
Computing and Informatics, Vol. 29, 2010, 45–72

SMA – THE SMYLE MODELING APPROACH

Benedikt Bollig

Laboratoire Spécification et Vérification

CNRS UMR 8643

École Normale Supérieure de Cachan

61, avenue du Président Wilson

94235 CACHAN Cedex, France

e-mail: bollig@lsv.ens-cachan.fr

Joost-Pieter Katoen, Carsten Kern

Lehrstuhl für Informatik 2

RWTH Aachen University Ahornstrasse 55

52074 Aachen, Germany

e-mail: {katoen, kern}@cs.rwth-aachen.de

Martin Leucker

Lehrstuhl für Informatik 4

Technische Universität München

Boltzmannstr. 3

85748 Garching, Germany

e-mail: leucker@in.tum.de

Revised manuscript received 16 October 2009

Abstract. This paper introduces the model-based software development lifecy-
cle model SMA – the Smyle Modeling Approach – which is centered around Smyle.

Smyle is a dedicated learning procedure to support engineers to interactively obtain
design models from requirements, characterized as either being desired (positive)
or unwanted (negative) system behavior. Within SMA, the learning approach is
complemented by so-called scenario patterns where the engineer can specify clearly

46 B. Bollig, J.-P. Katoen, C. Kern, M. Leucker

desired or unwanted behavior. This way, user interaction is reduced to the inter-

esting scenarios limiting the design effort considerably. In SMA, the learning phase
is further complemented by an effective analysis phase that allows for detecting de-
sign flaws at an early design stage. Using learning techniques allows us to gradually
develop and refine requirements, naturally supporting evolving requirements, and
allows for a rather inexpensive redesign in case anomalous system behavior is de-
tected during analysis, testing, or maintenance. This paper describes the approach
and reports on first practical experiences.

Keywords: Requirements elicitation, design model, learning, software engineering
lifecycle, Message Sequence Charts, UML

Mathematics Subject Classification 2000: 68N30, 68Q85, 68Q32

1 INTRODUCTION

To put it bluntly, software engineering – under the assumption that a requirements
acquisition has taken place – amounts to bridging the gap between requirements,
typically stated in natural language, and a piece of software. To ease this step, in
model-driven design (like MDA), architecture-independent design models are intro-
duced as intermediary between requirement specifications and concrete implemen-
tations. These design models typically describe the control flow, basic modules or
components, and their interaction. Design models are then refined towards exe-
cutable code typically using several design steps where system details are incorpo-
rated progressively. Correctness of these design steps may be checked using e.g.,
model checking or deductive techniques.

Problem statement. Typically, an abundant number of requirements are formu-
lated manually, using natural language or semi-formal notations – with the typical
implication that requirements are ambiguous and contradictory. Moreover, require-
ments typically change over time, meaning at all stages of the development process,
let be due to changing user requirements or to anomalous system behavior detected
at a later design stage. As one consequence, also the design model may not re-
flect the requirements correctly. Standard software engineering lifecycle models are,
unfortunately, not designed to support evolving requirements.

Contribution. This paper presents the Smyle Modeling Approach (SMA) as novel
software engineering lifecycle model, which is based on a new approach towards re-
quirement specification and high-level design. It is tailored to the development of
communicating distributed systems whose behavior can be specified using sequence
diagrams exemplifying either desired or undesired system runs. A widespread nota-
tion for sequence diagrams is that of message sequence charts (MSCs). They have

SMA – The Smyle Modeling Approach 47

been adopted by the UML, are standardized by the International Telecommunica-
tion Union (ITU) [26], and are part of several requirements elicitation techniques
such as CREWS [30].

At the heart of SMA a dedicated learning technique supports the engineer to
interactively obtain implementation-independent design models from MSCs exem-
plifying the system’s behavior. These techniques are implemented in the Smyle tool
(Synthesizing Models bY Learning from Examples, cf. [8]). The incremental learn-
ing approach allows to gradually develop, refine, and complete requirements, and
supports evolving requirements in a natural manner, rather than requiring a full-
fledged set of requirements up front. Importantly, Smyle does not only rely on given
system behaviors but progressively asks the engineer to classify certain corner cases
as either desired or undesired behavior, whenever the so-far provided examples do
not allow to determine a (minimal) system model in a unique manner.

As abstract design models, Smyle synthesizes distributed finite-state automata
(referred to as communicating finite-state machines [12], or CFMs for short). This
model is implementation-independent and describes the local control flow as finite
automata which communicate via unbounded order-preserving channels. Thus, the
behavior of these models can directly be represented as sets of MSCs.

SMA is a software engineering lifecycle model centered around Smyle. The
learning approach is complemented by so-called scenario patterns where the engineer
can specify clearly desired or unwanted behavior graphically or via a dedicated
formula editor. This way, user interaction is reduced to the interesting scenarios
limiting the design effort considerably. Once an initial high-level design has been
obtained by learning, SMA asks for intensive simulation of the obtained model and
for checking elementary correctness properties of the CFM, for example by means
of model checking or dedicated analysis algorithms [9]. This allows for an early
detection of design flaws. In such a case, i.e., some observed behavior should be ruled
out or some expected behavior cannot be realized by the current model, the learning
phase can be continued with the corresponding scenarios yielding an adapted design
model now reflecting the expected behavior for the given scenarios.

A satisfactory high-level design may subsequently be refined or translated into,
e.g., Stateflow diagrams [21] from which executable code is automatically generated
using tools such as Matlab/Simulink. Alternatively, code skeletons may be gene-
rated that perform the desired communication expressed by the design model, but
which may be enriched by concrete computations of values, memory management
etc.

The final stage of SMA is a model-based testing phase [13] in which it is checked
whether the software conforms to the high-level design description. The MSCs used
for formalizing requirements now serve additionally as abstract test cases. Supple-
mentary test cases are generated in an automated way. This systematic on-the-fly
test procedure is supported by tools such as TorX and TGV [5] that can easily be
plugged in into our design cycle. Again, any test failure that results from an invalid
design model can be described by MSCs which may be fed back to the learning
phase.

48 B. Bollig, J.-P. Katoen, C. Kern, M. Leucker

Related work. To our best knowledge there is no related work on defining lifecycle
models based on learning techniques. However, several approaches for synthesizing
models based on scenarios are known [36, 16, 23, 11]. One of the first attempts
to exploit learning for interactively synthesizing models was proposed in [29] where
for each process in the system an automaton is inferred using Angluin’s learning
technique [3]. The drawback of this approach is that putting the resulting automata
in parallel yields a system that may have previously undesired behavior and also
may easily deadlock.

In Damas et al. [15], positive and negative scenarios are used for learning a global
system model (LTS) via grammar induction. Similar as for [29], the resulting de-
sign model does not necessarily conform to the given examples and requires that
unwanted “[...] implied scenarios should be detected and excluded” [15], manually.

In [37, 36], Uchitel et al. recommend the use of high-level MSCs (HMSCs) as
input for model synthesis. For larger size projects, however, constructing HMSCs
may become very involved and error-prone: HMSCs pretend to model global system
behavior whereas the processes contained in the nodes can only act according to lo-
cal information. In [36], a logic called FLTL is employed to assure system properties
while synthesizing a model – a modal transition system, which can differentiate be-
tween possible and required transitions. For each scenario, an automaton is derived
which is composed in parallel with the others.

