike, which would result in
more changes compared to the novice pairs. The alternative is that they might
act more pragmatically and use the least effort possible to solve the task, which
would result in less changes.

RHconf The partners in the expert pairs compete less for the input devices than
the partners in the novice pairs. In our extreme programming lab course, we
observed that the students were competing for the input devices. Hence, we
thought this might be an indicator for an immature pair programming process.

3.1 Participants

The novice group consisted of 18 computer science students from an extreme pro-
gramming lab course [19] in which they learned the techniques of extreme program-
ming and applied them in a project week. They participated in the quasi-experiment
in order to get their course credits. In the mean, they were in their seventh semester,
had about five years of programming experience including two years of programming
experience in Java. Six members of the novice group reported prior experience with
pair programming, three of them in an industrial project. Only one novice had used
JUnit before the lab course, none had tried test-driven development before. For
the assignment of the pairs the experimenter asked each novice for three favorite
partners and then assigned the pairs according to these preferences. Only pair N6
could not be matched based on their preferences.

The group of experts was made up of 14 professional software developers. All
experts came from German IT companies, 13 from a company specialized in agile
software development and consulting. One expert took part in his spare time and was
remunerated by the experimenter, the others participated during normal working
hours, so all experts were compensated. All experts have a diploma in computer
science or in business informatics. On average, they had 7.5 years of programming
experience in industrial projects including on average five years experience with pair
programming, about three years experience with test-driven development, five years
experience with JUnit, and seven years experience with Java. The expert pairs were
formed based on their preferences and time schedule.

3.2 Task

The pairs had to complete the control program of an elevator system written in Java.
The system distinguishes between requests and jobs. A request is triggered if an up
or down button outside the elevator is pressed. A job is assigned to the elevator
after a passenger chooses the destination floor inside the elevator. The elevator
system is driven by a discrete clock. For each cycle, the elevator control expects
a list of requests and jobs and decides according to the elevator state which actions
to perform next. The elevator control is driven by a finite automaton with four
states: going-up, going-down, waiting, and open. The task description contained



Comparison of Expert and Novice Pair Programmers 77

a state transition diagram explaining the conditions for switching from one state to
another and the actions to be performed during a state switch.

To keep the effort manageable, only the open-state of the elevator control had
to be implemented. The pairs received a program skeleton which contained the
implementation of the other three states. This skeleton comprises ten application
and seven test classes with 388 and 602 non-commented lines of code, respectively.
The set of unit tests provided with the program skeleton use mock objects [17,
22] to decouple the control of the elevator logic from the logic that administrates
the incoming jobs and requests. However, the mock-object implementation in the
skeleton does not provide enough functionality to develop the whole elevator control.
Other functionality has to be added to the mock object to test all desired features
of the elevator control. Thus, the number of lines of test code may be higher than
the number of lines of application code. The mock object also contributes to the
line count.

3.3 Realization

Implementation took place during a single programming session. All pairs worked
on a workplace equipped with two cameras and a computer with screen capture
software [21] installed. All novice pairs and one expert pair worked in an office
within the computer science department. For the other expert pairs an equivalent
workplace was set up in a conference room situated in their company.

There was an implicit time limit due to the cameras’ recording capacity of seven
hours. Additionally, the task description states that the task can be completed
in approximately four to five hours. Each participant recorded interrupts such as
going to the bathroom or lunch breaks. The time logs were compared to the video
recordings to ensure consistency.

Apart from pair programming, the participants were asked to use test-driven
development to solve the programming task. The pairs had to work on the problem
until they were convinced they had an error free solution, which would pass an
automatic acceptance test, ideally at first attempt. If the acceptance test failed, the
pair was asked to correct the errors and to retry as soon as they were sure that the
errors were fixed. One pair in the expert group and one pair in the novice group did
not pass the acceptance test after more than six hours of work and gave up.