In general all three approaches exhibit the drawback of implementing syn-
chronous (or at least not fully asynchronous) communication behavior and extracting
models which only represent approximations to the system to be.

A very interesting prospect is described in [22] where Harel presents his ideas
and dreams about scenario-based programming and proposes to use learning tech-
niques for system synthesis. In his vision “[the] programmer teaches and guides the
computer to get to know about the system’s intended behavior [...]”, just as it is our
intention. This paper describes the SMA approach, compares it to widely adopted
software development lifecycles as the waterfall model [33, 34], V-model [34], Böhm’s
spiral model [7, 34], and reports on first practical experiences, including an indus-
trial case study from the automotive domain yielding insights on advantages and
disadvantages of the approach.

Outline. In Section 2 the ingredients for our learning approach are described and
complemented by a theoretical result on its feasibility. Section 3 describes SMA

in detail and compares it to traditional and modern software engineering lifecycle
models. In Section 4 we apply SMA gradually to a simple example, followed by
insights on an industrial case study in Section 5.

2 INGREDIENTS OF THE SMA

We now recall some the basic notions of message sequence charts (MSCs), corre-
sponding automata (communicating finite-state machines), and recall the gist of
Smyle [8]. Moreover, we present a logic for specifying sets of MSCs.

SMA – The Smyle Modeling Approach 49

2.1 Message Sequence Charts

Message Sequence Charts (MSCs) are an ITU standardized notation [26] for de-
scribing message exchange between concurrent processes. An MSC depicts a single
partially ordered execution sequence of a system. It defines a collection of processes,
which are drawn as vertical lines and interpreted as top-down time axes. Labeled
vertical arrows represent message exchanges. An example MSC over three processes
is depicted in Figure 1 a).

In its mathematical essence, an MSC can be understood as a graph whose nodes
represent communication actions. For example, the graph in Figure 1 b) represents
the MSC of Figure 1 a). A node or event represents the communication action in-
dicated by its label, where, e.g., 1!2(a) stands for sending a message a from 1 to 2,
whereas 2?1(a) is the complementary action of receiving a from 1 at process 2. The
edges reflect causal dependencies between events. An edge can be of two types: it is
either a process edge (proc), describing progress of one particular process, or a mes-

sage edge (msg), relating a send with its corresponding receive event. Technically,
this graph can be represented as a partial order of communication events.

1 2 3
c

a

b

c

1!2(a)

1!3(b)

2?3(c)

2?1(a)

2?3(c)

3!2(c)

3?1(b)

3!2(c)

u

v

proc
proc

proc

proc

proc

msg

msg

msg

msg

a) b)

Fig. 1. a) An MSC and b) its graph

In this work we abstract from several features provided by the standard. Many of
them (e.g., local actions, co-regions, etc.) can be easily included into our framework,
but are omitted here for ease of presentation. Some of them, however, are excluded
on purpose: loops and alternatives are not allowed as single executions are to be
specified by MSCs. Note that, in correspondence to the ITU standard but in contrast
to most works on learning MSCs, we consider the communication of an MSC to be
asynchronous meaning that sending and receiving of a message may be delayed.

A (finite or infinite) set of MSCs, which we call an MSC language, may represent
a system in the sense that it contains all possible scenarios that the system may ex-
hibit. MSC languages can be characterized and represented in many ways. Here, the
notion of a regular MSC language is of particular interest, as it comprises languages
that are learnable in a sense made more precise below. Regularity of MSC languages
is based on the concept of linearizations: A linearization of an MSC M containing

50 B. Bollig, J.-P. Katoen, C. Kern, M. Leucker

the events EM is a total ordering of EM that does not contradict the transitive
closure of the edge relation. Any linearization can be represented as a word over the
set of communication actions. Two sample linearizations of the MSC from Figure 1
are l1 = 1!2(a)3!2(c)2?3(c)1!3(b)3?1(b)3!2(c)2?3(c)2?1(a), l2 = 3!2(c) 2?3(c) 1!2(a)
1!3(b) 3?1(b) 3!2(c) 2?3(c) 2?1(a). Let Lin(M) denote the set of linearizations of M
and, for some set M of MSCs, let Lin(M) denote the set

⋃

M∈M Lin(M). An MSC
language M is now regular iff Lin(M) is regular.
2.2 Communicating Finite-State Machines

The reason of considering regular MSC languages in SMA is twofold: First, regular
languages are supported by SMA’s learning algorithms that are briefly sketched in
the next section. Second, regular MSC languages learned within SMA can be natu-
rally and effectively implemented in terms of communicating finite-state machines

(CFMs) [12]. CFMs constitute an appropriate automaton model for distributed
systems where processes are represented as finite-state automata that can send mes-
sages to one another through reliable FIFO channels. We omit a formal definition
of CFMs and instead refer to the example depicted in Figure 2 illustrating the Al-

ternating Bit Protocol [28, 35]. There, we deal with a producer process (p) and
a consumer process (c) that exchange messages from {0, 1, a}. Transitions are ac-
cordingly labeled with communication actions such as p!c(0), p?c(a), etc. (as we deal
with two processes only, we omit the sender and receiver, just writing !0, ?a, and so
on). For a concise description of this protocol, see Section 4.

!1

!0

!0 !0

?a

!1

?a
?1 ?1

?0 ?0

?0

!a

?1

!a

producer p consumer c

Fig. 2. Example CFM

A CFM accepts a set of MSCs in a natural manner. For example, the language
of the CFM from Figure 2 contains the MSCs depicted in Figure 4. Using CFMs,
we account for the asynchronous communication behavior whereas usually other
approaches use synchronous communication. This, of course, complicates the un-
derlying theory of learning procedures but results in a model that exactly does what
the user expects and does not represent any approximation.

The formal justification of using regular MSC languages is given by the following
theorem, which states that a set of MSCs is implementable as a CFM if its set of
linearizations is regular, or if it can be represented by a regular set of linearizations.

SMA – The Smyle Modeling Approach 51

Theorem 1 ([24, 19]). Let M be an MSC language. There is a CFM accepting
precisely the MSCs from M, if one of the following holds:

1. The set Lin(M) is a regular set of words.

2. There is a channel bound B ∈ IN and a regular subset L of Lin(M) such that
(i) any MSC from M exhibits a linearization that does not exceed the channel
bound B, and (ii) L contains precisely the linearizations from Lin(M) that do
not exceed the channel bound B.

If the respective regular languages are given as finite automata, we can compute
a corresponding CFM effectively.

2.3 The Gist of Smyle

Smyle is the learning procedure underlying SMA and has recently been described
in [8]. As input, Smyle is given a set M+ of scenarios (called positive) which are
desired executions of the system to be and a set M− of scenarios (called negative)
which may not be observed as system executions. If the given examples do not
indicate a single conforming model, Smyle saturates both sets by asking further
queries which are successively presented to the user who in turn has to classify
each of them as either positive or negative resulting in M̄+ and M̄−. Eventually, the
minimal deterministic finite automaton and a corresponding CFM accepting the
MSCs of M̄+ and rejecting those of M̄− are computed.