4 DATA ANALYSIS AND RESULTS

Since the samples are small and we do not know the population’s distribution, we
decided to use the Wilcoxon-Rank-Sum Test [14, p. 106] for hypothesis testing.
Almost all hypotheses could be tested with the one-tailed Wilcoxon-Rank-Sum Test
because they have an implicit direction. However, RHchg does not specify a direction
and was tested with the two-tailed equivalent. The power of the respective one-tailed



78 A. Höfer

t-Tests at a significance level of 5 percent, a large effect size of 0.81 and a harmonic
mean of 7.88 is 0.446. The power of the two-tailed t-Test at the same significance
level, effect size and harmonic mean is only 0.315. The power of the Wilcoxon-
Test is in the worst case 13.6 percent smaller than the power of the t-Test [14,
pp. 139]. Thus, the probability of detecting an effect is 38.5 percent for the one-
tailed Wilcoxon-Rank-Sum Test and 27.2 percent for the two-tailed version. These
probabilities are fairly small compared to the suggested value of 80 percent [8, p. 531].
To sum up, if a difference on the 5 percent level can be shown, everything is fine;
but the probability that an existing large effect is not revealed is 61.5 percent in the
one- and 72.8 percent in the two-tailed case.

As mentioned before, two pairs did not develop an error free solution. One could
argue that the data points of these pairs should be excluded from analysis, because
their programs are of inferior quality. Nevertheless, for the evaluations concerning
input activity (see Section 4.4) the program quality is of minor importance. Ac-
cordingly, the two data points were not removed. Additional p-values, computed
excluding the two data points2, are reported wherever it makes a difference and the
two data points are highlighted in all boxplots and tables.

4.1 Time

First of all, we compared the time needed for implementation defined as time span
from handing out the task description to the final acceptance test. The initial reading
phase, breaks, and the time needed for acceptance tests were excluded afterwards.
RHtime states our initial assumption that the expert pairs need less time than the
novice pairs, i.e. Timee < Timen. Figure 1 depicts the time needed for implementa-
tion as boxplots (grey) with the data points (black) as overlay; the empty squares
mark the pairs which did not pass the acceptance test. The exact data for these
and all other boxplots in this article can be found in Table 1. The boxplots show
that there is no support for the initial research hypothesis. Judging by the data
rather the opposite seems to be true. Consequently, not the initial research hypoth-
esis but the re-formulated, opposite hypothesis Timee > Timen (null-hypothesis:
Timee ≤ Timen) was tested. This revealed that the experts were significantly slower
than the novices (p = 0.036). Omitting the data points from the pairs that did not
pass the acceptance test results in an even smaller p-value of 0.015.

4.2 Test Coverage

The test coverage was measured on the final versions of the pairs’ programs using
EclEmma [11]. The evaluation of test coverage is motivated by RHcov, which ex-
presses our assumption that the expert pairs write tests with a higher coverage than
the novice pairs, i.e. Cove > Covn. The respective null-hypothesis Cove ≤ Covn

1 As defined in [8, p. 26].
2 With two data points less the power is only 8.4 percent.



Comparison of Expert and Novice Pair Programmers 79

P
a
ir

T
im

e
N
ee
d
ed

fo
r

Im
p
l.

[m
in
]

In
st
ru
ct
io
n

C
ov
er
a
g
e
[%

]

L
in
e

C
ov
er
a
g
e
[%

]

B
lo
ck

C
ov
er
a
g
e
[%

]

M
et
h
o
d

C
ov
er
a
g
e
[%

]

N
et

T
es
t
C
o
d
e

C
h
a
n
g
es

[S
L
O
C
]

N
et

A
p
p
l.

C
o
d
e

C
h
a
n
g
es

[S
L
O
C
]

N
et

C
o
d
e

C
h
a
n
g
es

[S
L
O
C
]

M
ea
n
D
ri
v
in
g

T
im

e
[m

in
:s
ec
]

N
u
m
b
er

o
f

A
cc
ep

ta
n
ce

T
es
ts

F
in
a
l
A
cc
ep

ta
n
ce

T
es
t
P
a
ss
ed

?

N1 188 89.0 89.0 87.6 88.5 70 42 112 01:41 1 yes
N2 139 95.1 94.4 90.9 89.9 114 60 174 02:23 1 yes
N3 156 95.8 95.1 90.9 89.2 81 45 126 11:54 1 yes
N4 406 91.1 90.2 82.8 88.9 30 50 80 04:02 3 no
N5 238 96.2 95.7 91.2 89.9 103 26 129 02:19 3 yes
N6 262 95.0 94.6 89.8 89.7 50 38 88 02:37 4 yes
N7 261 96.5 95.9 91.9 90.8 268 79 347 03:46 1 yes
N8 160 85.9 85.5 87.3 87.5 139 44 183 03:07 2 yes
N9 150 95.8 95.3 91.0 90.6 68 41 109 02:02 1 yes
E1 286 97.0 96.1 92.9 90.2 253 61 314 02:37 1 yes
E2 241 97.3 96.3 92.7 90.4 183 37 220 04:51 1 yes
E3 368 96.6 96.2 92.4 90.9 212 71 283 02:16 2 no