If a subsequent analysis of the obtained CFM shows that it does not conform
to the user’s intention, it can be refined by providing further examples to be added
to M̄+ or M̄− and reinvoking the learning procedure. It can be shown that this
process eventually converges to any intended CFM [8].

At first sight, one might think that inconsistencies could be introduced by the
classifications of the presented MSCs. However, this is not possible due to the
simple nature of MSCs: We do not allow branching, if-then-else or loop constructs.
Thus they cannot overlap and generate inconsistencies. Note moreover that the
learning algorithm is deterministic in the following sense: For every (saturated) set
of examples, the learning algorithm computes a unique CFM. This allows, within
SMA, to rely only on all classified MSCs within a long-term project and to resume
learning whenever new requirements arise. Moreover, reclassification in case of user
errors is likewise simple.

An important aspect that distinguishes Smyle from others [29, 15] is that the
resulting CFM is consistent with the set of MSCs that served as input. Other
approaches project their learning result onto the processes involved, with the price
that the resulting system is some over-approximation of the desired one.

2.4 MSC Patterns

When applying the SMA, it is useful to provide expressive though concise means to
describe MSC languages, e.g., to specify mandatory or unwanted system behavior.

52 B. Bollig, J.-P. Katoen, C. Kern, M. Leucker

Over words, temporal logics such as LTL have emerged as an important ingredient
in the verification and synthesis of reactive systems. For MSCs, only few attempts
to define a suitable temporal logic exist. The lack of temporal logics probably traces
back to the complexity of MSCs: even simple temporal logics over MSCs have
an undecidable satisfiability problem. For SMA, we adopt the logic PDL recently
proposed in [10], which is inspired by Propositional Dynamic Logic (PDL) by Fischer
and Ladner [18], but adapted to MSCs. We choose PDL for three reasons: i) It is
expressive (subsuming, e.g., Peled’s temporal logic TLC− [31]); ii) it combines easy
to understand concepts such as regular expressions and Boolean operators; iii) its
membership problem (i.e., to decide if a given MSC satisfies a given formula) can be
solved in polynomial time (as we show). Note that PDL is a quite expressive logic
and that satisfiability for PDL is undecidable. Fortunately, the SMA only builds
on deciding membership problems, as they allow us to determine whether a given
scenario belongs to a property that represents good or undesired behavior. This is
the principal reason why PDL is better suited for our purposes than, say, high-level
MSCs, whose membership problem is NP-complete [1].

The building blocks of formulas in our logic PDL are regular expressions and
Boolean connectives, which can be nested arbitrarily. Instead of a formal account to
PDL, which can be found in [10], we provide some example formulas demonstrating
the expressive power of PDL and its usage. Essentially, we distinguish existential

and universal formulas. An existential formula is of the form Eϕ. It expresses that
there is some event at which ϕ is satisfied. The universal formula Aϕ, in contrast,
requires that ϕ holds at all events in a given MSC. The subformula ϕ in Eϕ or Aϕ

is thus interpreted at events of an MSC. It might be of the form <π>ϕ′ meaning
that, starting in the event under consideration, there is a π-labeled path to another
event that satisfies ϕ′. The dual construct ⊏π⊐ϕ′ expresses that the property ϕ′ has
to hold in any event that can be reached following a π-labeled path. E.g., consider
the following PDL formulas:

ϕ1 = A
(

<(proc + msg)∗>(procmax ∧ 2?1(a))
)

ϕ2 = E
(

procmax ∧ 2?1(a)
)

ϕ3 = A
(

⊏ 2?3(c); proc; 2?3(c)⊐ false
)

.

The universal formula ϕ1 describes that, from any event, there is an (arbitrarily
labeled) path through the MSC (expressed by <(proc + msg)∗>) to another event
that is maximal on its process (procmax) and labeled with 2?1(a). In other words,
there shall be a greatest event in the MSC at hand and this greatest event shall be
labeled with 2?1(a). Indeed, ϕ1 is satisfied by the MSC from in Figure 1. Note that
the existential formula ϕ2 is not equivalent to ϕ1, as ϕ2 only requires the existence
of an event that is maximal on process 2; but this event need not be the greatest
in the MSC. The universal formula ϕ3 forbids two consecutive events both labeled
with 2?3(c). It is refuted by the MSC from Figure 1.

SMA – The Smyle Modeling Approach 53

Essential for our setting is the result that we can efficiently check whether a given
MSC adheres to a given PDL formula, which can be proven easily:

Theorem 2. The membership problem for PDL is in PTIME, even if the number
of processes is part of the input. More precisely, given a PDL formula ϕ and an
MSC M , we can decide in time O(|M | · |ϕ|2) if M |= ϕ, where |M | denotes the
number of events in M and |ϕ| denotes the length of ϕ.

The logic will be used in our setting as follows: positive and negative sets of
formulas Φ+ and Φ− are given by the user, either directly or by annotating presented
MSCs. An example for a negative statement would be, say, “there are two receives of

the same message in a row”, which corresponds to the negation of the PDL formula
ϕ3 above. An annotated MSC for this example formula is given in Figure 6 c).
Then, the learning algorithm can autonomously and efficiently check for all formulas
ϕ+ ∈ Φ+, ϕ− ∈ Φ− and unclassified MSCs M whether M 6|= ϕ+ or M |= ϕ−. If one
of the two cases occurs then the set of negative samples is updated to {M} ∪ M−

and in all other cases the question is passed to the user.

3 THE SMYLE MODELING APPROACH (SMA)

It is common knowledge [17] that traditional engineering lifecycle models like the
well-known waterfall model [33, 34, 32, 20] or the V-model [32, 34] suffer from some
severe deficiencies, despite their wide use in today’s software development. One
of the problems is that both models assume (implicitly) that a complete set of
requirements can indeed be formulated at the beginning of the software engineering
lifecycle. Although in both approaches it is possible to revisit a previously passed
phase, this is considered a backwards step involving time-consuming reformulation
of documents, models, or code produced in the previous and current phases, causing
high additional costs for redesign.

The nature of a typical software engineering project is, however, that require-
ments are usually incomplete, often contradicting, and frequently changing during
the project evolution. A high-level design, on the other hand, is typically a complete
and consistent model that is expected to conform to the requirements. Thus, espe-
cially the step from requirements to a high-level design is a major challenge within
a software engineering lifecycle: The incomplete set of requirements has to be made
complete and inconsistencies have to be eliminated. An impressive example for in-
consistencies in industrial-size applications is given by Holzmann [25] where for the
design and implementation of a part of Signaling System 7 in the 5ESSR© switching
system (the ISDN User-Part protocol defined by the CCITT) “almost 55% of all
requirements from the original design requirements [...] were proven to be logically
inconsistent [...]”.

Moreover, also later stages of the development process often require additional
modifications of requirements and the corresponding high-level design, either due
to changing user requirements or due to unforeseen technical difficulties. Thus,

54 B. Bollig, J.-P. Katoen, C. Kern, M. Leucker

besides the step of generating a complete and consistent set of requirements and
a conforming design model in the initial stages of a development process, a lifecycle
model should support an easy adaptation of requirements and its conforming design
model also at later stages.

The SMA is a novel software engineering lifecycle model that addresses these
goals. However, as we discuss later, it may also be employed to enrich existing
lifecycle models.