E4 247 95.7 95.5 91.3 90.6 87 91 178 02:15 2 yes
E5 219 96.0 95.5 90.9 89.6 185 56 241 06:13 2 yes
E6 305 94.0 93.2 85.8 91.1 158 84 242 04:35 1 yes
E7 297 95.8 95.4 90.5 90.1 131 52 183 05:48 1 yes

Table 1. Raw data set for all boxplots

Expert Novice

T
im

e 
[h

:m
m

]

2
:0

0
3
:0

0
4
:0

0
5
:0

0
6
:0

0
7
:0

0

Fig. 1. Time needed for implementation



80 A. Höfer

was tested for instruction, line, block, and method coverage. For instruction, line,
and method coverage the null-hypothesis can be rejected on the 5 percent level with
p-values of 0.045, 0.022, and 0.025. For block coverage the result is not statistically
significant (p = 0.084). If we omit the pairs which did not successfully pass the
acceptance test we can still observe a trend in the same direction. However, none
of the results is statistically significant anymore. The p-values for instruction, line,
block, and method coverage are 0.135, 0.068, 0.238, and 0.077, respectively. Figure 2
shows the boxplots for the line and method coverage of the two groups. The dashed
line indicates the test coverage of the program skeleton initially handed out to the
pairs.

Expert Novice

8
6

8
8

9
0

9
2

9
4

9
6

P
er

ce
n
t

Init.

Cov.

a)

Expert Novice

8
7
.5

8
8
.5

8
9
.5

9
0
.5

P
er

ce
n
t

Init.

Cov.

b)

Fig. 2. Test coverage; a) Lines, b) Methods



Comparison of Expert and Novice Pair Programmers 81

Looking at the test coverage, it seems that the experts had sacrificed speed for
quality. Yet, the costs for the extra quality are high: In the mean, the expert pairs
worked more than one hour longer than the novice pairs to achieve a 2.6 percent
higher line coverage. Perhaps they also took the acceptance test more seriously than
the novices and tested longer before handing in their programs. Figure 3 shows the
number of acceptance tests the pairs executed. The numbers of above the bars
indicate the absolute number of pairs with the correspondent number of acceptance
tests. There is only a slight difference visible between the distributions of the two
groups which might be simply due to chance. Consequently, we cannot tell whether
the assumption that the expert pairs took the acceptance test more seriously than
the novice pairs is true or false.

1 2 3 4

P
er

ce
n

t

0

20

40

60

80

100

4

3

0 0

a)

1 2 3 4

P
er

ce
n

t

0

20

40

60

80

100

5

1
2

1

b)

Fig. 3. Number of acceptance tests; a) Expert, b) Novice

4.3 Code Changes

In RHchg, we formulated our assumption that the expert pairs change the program
to a different extent than the novice pairs, i.e. Chge 6= Chgn. To examine RHchg, we
counted the number of lines that had changed from the initial to the final version
of the pairs’ programs. This was done as follows: First, we standardized the for-
matting of all Java files using Jalopy. Additionally, we removed all empty lines and
lines containing import statements from the files. Hence, re-ordering of methods,
changes made to white-space characters and import statements, as well as changes



82 A. Höfer

in comments had no effect on the number of changed lines. Finally, we used the Unix
diff-command to count the changed lines. Of all pairs, only one pair had created
new Java files by introducing two new classes. In this case, we added all lines in the
new Java files to the total number of changed lines.

Testing the null-hypothesis Chge = Chgn showed that the difference visible in
Figure 4 is statistically significant (p = 0.017). This difference remains significant
if the data points from the pairs that did not pass the acceptance test are excluded
from the analysis (p = 0.039).

The fact that the expert pairs changed the code to a larger extent than the novice
pairs might explain a vast part of the additional time they consumed. However, we
do not know why the expert pairs felt that they needed to change more code than
the novice pairs. The only way to answer the question will be to perform manual
code reviews and further analysis of the recorded videos.