3.1 A Bird’s-Eye View on SMA

The Smyle Modeling Approach (SMA) is a software engineering lifecycle model tai-
lored to communicating distributed systems. A prerequisite is, however, that the
participating units (processes) and their communication actions can be fixed in
the first steps of the development process, before actually deriving a design model.
Requirements for the behavior of the involved processes, however, may be given
vaguely and incomplete first but are made precise within the modelling process.
While clearly not every development project fits these needs, a considerable amount
of systems especially in the automotive domain do, which actually motivated the
development of SMA.

Within SMA, our goal is to round-off requirements, remove inconsistencies and
to provide methods catering for modifications of requirements in later stages of the
software engineering lifecycle. One of the main challenges to achieve these goals is to
come up with simple means for concretizing and completing requirements as well as
resolving conflicts in requirements. We attack this intrinsically hard problem using
the following rationale:

While it is hard to come up with a complete and consistent formal specification
of the requirements, it is feasible to classify exemplifying behavior as desired
or illegal. (SMA rationale)

This rationale builds on the well-known experience that human beings prefer to ex-
plain, discuss, and argue in terms of example scenarios but are often over-strained
when having to give precise and universally valid definitions. Thus, while the general
idea to formalize requirements, for example using temporal logic, is in general desir-
able, this formalization is often too cumbersome and therefore not cost-effective –
and the result is, unfortunately, often too error-prone. This is because it is hard to
have a clear (complete and consistent) picture of the system to develop right at the
beginning of the software engineering lifecycle.

This also justifies our restriction to MSCs without branching, if-then-else, and
loops, when learning design models: It may be too error-prone to classify complex
MSCs as either wanted or unwanted behavior.

Our experience with requirements documents shows that especially requirements
formulated in natural language are often explained in terms of scenarios, showing
wanted or unwanted behavior of the system to develop. Additionally, it is evident

SMA – The Smyle Modeling Approach 55

that it is easier for the customer to judge whether a given simple scenario is in-
tended or not, in comparison to answering whether a formal specification matches
the customer’s needs.

The key idea of SMA is therefore to incorporate the learning algorithm Smyle

(with supporting tool) [8] for synthesizing design models based on scenarios explain-
ing requirements. Thus, requirements- and high-level design phase are interweaved.
Smyle’s nature is to extend initially given scenarios to consider, for example, cor-
ner cases: It generates new scenarios whose classification as desired or undesired
is indispensable to complete the design model and asks the engineer exactly these
scenarios. Thus, the learning algorithm actually causes a natural iteration of the
requirements elicitation and design model construction phase. Note that Smyle syn-
thesizes a design model that is indeed consistent with the given scenarios and thus
does precisely exhibit the scenario behavior.

SMA is tailored to component-based systems communicating with each other to
achieve a common goal. A natural design model for such systems are CFMs [12].
Exemplifying behavior (scenarios) of such systems is best given in terms of MSCs.
Thus, SMA, similar as its learning algorithm Smyle, is designed to derive CFMs
based on either positively or negatively classified MSCs, representing wanted or
unwanted behavior of the software system to build.

While SMA’s initial objective is to elaborate on the inherent correspondence of
requirements and design models by asking for further exemplifying scenarios, it also
provides simple means for modifications of requirements later in the design process.
Whenever, for example in the testing phase, a mismatch of the implementation’s
behavior and the design model is witnessed which can be traced back to an invalid
design model, it can be formulated as a negative scenario and can be given to the
learning algorithm to update the design model. This will, possibly after consider-
ing further scenarios, modify the design model to disallow the unwanted behavior.
Thus, necessary modifications of the current software system in later phases of the
software engineering lifecycle can easily be fed back to update the design model.
This high level of automation is aimed at an important reduction of development
costs.

3.2 The SMA Lifecycle Model

The Smyle Modeling Approach, cf. Figure 3, consists of a requirements phase, a high-
level design phase, a low-level design phase, and a testing and integration phase.
Following modern model-based design lifecycle models, the implementation model is
transformed semi-automatically into executable code, as it is increasingly done in
the automotive and avionics domain.

In the following, the main steps of the SMA lifecycle model are described in
more detail, with a focus on the phases depicted in Figure 3 and a brief discussion
on testing and integration phases.

56 B. Bollig, J.-P. Katoen, C. Kern, M. Leucker

Fig. 3. The Smyle Modeling Approach: SMA

SMA – The Smyle Modeling Approach 57

3.2.1 Derivation of a Design Model

According to Figure 3, the derivation of design models is divided into three steps:
The first phase is called scenario extraction phase. Based on the usually incomplete
system specification the designer has to infer a set of scenarios which will be used
as input to Smyle.1 After collecting this initial set of MSCs representing desired
and undesired system behavior, the second phase initiates the learning algorithm to
learn a system model based on these scenarios.

In the learning and simulation phase, the designer and client (referred to as stake-
holders in the following) will work hand in hand according to the designing-in-pairs
paradigm. The advantage is that both specific knowledge about requirements (con-
tributed by the customer) and solutions to abstract design questions (contributed by
the designer) coalesce into one model. With its progressive nature, Smyle attempts
to derive a model by interactively presenting new scenarios to the stakeholders which
in turn have to classify them as either positive or negative system behavior. Due to
the evolution of requirements implied by this categorization the requirements docu-
ment should automatically be updated incorporating the new MSCs. Additionally,
the most important scenarios are to be user-annotated with the reason for the par-
ticular classification to complement the documentation. When the internal model
is complete and consistent with regard to the scenarios classified by the stakehold-
ers, the learning procedure halts and Smyle presents a frame for simulating and
analyzing the current system. In this dedicated simulation component – depicted
in Figure 5 a) and c) – the designer and customer pursue their designing-in-pairs
task and try to obtain a first impression on the system to be by executing events
and monitoring the resulting system behavior depicted as an MSC. In case missing
requirements are detected the simulator can extract a set of counterexample MSCs
which should again be augmented by the stakeholders to complete documentation.
These MSCs are then introduced to Smyle whereupon the learning procedure con-
tinues until reaching the next consistent automaton.

The designer then advances to the synthesis and analysis phase where a dis-
tributed model (a CFM) is synthesized in an automated way. To get diagnostic
feedback as soon as possible in the software engineering lifecycle, a subsequent ana-
lysis phase asks for an intensive analysis of the current design model. Consulting
model-checking-like tools2 as MSCan [9] which are designed for checking dedicated
properties of communicating systems might lead to additional knowledge about the
current model and its implementability. With MSCan the designer is able to check
for potential deficiencies of the forthcoming implementation, like non-local choice

or non-regularity [6, 24], i.e., process divergence. The counterexamples generated
by MSCan are again MSCs and as such can be smoothly fed back to the learning

1 It is worthwhile to study the results from [27] in this context, which allow to in-
fer MSCs from requirements documents by means of natural language processing tools,
potentially yielding (premature) initial behavior.

2 Note that currently there are no general purpose model checkers for CFMs available.

58 B. Bollig, J.-P. Katoen, C. Kern, M. Leucker

phase. Instead of employing tools, the engineer could of course also try to alter
the distributed model itself. Nevertheless, this is not encouraged as it obviously
violates and breaks the learning-based lifecycle and conceals the danger of acci-
dentally adding or deleting system behavior because distributed systems are easily
misunderstood.

If the customer and designer are satisfied with the result the client’s presence
is not required any more and their direct collaboration terminates. Note that the
design model obtained at this stage may also serve for a legal contract describing
the system to be built.

Enhancing the learning process. While it is hard to come up with a universally
valid specification right in the beginning of the design phase, typical patterns of
clearly allowed of disallowed MSCs are usually observed during the learning phase.
In this case, the logic PDL (cf. Section 2.4) can be applied to decrease the number of
MSCs to classify, for reducing the designer’s efforts. If the desirable or undesirable
properties obey a certain structure these so-called patterns, representing temporal-
logic properties, should be expressed in PDL directly or marked – as in Figure 6 –
within an MSC featuring this behavior. In case patterns were marked in the MSCs
they will automatically be transformed into PDL formulas. Afterwards, they have
to be categorized as either positive or negative, as in the case of classifying MSCs.
An unclassified MSC has to fulfill all positive patterns and must not fulfill any
negative pattern in order to be passed to the designer. In case any positive pattern
is not fulfilled or any negative pattern is fulfilled the scenario can be classified as
negative without user interaction. Roughly speaking: employing a set of formulas in

the learning procedure will further ease the designers task because she has to classify
less scenarios.

3.2.2 Transformation to an Implementation Model

The output of the design model derivation phase is an abstract model of the commu-
nication behavior. It completely and correctly describes the communication struc-
ture but lacks any further functional behavior. Let us, for example, consider a web
server. The model of the communication behavior of this application is learned using
our tool Smyle. The model abstractly describes all interactions of the web server
with a client (e.g., the login to a password-protected web site, or the exchange of doc-
uments). Functionality like how to check a password or how to access documents on
the disk is not given. The engineer’s task now is to manually or semi-automatically
transform the design model into an implementation model. Of course, as no software
lifecycle can claim to be a universal remedy, SMA also requires manual effort and
human ingenuity.

For this purpose the SMA proposes to employ a tool suite like Matlab, Simulink,

and Stateflow. Stateflow diagrams, for example, allow on one hand to express com-
munication of different entities like CFMs, but do moreover allow to express detailed
functional behavior. Thus, the CFMs learned (as artifact of the design phase) may

SMA – The Smyle Modeling Approach 59

be refined to implementation models. Thanks to automatic code generators, such
implementation models may automatically be translated into executable code.

Another possibility is to employ the approach described in Balarin et al. [4]
where C code is synthesized from cooperating finite-state machines (CFSMs), a com-
municating automaton model related to the CFM model used in this article. The
manual effort in this case consists in transforming the CFM as an artifact of our
learning process into a CFSM as input for the synthesis process by Balarin et al. As
the authors state, this method is only applicable to a restricted class of embedded
systems for which features like loop bounds, which are determined at runtime, re-
cursion, etc., must not be used. As these limitations are rather severe, this method
can, in general, not be applied to all kinds of embedded software. Note that Balarin
et al. use CFSMs as high-level representation and input to their synthesis method.
The authors, however, do not state how to obtain these communicating automata.
Thus, the SMA approach could be of interest for their setting, too, because it would
allow for correct CFM derivation.

To sum up: depending on the complexity and requirements of the system to be
either of the above procedures should be performed in order to evolve to the next
phase of the software development cycle.

3.2.3 Conformance Testing

As early as possible the implementation model should be tested before being trans-
formed into real code to lower the risk of severe design errors and supplementary
costs. SMA suggests conformance testing as the next phase of the development
lifecycle.

In general, conformance testing means to check the conformance of given stan-
dards with regard to the implementation model or implementation. Here, we con-
sider the requirements document and the design model as the standard that an im-
plementation should conform to.

Now, it is important to consider to which extent the implementation model has
been generated automatically from the design model. Clearly, any test compar-
ing the design model and the implementation model on automatically transformed
parts is mainly suited for showing errors in the transformation rules. Whenever the
implementation model is encoded manually, however, conformance testing becomes
essential.

On this level of abstraction we want to perform our tests with respect to the
implementation model. To this end, we can almost directly use the MSCs drawn
from the requirements document augmented by the MSCs that were classified during
the learning phase and apply them to the implementation.

Moreover, SMA suggests model-based testing [13] as an important building block
of the conformance testing phase, as it allows for a cost-efficient testing process
because the generation of tests as well as the test execution phase can be automated
to a large extent. Model-based testing contains the following steps: first an abstract
model of the system has to be derived. In our context this model is inferred in the

60 B. Bollig, J.-P. Katoen, C. Kern, M. Leucker

learning phase yielding an abstract model of the specification. From this abstract
model we can then, in a second step, generate (abstract) test cases and finally in
the third step test the (partially) manually coded implementation model.

As mentioned before, testing based on the MSCs used for learning and further
ones derived from the design model using model-based testing techniques is essential
whenever the implementation model is derived manually. When the communication
part of the implementation model is correctly generated automatically, it does not
have to be tested. This is because usually we assume that the user classifies MSCs
correctly, and code generators generate correct output.

Nevertheless, the implementation model contains many more details in compa-
rison to the design model. More specifically, it contains the functional behavior in
detail and it is important that this functional behavior is tested. To this end, the
MSCs taken from the requirements document or generated by model-based test-
ing techniques from the design model should be refined to the level of detail to
allow to check also for functional correctness. In other words, also in the case of
(correctly) generated communication skeletons for the implementation model, the
generation of MSCs from the design model is a valuable task, when these MSCs are
(semi-automatically) refined to the level of detail of the implementation model and
enriched by correctness information.

The conformance testing phase can be summarized as follows. We want to
detect the bugs employing conformance testing using as a natural test suite (i.e.,
a set of tests) the MSCs from the requirements document, i.e., the MSCs originally
contained in this document, augmented by the MSCs that were classified during the
learning phase and by further ones generated from the design model using model-
based testing techniques.

If, on one hand, the designer detects a communication failure during the testing
phase, counterexamples in form of abstract system run and, thus, MSCs are auto-
matically generated, and again the requirements document is updated accordingly,
enclosing the new scenarios and their corresponding requirements derived by the
designer. At last, the generated scenarios are introduced into Smyle to derive the
next model.

On the other hand, the considered test cases may also be used to check the ex-
pected functional behavior to assure correctness before switching to the next phase.

In practice, model-based testing has been implemented in several software tools
and has demonstrated its power in various case studies [14, 13]. For the testing
phase, the SMA recommends tools like TorX or TGV [5].

3.2.4 Synthesis of Code, Testing, and Maintenance

Having converged to a final, consistent implementation model, a code generator
is employed for generating code skeletons or even entire code fragments for the
distributed system. These fragments then have to be completed by programmers
e.g. by code for memory management, file handling, network communication, etc.
such that, afterwards, the software can finally be installed at the client’s site.

SMA – The Smyle Modeling Approach 61

As stated in the previous paragraph, as soon as human beings contribute real
code to the implementation, conformance testing should be stipulated. As in the
current phase the automatically derived code skeletons were augmented by hand-
written code, we schedule a second phase of testing. Similar to the last phase, we
can use MSCs from the requirements document, or automatically generated ones to
perform parts of the tests on an abstract level in order to receive diagnostic feedback.
Again, in this phase of the software development also concrete test cases have to be
created, for which the abstract tests can serve as templates to implement real test
cases.