Expert Novice

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

C
h
an

g
es

 [
S

L
O

C
]

Fig. 4. Changed lines of code

4.4 Measures of Input Activity

Books for extreme programming practitioners mention two different roles when it
comes to describing the interaction of the two programming partners and their basic
tasks in a pair programming session [2, 15, 23]. Williams and Kessler [24] provide the
most commonly used names for these roles: driver and navigator. Even though, the
descriptions of the driver and navigator role in these textbooks differ marginally,
all agree upon one basic feature of the driver role: The driver is responsible for
implementing and therefore uses the keyboard and the mouse. Assuming that this
is true, the use of mouse and keyboard by the two partners should make it possible
to conclude how long one of the partners stays driver until the two partners switch
roles.



Comparison of Expert and Novice Pair Programmers 83

4.4.1 Input Device Control and Conflict

We observe the time a programmer touches the keyboard and/or the mouse. Having
control of the input devices does not necessarily mean the programmer is really using
it to type or browse code. Yet, because the pairs worked on a machine with one
keyboard and one mouse possession of keyboard and/or mouse is a hindrance for the
other programmer to use them and thus to become the driver. If one partner touches
the keyboard while the other partner still has control of it, the time span where both
partners have their hands on the keyboard is measured as conflict. Grabbing the
mouse while the other partner has control of the keyboard is measured as conflict
as well, assuming that the Eclipse IDE [12] (which was used for the task) requires
keyboard and mouse for full control over all features.

To obtain the measure of input device control, we transcribed the videos of the
programming sessions with separate keyboard and mouse events for each program-
mer. We used a video transcription tool developed by one of our students especially
for the purpose of pair programming video analysis [13].

RHconf phrases our initial assumption that the novice pairs spend more time
in a conflict state than the expert pairs because they are less experienced in pair
programming and do not have a protocol for changing the driver and navigator role;
but this assumption could not be confirmed. Only three pairs spent more than
one percent of their working time in a conflict state. One of them is in the expert
group3 and two are in the novice group.

4.4.2 Pair Balance

Figure 5 depicts the results from the analysis of input device control. It shows that
the majority of the observed pairs did not share keyboard and mouse equally. To
make this phenomenon measurable, pair balance b was computed from the input
device control as follows:

b =
min(t1, t2) +

1
2
tc

max(t1, t2) +
1
2
tc

(1)

The variables t1 and t2 are the times of input device control of the two partners,
and tc the time spent in a conflict state. The values for pair balance may range
between zero and one, where one designates ideal balance. A pair balance of less
than 0.5 means that the active partner controlled the input devices more than twice
as long as the passive partner. Six out of nine novice pairs have a pair balance of
less than 0.5; input device control is almost completely balanced in one pair only.
In the expert group only one pair has a pair balance of less 0.5, but this pair is the
most imbalanced of all. Table 2 shows the exact values for all pairs together with
the percentage of conflicts. To check how the participants perceived pair balance,
they were asked to rate the statement “Our activity on the keyboard was equal.” in

3 This is the expert pair that did not pass the acceptance test.



84 A. Höfer

the post-test questionnaire4 on a Likert scale from 1 (totally disagree) to 5 (totally
agree). Figure 6 displays the distributions of the replies for both groups. The
numbers above the bars indicate the absolute number of replies for the respective
level of the Likert scale. The participants’ reactions on that statement are not
correlated to the corresponding pairs’ balance values (tested with Kendall’s rank
correlation test, τ = 0.142, p = 0.324). Their perception seems to differ from reality
here.

More Active Programmer Less Active Programmer Conflict

E5 E7 E6 E2 E4 E1 E3 N7 N2 N3 N4 N6 N1 N5 N9 N8

Pair

P
er

ce
n
t

0
2
0

4
0

6
0

8
0

1
0
0

Fig. 5. Input Device Control

4.4.3 Driving Times

Based on the assumption that one programmer remains driver until the other pro-
grammer takes control of the keyboard and/or mouse, driving times were computed
from the keyboard and mouse transcripts. The driving time is the time span from
the point a programmer gains exclusive control over the keyboard and/or the mouse
to the point where the other programmer takes over. This time span includes time
without activity on the input devices. In case of conflict, the time is added to the
driving time of the programmer who had control before the conflict occurred. Fur-
ther video analysis could help identify the driver during those times; but since at
least 90 percent of the working time is free of conflicts the driving times should
be precise enough. Figure 7 shows a boxplot of the mean driving times of all
pairs5. The average driving time of all participants is below four minutes. The
pairs switched keyboard and mouse control frequently. At first, the high switching
frequency seemed rather odd, but this finding is in line with observations made by
Chong and Hurlbutt [7] on a single team of professional programmers working on

4 Unfortunately, one expert pair had to leave before filling out the post-test question-
naire.

5 Pair N3, represented by the outlier in the novices’ boxplot, had a phase of more than
100 minutes where one programmer showed absolutely no activity on the input devices.
This biased the mean.



Comparison of Expert and Novice Pair Programmers 85

Pair Balance Conflict [%]

N1 0.37 0.75
N2 0.15 0.10
N3 0.18 0.57
N4∗ 0.22 0.33

N5 0.65 10.42
N6 0.26 0.94
N7 0.14 0.75
N8 0.95 0.54
N9 0.72 3.60
E1 0.78 0.33
E2 0.65 0.79
E3∗ 0.78 4.36
E4 0.77 0.47
E5 0.12 0.78
E6 0.59 0.03
E7 0.57 0.71
∗
Did not pass acceptance test.

Table 2. Balance and conflict

machines with two keyboards and mice. They state that within this team program-
ming partners switched keyboard control frequently and rapidly. In an exemplary
excerpt from a pair programming session in [7], the partners switched three times
within two and a half minutes.

5 THREATS TO VALIDITY

Apart from the different expertise in pair programming of the expert and novice
pairs other possible explanations for the observed differences in the data set might
exist. The novices also have less general programming experience and experience
with test-driven development than the experts. Another threat to validity results
from the fact that this study is a quasi-experiment and almost all experts came from
one company: Thus, the outcome may also be affected by selection bias.

Furthermore, the pairs might not have shown their usual working behavior be-
cause of the experimental setting and the cameras. The participants had to rate
the statement “I felt disturbed and observed due to the cameras” on a Likert
scale from 1 (totally disagree) to 5 (totally agree). Figure 8 displays the distri-
butions of the participants’ ratings. In general, the cameras were not perceived
as disturbing, although it seems as if they are a bigger source of irritation for
the novices than for the experts. Another reason for unusual working behavior
might be that the participants were not accustomed to pair programming and
therefore could not pair effectively; but we think that this is unlikely because
the experts were used to pair and the novices had been trained to pair in the



86 A. Höfer

to
ta

ll
y

d
is

ag
re

e

ra
th

er

d
is

ag
re

e

u
n

−

d
ec

id
ed

ra
th

er

ag
re

e

to
ta

ll
y

ag
re

e

P
er

ce
n

t

0

20

40

60

80

100

0

6

1

3
2

a)

to
ta

ll
y

d
is

ag
re

e

ra
th

er

d
is

ag
re

e

u
n

−

d
ec

id
ed

ra
th

er

ag
re

e

to
ta

ll
y

ag
re

e

P
er

ce
n

t

0

20

40

60

80

100

0

7

4 4
3

b)

Fig. 6. Replies to “The activity on the keyboard was equal”; a) Expert’s replies, b) Novice’s
replies

Expert Novice

T
im

e 
[m

in
]

0
2

4
6

8
1
0

1
2

Fig. 7. Mean driving time of the pairs



Comparison of Expert and Novice Pair Programmers 87

project week of our extreme programming lab course shortly before the quasi-
experiment.

Moreover, the fact that experts were paid for their participation and novices were
not might have lead to a bias in motivation. Figure 9 shows the distributions of
replies on the statement “I enjoyed programming in the experiment”. The experts’
distribution of replies seems to be shifted to the right compared to the novices’ one
which might indicate a higher motivation of the experts. But as the data set is small,
this difference is not statistically significant. The participant’s motivation might
also be influenced by how well the partners got along with each other. Figure 10
summarizes the ratings of the experts and novices of the statement “I would work
with my partner again”. As before, the experts’ distribution appears to be shifted to
the right compared to the novices’ one. Yet again, this difference is not statistically
significant, due to the small size of our data set.