Concerning the extensibility and maintenance of the system, we obtain the fol-
lowing result: if new requirements arise after some operating time of the system, the
old design model can be upgraded by resurrecting the SMA on basis of the already
classified, or even partially reclassified set of scenarios, learning the new model,
synthesizing the new system as explained and, thus, closing the SMA lifecycle.

3.3 SMA within the Plethora of Software Engineering Lifecycle Models

This section compares the SMA to other well-known traditional and modern lifecycle
models.

The waterfall- and V-model. As mentioned before, major drawbacks of several
traditional models like the waterfall or V-model are:

1. All requirements have to be fixed in advance.

2. As testing phases are scheduled at the end of the software development process,
expensive and time-consuming backwards steps are to be expected.

3. Typically, in industrial practice, during the development phase but especially
during the maintenance phase only the code is improved but the underlying
documents and models are not extended or updated, to avoid overwhelming
work. Then, however, significant problems arise if on the basis of the current
software a new version needs to be developed.

The SMA, however, overcomes the first problem by interactively deriving new
scenarios while models evolve towards a final conforming and validated model. The
second shortcoming is addressed by intensive simulation and analysis on the design
model level before actually synthesizing code. Moreover, using model-based test-
ing techniques to check conformance of the design model and the implementation
model, programming errors resulting when completing the partially generated code
can be found with a huge degree of automation. The important fact here is that
any deficiency encountered can usually be formulated in terms of a (mis-)behavior,
expressed as an MSC. In case the misbehavior is due to an invalid design model, it
can be documented in the requirements documents as well as fed back to the learn-
ing phase to improve the design model. This, on one hand, reduces the probability

62 B. Bollig, J.-P. Katoen, C. Kern, M. Leucker

of having design or implementation flaws substantially, yet allows to keep require-
ments and design models up-to-date. Similarly, during the maintenance phase, the
modified behavior of the software system can be expressed by adding new MSCs or
reclassifying previously classified MSCs to update the design model and correspond-
ing design documents, addressing the third shortcoming identified in the waterfall
model.

Note that SMA coincides with the waterfall model and the V-model on major
milestones of these lifecycle models, namely requirements elicitation, design-model

elaboration, implementation, testing and maintenance.

The spiral model. One of the first models which overcame the severe problems
mentioned above was Boehm’s spiral model [7, 17, 34]. For large software systems it
is usually impossible to fix all requirements in advance. The spiral model therefore
supports an iterative development of requirements and system prototypes, employing
the following main phases: starting with the detection of goals, alternatives and
constraints, an evaluation of the alternatives and risks is performed until reaching
a development and testing phase. Each cycle is concluded by the planning of the
next iteration. It also allows for development of incremental versions of software
resolving the third drawback of the waterfall model.

The SMA adapted the progressive character of the spiral model but to our opin-
ion has the extra benefit of easing the requirements elicitation and derivation of
a design model: only a classification has to be provided. This significantly lowers
the engineer’s burden to define requirements. Nevertheless, the spiral model aims
at developing large-scale projects while the main application area for the SMA is to
be seen in developing software for embedded systems where the number of commu-
nicating entities is fixed a priori.

To benefit from both models one could also integrate the SMA partially into
the spiral model. Parts of the system are then learned employing the SMA and the
resulting components can afterwards be integrated in the overall system using the
spiral model. In other words, the SMA would correspond to one iteration within
the spiral model.

Rapid prototyping. Rapid prototyping (RP) [17, 34] also resolves the traditional
models’ deficits of defining all requirements of a system in advance. This kind of soft-
ware engineering lifecycle is employed for getting deeper insight in the requirements.
In several iterations prototypes are generated. The knowledge about requirements
and design that is gained throughout these iterations is used as input for improving
the prototypes of the next iterations. If a satisfactory prototype was created, it
may serve as system specification and the software development is continued by an
iterative lifecycle model (e.g., using the waterfall model) to build the final system.
Note that analysis and testing phases can early be integrated into the process. This
results in early feedback and, hence, less problems in later phases that would cause
expensive redesign.

SMA – The Smyle Modeling Approach 63

In software engineering several kinds of prototyping are distinguished. Our life-
cycle model very much resembles the evolutionary prototyping approach where a pro-
totype is refined in several iterations and in each iteration the knowledge acquired
during the previous iterations is used to enhance the current prototype. However,
as learning is based on exemplifying behavior that is expected to be documented
within the learning process, the SMA does not suffer from the disadvantage of not
having a formal requirements document, which is usually the case in RP, as due to
time and financial constraints, the effort on such a document is often stinted.

Moreover, bridging the gap from requirements to a design model – that appar-
ently exists in rapid prototyping as well as in most software engineering lifecycle
models – is a highly creative task that involve requirements as well as design engi-
neers with expensive expertise. The SMA, however, is not necessarily dependent on
highly experienced design personnel but rather on requirements of engineers with
domain knowledge because, as mentioned before, design questions are to a great
extent solved automatically by the learning algorithm.

Agile models. Agile models [2] are a popular approach to iterative software de-
velopment where the main focus is changed from creating documents at the end of
each phase as in traditional software engineering to immediate interaction of human
beings. Due to short development cycles the model stays highly adaptive to changes
in requirements.

SMA exhibits both the direct communication with the customer while infer-
ring the design model and the automatic creation of formal documentation, i.e.,
the iterative update of the requirements document. An example agile model that
resembles the SMA in a certain way is the so-called extreme programming model.
Extreme programming uses so-called user stories (i.e., scenarios). In each itera-
tion some of these user stories are planned for implementation and, as in the SMA,
an early integration of testing is provided. After the test case creation phase a loop
of implementing, integrating and testing is performed until converging to a release.
This in turn can be analyzed again to gather new user stories closing the cycle to
the next iteration. Similar to the SMA, regular and early testing phases are stipu-
lated. Design and implementation flaws are detected early, allowing for substantial
cost reduction and considerably shorter time-to-market phases. The designing and
programming-in-pairs paradigm supported by both approaches is less error-prone
and thus another risk-reduction technique which lowers costs of possible redesign or
reimplementation.

4 SMA BY EXAMPLE

Mainly for illustration, we apply the SMA on a concrete yet simple example. More
specifically, our goal is to derive a model for the well-known Alternating Bit Protocol

(ABP). Along the lines of [28, 35], we start with a short requirements description
in natural language. Examining this description, we will identify the participating

64 B. Bollig, J.-P. Katoen, C. Kern, M. Leucker

processes and formulate some initial MSCs exemplifying the behavior of the protocol.
These MSCs will be used as input for Smyle which in turn will ask us to classify
further MSCs, before deriving a first model of the protocol. Eventually, we come
up with a design model for the ABP matching the model from [35]. However, we
refrain from implementing and maintaining the example, due to resource constrains.

Problem description. The main aim of the ABP is to assure the reliability of
data transmission initiated by a producer through an unreliable FIFO (first-in-first-
out) channel to a consumer. Here, unreliable means that data can be corrupted
during transmission. We suppose, however, that the consumer is capable of detecting
such corrupted messages. Additionally, there is a channel from the consumer to the
producer, which, however, is assumed to be reliable. The protocol now works as
follows: initially a bit b is set to 0. The producer keeps sending the value of b until it
receives an acknowledgment message a from the consumer. This affirmation message
is sent some time after a message of the producer containing the message content b
is obtained. After receiving such an acknowledgment, the producer inverts the value
of b and starts sending the new value until the next affirmation message is received
at the producer. The communication can terminate after any acknowledgment a

that was received at the producer side.

Applying the SMA. According to SMA, we first start with identifying the par-
ticipating processes in this protocol: the producer p and the consumer c.

Next, we turn towards the scenario extraction phase and have to come up with
a set of initial scenarios. Following the problem description, we first derive the MSC
shown in Figure 4 a). It describes that indeed p sends first 0, gets an acknowledge-
ment from c, then sends 1, and finally gets a further acknowledgement.

Let us now consider the behavior caused by the non-reliability of the channel.
We could imagine that p sends a message 0 but, due to channel latency, does not
receive a confirmation within a certain time bound and thus sends a second 0 while
the first one is already being acknowledged by c. This yields the MSC in Figure 4 b).

p c

0

a

1

a

p c

0

a
0

p c

0

a
0

1
a

p c

0

a
0
0

1
a

a) b) c) d)

Fig. 4. The initial input scenarios for Smyle

SMA – The Smyle Modeling Approach 65

The problem description tells us: after each acknowledgment the bit b is inverted.
Thus, the previous scenario is extended by a second phase where b = 1 is sent and
directly acknowledged, shown in Figure 4 c). To exemplify that, on the producer’s
side, more than one message can be corrupted, we derive a scenario that amplifies
the previous one: We add one more message with content b = 0 to the first phase
of scenario c) yielding the scenario from Figure 4 d).

We start the learning phase and feed the charts to Smyle, proceeding to the
second step in the design phase. Within this learning phase, Smyle asks us to
classify further 44 scenarios – most of which we are easily able to negate – before
providing a first hypothesis of the design model.

Now the simulation phase is activated (cf. Figure 5 a)), where we can test the
current model. We execute several events as shown in the right part of Figure 5 a)
and review the model’s behavior. We come across an execution where after an
initial phase of sending a 0 and receiving the corresponding affirmation we expect to
observe a similar behavior as in Figure 4 b) (but now containing the message content
b = 1). According to the problem description this is a feasible protocol execution
but is not contained in our system yet. Thus, we encountered a missing scenario.
Therefore, instead of proceeding to the synthesis and analysis phase, we enter the
scenario extraction phase again, formulate the missing scenario (cf. Figure 5 b)), and
input it into Smyle as a counterexample to the current model.

p c

0
a

1

a
1

a) b) c)

Fig. 5. Smyle’s simulation window: a) intermediate internal model with missing behavior
b) missing scenario c) final internal model

As before, Smyle presents further MSCs that we have to classify: Among oth-
ers, we are confronted with MSCs that (1) do not end with an acknowledgment
(cf. Figure 6 a)) and with MSCs that (2) have two subsequent acknowledgment

66 B. Bollig, J.-P. Katoen, C. Kern, M. Leucker

events (cf. Figure 6 c)). Both kinds of behavior are not allowed according to the
problem description. We identify a pattern in each of these MSCs, by marking the
parts of the MSCs as shown in Figure 6 a) and c), yielding internally PDL formulas
representing these patterns:

(1) E
(

procmax ∧ p?c(a)
)

(2) A
(

⊏ p?c(a); proc; p?c(a) + c!p(a); proc; c!p(a) ⊐ false
)

a) b) c) d)

Fig. 6. Patterns for (un)desired behavior

Instead of visually annotating MSCs, the formulas can also be directly entered
via a dedicated formula editor. To tell Smyle to abolish all MSCs fulfilling the
patterns we mark them as unwanted behavior. Thus, the MSCs from Figure 6 b)
and d) are automatically classified as negative later on. In addition, we reflect these
patterns in the requirements documents by adding, for example, the explanation
that every message exchange has to end with an acknowledgment and its formal
specification (1). With the help of these two patterns, we continue our learning
effort and end with the next hypothesis after a total of 55 user queries. Note that
without adding these patterns, we would have needed 70 user queries. Moreover,
identifying three more obvious patterns at the beginning of the learning process, we
could have managed to infer the correct design model with only 12 user queries in
total. Of course one can argue that this is a high number of scenarios to classify but
this is the price one has to pay for getting an exact system and not an approximation
(that indeed can be arbitrarily inaccurate) as in related approaches.

At the end of the second iteration through the learning phase we presented the
simulation frame (Figure 5 c)) again. An intensive simulation does not give any evi-
dence of wrong behavior. Thus, we enter the analysis phase to check the model with
respect to further properties. For example, we check whether the resulting system
can be implemented fixing a maximum channel capacity in advance. MSCan tells
us that the system does not fulfill this property. Therefore we need to add a (fair)
scheduler to make the protocol work in practice. According to Theorem 1 a CFM
is constructed which exactly is the one from Figure 2.

SMA – The Smyle Modeling Approach 67

5 SMA IN AN INDUSTRIAL CASE STUDY

This section examines a real-world industrial case-study derived within a project
with a Bavarian automotive manufacturer. Our task was to derive an initial de-
sign model for the problem described below. The main goal of this section is not
to present a detailed report of the underlying system and the way the SMA was
employed but to share insights acquired while inferring the design model using the
SMA.

Problem description. The case study describes the functionality of the automo-
tive manufacturer’s onboard diagnostic service integrated into their high-end prod-
uct. In case the climate control unit (CCU) of the automobile does not operate
as expected a report is sent to the onboard diagnostic service which in turn initi-
ates a CCU-self-diagnosis and waits for response to the query. After the reply the
driver has to be briefed about the malfunction of the climate control via the car’s
multi-information-display. The driver is asked to halt at the next gas station where
the onboard diagnostic service communicates the problems to the automotive man-
ufacturer’s central server. A diagnostic service is downloaded from the server and
executed locally on the vehicle’s on-board computer. The diagnostic routine locates
the faulty component within the CCU and sends the problem report back to the
central server. In case of a hardware failure a car garage could be informed and the
replacement part could be reordered immediately to keep the CCU’s downtime as
short as possible. If no hardware failure is detected a software update (if available)
is installed and the CCU reset.

Inferring a system model. This section briefly describes the main steps that
were necessary to infer a design model for the described use case. Throughout the
whole process a project member of our client was present to discuss the requirements
with our designer.

First, all the processes involved had to be identified. It was easy to see that
CCU service, onboard diagnostic service, display, driver and central server were the
main participating units. Of course there could be a large number of cars trying
to contact the server but because Smyle can only deal with a bounded number of
processes the abstraction to one car was used to establish a proof of concept for this
project.

After extracting some positive and negative scenarios (MSCs) from the problem
description Smyle was started by introducing the collection of scenarios to the tool.
These MSCs were used to guide the learning process towards a final design model
as described in Section 3.2.

Lessons learned. By applying SMA to the given problem we were able to infer
a system model in less than one afternoon fulfilling exactly the requirements imposed
by our customer.