Finally, the task was used in other studies before so some participants might
have known the task. Consequently, we asked the participants if they already knew
the task before they started. All participants answered the question with no.

to
ta

ll
y

d
is

ag
re

e

ra
th

er

d
is

ag
re

e

u
n

−

d
ec

id
ed

ra
th

er

ag
re

e

to
ta

ll
y

ag
re

e

P
er

ce
n

t

0

20

40

60

80

100

5

1

5

1
0

a)

to
ta

ll
y

d
is

ag
re

e

ra
th

er

d
is

ag
re

e

u
n

−

d
ec

id
ed

ra
th

er

ag
re

e

to
ta

ll
y

ag
re

e

P
er

ce
n

t

0

20

40

60

80

100

4
6

3 3
2

b)

Fig. 8. Replies to “I felt disturbed and observed by the cameras”; a) Expert’s replies, b)
Novice’s replies



88 A. Höfer

to
ta

ll
y

d
is

ag
re

e

ra
th

er

d
is

ag
re

e

u
n

−

d
ec

id
ed

ra
th

er

ag
re

e

to
ta

ll
y

ag
re

e

P
er

ce
n

t

0

20

40

60

80

100

0
1

3 3

5

a)

to
ta

ll
y

d
is

ag
re

e

ra
th

er

d
is

ag
re

e

u
n

−

d
ec

id
ed

ra
th

er

ag
re

e

to
ta

ll
y

ag
re

e

P
er

ce
n

t

0

20

40

60

80

100

0

3
5

8

2

b)

Fig. 9. Replies to “I enjoyed programming in the experiment”; a) Expert’s replies, b)
Novice’s replies

6 CONCLUSIONS AND FUTURE WORK

This article presented an exploratory analysis of a data set of nine novice and seven
expert pairs. The expert pairs had changed the code to a larger extent than the
novice pairs and they had written better tests in terms of instruction, line and
method coverage. In return the expert pairs were significantly slower than the novice
pairs. The most important implication of the observed differences is that generaliza-
tion of studies with novices remains difficult. Also, the direction of the difference is
not necessarily the one predicted under the common assumption “experts perform
better than novices”. In order to determine the reason why the expert pairs were
slower than the novice pairs two things have to be done next: First, further analysis
of the recorded video could indicate where the experts lost time. Second, we need
to check whether the experts adhered more rigidly to the test-driven development
process than the novices, which might be time consuming. We will do this with
the revised version of our framework for the evaluation of test-driven development
initially presented in [18].



Comparison of Expert and Novice Pair Programmers 89

to
ta

ll
y

d
is

ag
re

e

ra
th

er

d
is

ag
re

e

u
n

−

d
ec

id
ed

ra
th

er

ag
re

e

to
ta

ll
y

ag
re

e

P
er

ce
n

t

0

20

40

60

80

100

0 0
1 1

10

a)

to
ta

ll
y

d
is

ag
re

e

ra
th

er

d
is

ag
re

e

u
n

−

d
ec

id
ed

ra
th

er

ag
re

e

to
ta

ll
y

ag
re

e

P
er

ce
n

t

0

20

40

60

80

100

0
1

4
5

8

b)

Fig. 10. Replies to “I would work with my partner again”; a) Expert’s replies, b) Novice’s
replies

The analysis of input activity revealed no significant differences between the
groups. Nevertheless, it revealed that the roles of driver and navigator change fre-
quently and that a majority of the pairs has one partner dominating input device
control. The question what the less active partner did still needs to be answered.
Analyzing the existing video material, focusing on the verbalizations of the pro-
gramming partners, should help answer this question.

Acknowledgements

The study and the author were sponsored by the German Research Foundation
(DFG), project “Leicht” TI 264/8-3. The author would like to thank Sawsen Arfaoui
for her help on the video transcription and the evaluation of the questionnaires.



90 A. Höfer

REFERENCES

[1] Arisholm, E.—Gallis, H.—Dyb̊a, T.—Sjøberg, D. I.K.: Evaluating Pair Pro-
gramming with Respect to System Complexity and Programmer Expertise. IEEE
Transactions on Software Engineering, Vol. 22, February 2007, No. 2, pp. 65–86.

[2] Beck, K.: Extreme Programming Explained: Embrace Change. 1st edition. Addison-
Wesley, Reading, Massachusetts, USA, 2000.

[3] Bryant, S.: Double Trouble: Mixing Qualitative and Quantitative Methods in the
Study of eXtreme Programmers. In: IEEE Symposium on Visual Languages and
Human Centric Computing, September 2004, pp. 55–61.

[4] Bryant, S.—Romero, P.—du Boulay, B.: Pair Programming and the Mys-
terious Role of the Navigator. International Journal of Human-Computer Studies,
Vol. 66, 2008, No. 7, pp. 519–529.