68 B. Bollig, J.-P. Katoen, C. Kern, M. Leucker

Throughout the whole process we applied the designing-in-pairs paradigm to
minimize the danger of misunderstandings and resulting system flaws. The early
feedback of the simulation and analysis resulted in finding missing system behavior
and continuously growing insights – even on our customers site – about the client’s
needs. The automated scenario derivation of the integrated tool Smyle was found to
be very helpful for our client. The major gain is that s/he does not have to come up
with scenarios by him/herself. Thus, even corner cases (i.e., exceptional scenarios the
client did not consider) were covered. As requirements in the SMA are accumulated
in an iterative process, growing system knowledge could be applied to derive new
patterns easing the design task and to obtain increasingly more elaborate design
models. Last but not least the on-the-fly completion of the requirements document
resulted in a complete system description after finishing the design phase. This
description could then be used as contract for the final implementation.

Besides all the positive issues we also faced inconveniences using the SMA. Find-
ing an initial set of scenarios turned out in some cases to be a difficult task. This
could be eased in the future by integrating an approach proposed in [27] where sce-
narios represented as MSCs are derived from natural language specifications. These
could then smoothly be fed to Smyle.

When we entered the simulation phase we recognized that the simulation fa-
cilities Smyle offered were still too rudimentary for larger size systems. For future
projects we have to extend the simulator to be able to generate random simulations
and test suites for the testing phase and include components for specifying and
checking correctness criteria for certain runs through the system.

During the first meeting with our customer an initial version of the SMA did not
allow for logical formulas; but due to the high amount of user queries (almost 400) we
proposed the idea of using PDL which both parties found very promising. Therefore
it was integrated into our approach and directly yielded a substantial reduction of
user queries (gathering 10 patterns resulted in less than 70 queries).

In general, this case study testified the viability of the SMA for inferring a design
model for a real-world example.

6 CONCLUSION

The SMA provides the possibility to gradually develop and refine requirements,
naturally supports evolution of requirements, and allows for a rather inexpensive
redesign in case anomalous system behavior is detected during analysis, testing, or
maintenance. Design questions are solved automatically by the learning algorithm.
The engineer only has to classify the presented scenarios, once an appropriate archi-
tecture has been fixed. The design phase is complemented by a powerful simulation
and analysis phase that allows for detecting design flaws at an early stage. The
design, analysis and testing phases are supported by dedicated tool-suites. By ap-
plying these tools, design or implementation errors are detected as early as possible
causing substantial reduction of costs and the overall expected time-to-market. Also,

SMA – The Smyle Modeling Approach 69

the intermediate design models can be used to broaden insights on the system and
reduce the probability of missing important system properties in the final implemen-
tation. An important feature of the SMA which we could also sense while performing
the presented case study was that there is no need for mandatory expertise. The
SMA does not necessarily require highly experienced personnel for inferring a design
model as design questions are resolved by the learning algorithm autonomously. The
overall distinguishing feature of SMA is that later changes of the software product
(to be) in the implementation, integration, or the maintenance phase, can easily be
incorporated into the design model thanks to the learning approach, by reflecting
the changes in terms of scenarios.

So far, the SMA is restricted to the development of distributed communicat-
ing systems with a bounded number of processes, as it is usually the case when
developing embedded systems, for example in the automotive, avionics, or telecom-
munication domain.

This paper reports on positive practical experiences showing benefits of the
suggested methodology, yet leaves detailed empirical studies as future work.

REFERENCES

[1] Alur, R.—Etessami, K.—Yannakakis, M.: Realizability and Verification of
MSC Graphs. TCS, Vol. 331, 2005, No. 1, pp. 97–114.

[2] Ambler, S.W.—Jeffries, R.: Agile Modeling: Effective Practices for Extreme
Programming and the Unified Process. Wiley, 2002.

[3] Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Inf. Com-
put., Vol. 75, 1987, No. 2, pp. 87–106.

[4] Balarin, F.—Chiodo, M.—Giusto, P.—Hsieh, H.—Jurecska, A.—

Lavagno, L.—Sangiovanni-Vincentelli, A. L.—Sentovich, E.—Suzuki, K.:
Synthesis of Software Programs for Embedded Control Applications. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 18, 1999,
No. 6, pp. 834–849.

[5] Belinfante, A.—Frantzen, L.—Schallhart, C.: Tools for Test Case Genera-
tion. In: Model-Based Testing of Reactive Systems, pp. 391–438, 2004.

[6] Ben-Abdallah, H.—Leue, S.: Syntactic Detection of Process Divergence and
Non-Local Choice in Message Sequence Charts. In TACAS, Vol. 1217 of LNCS,
pp. 259–274, Springer 1997.

[7] Boehm, B.W.: A Spiral Model of Software Development and Enhancement. IEEE
Computer, Vol. 21, 1988, No. 5, pp. 61–72.

[8] Bollig, B.—Katoen, J. P.—Kern, C.—Leucker, M.: Replaying Play in and
Play out: Synthesis of Design Models from Scenarios by Learning. In TACAS,
Vol. 4424 of LNCS, pp. 435–450, Springer 2007.

[9] Bollig, B.—Kern, C.—Schlütter, M.—Stolz, V.: MSCan: A Tool for Ana-
lyzing MSC Specifications. In TACAS, Vol. 3920 of LNCS, pp. 455–458, Springer
2006.

70 B. Bollig, J.-P. Katoen, C. Kern, M. Leucker

[10] Bollig, B.—Kuske, D.—Meinecke, I.: Propositional Dynamic Logic for

Message-Passing Systems. In FSTTCS, Vol. 4855 of LNCS, pp. 303–315, Springer
2007.

[11] Bontemps, Y.—Heymand, P.—Schobbens, P.Y.: From Live Sequence Charts
to State Machines and Back: A Guided Tour. IEEE TSE, Vol. 31, 2005, No. 12,
pp. 999–1014.

[12] Brand, D.—Zafiropulo, P.: On Communicating Finite-State Machines. Journal
of the ACM, Vol. 30, 1983, No. 2, pp. 323–342.

[13] Broy, M.—Jonsson, B.—Katoen, J. P.—Leucker, M.—Pretschner, A.

(Eds.): Model-Based Testing of Reactive Systems. Vol. 3472 of LNCS, Springer 2005.

[14] Craggs, I.—Sardis, M.—Heuillard, T.: Agedis Case Studies: Model-Based
Testing in Industry. In Eur. Conf. on Model Driven Softw. Eng., pp. 106–117, 2003.

[15] Damas, C.—Lambeau, B.—Dupont, P.: Generating Annotated Behavior Models
from End-User Scenarios. IEEE TSE, Vol. 31, 2005, No. 12, pp. 1056–1073.

[16] Damm, W.—Harel, D.: LSCs: Breathing Life Into Message Sequence Charts.
Formal Methods in System Design, Vol. 19, 2001, No. 1, pp. 45–80.

[17] Easterbrook, S.M.: Requirements Engineering. Unpublished manuscript avail-
able at: http://www.cs.toronto.edu/~sme/papers/2004/FoRE-chapter03-v8.

pdf, 2004.

[18] Fischer, M. J.—Ladner, R. E.: Propositional Dynamic Logic of Regular Pro-
grams. J. Comput. System Sci., Vol. 18, 1979, No. 2, pp. 194–211.

[19] Genest, G.—Kuske, D.—Muscholl, A.: A Kleene Theorem and Model Checking
Algorithms for Existentially Bounded