[5] Bryant, S.—Romero, P.—du Boulay, B.: The Collaborative Nature of Pair
Programming. In: Extreme Programming and Agile Processes in Software Engineer-

ing, Vol. 4044/2006 of Springer Lecture Notes in Computer Science, 2006, pp. 53–64.

[6] Chao, J.—Atli, G.: Critical Personality Traits in Successful Pair Programming.
In: Proceedings of Agile 2006 Conference, 2006, pp. 65–68.

[7] Chong, J.—Hurlbutt, T.: ICSE ’07 The Social Dynamics of Pair Programming.
In: Proceedings of the 29th International Conference on Software Engineering, 2007,
pp. 354–363.

[8] Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. 2nd edition.
Lawrence Erlbaum Associates, 1988.

[9] Domino, M.A.—Collins, R.W.—Hevner, A.R.—Cohen, C. F.: Conflict in
Collaborative Software Development. In: SIGMIS CPR ’03: Proceedings of the 2003
SIGMIS Conference on Computer Personnel Research, 2003, pp. 44–51.

[10] Dyb̊a, T.—Arisholm, E.—Sjøberg, D. I.K.—Hannay, J. E.—Shull, F.: Are
Two Heads Better than One? On the Effectiveness of Pair Programming. IEEE

Software, Vol. 24, November/December 2007, No. 6, pp. 12–15.

[11] EclEmma Project web site. Available on: http://www.eclemma.org.

[12] Eclipse IDE web site. Available on: http://www.eclipse.org.

[13] Höfer, A.: Video Analysis of Pair Programming. In: APSO ’08: Proceedings of the
2008 international workshop on scrutinizing agile practices or shoot-out at the agile
corral, Leipzig, Germany, 2008, pp. 37–41.

[14] Hollander, M.—Wolfe, D.A.: Nonparametric Statistical Methods. 2nd edition.
Wiley Interscience, 1999.

[15] Jeffries, R. E.—Anderson, A.—Hendrickson, C.: Extreme Programming In-
stalled. Addison-Wesley, 2001.

[16] Katira, N.—Williams, L.—Wiebe, E.—Miller, C.—Balik, S.—

Gehringer, E.: On Understanding Compatibility of Student Pair Programmers.

SIGCSE Bulletin, Vol. 36, 2004, No. 1, pp. 7–11.

[17] Mackinnon, T.—Freeman, S.—Craig, P.: Endo-testing: Unit Testing with
Mock Objects. In: Succi, G. and Marchesi, M. (Eds.): Extreme Programming Ex-



Comparison of Expert and Novice Pair Programmers 91

amined, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001,

pp. 287–301.

[18] Müller, M.M.—Höfer, A.: The Effect of Experience on the Test-Driven De-
velopment Process. Empirical Software Engineering, Vol. 12, December 2007, No. 6,

pp. 593–615.

[19] Müller, M.M.—Link, J.—Sand, R.—Malpohl, G.: Extreme Programming in
Curriculum: Experiences from Academia and Industry. In: Extreme Programming

and Agile Processes in Software Engineering. Vol. 3092/2004 of Springer Lecture
Notes in Computer Science, June 2004, pp. 294–302.

[20] Sfetsos, P.—Stamelos, I.—Angelis, L.—Deligiannis, I.: Investigating the
Impact of Personality Types on Communication and Collaboration-Viability in Pair

Programming – An Empirical Study. In: Extreme Programming and Agile Processes
in Software Engineering, Vol. 4044/2006 of Springer Lecture Notes in Computer Sci-
ence, 2006, pp. 43–52.

[21] TechSmith Camtasia Studio web site. Available on: http://de.techsmith.com/

camtasia.asp.

[22] Thomas, D.—Hunt, A.: Mock Objects. IEEE Software, Vol. 19, May/June 2002,

No. 3, pp. 22–24.

[23] Wake, W.C.: Extreme Programming Explored. 1st edition. Addison-Wesley, 2002.

[24] Williams, L.—Kessler, R.: Pair Programming Illuminated. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

Andreas H�ofer is currently Ph.D. student at the Department
of Computer Science, University Karlsruhe, Germany. He re-

ceived his diploma in computer science and his M. Sc. degree in
computer science and multimedia from the University of Applied
Sciences Karlsruhe, Germany. His research interests include the
assessment of agile software processes and development methods.


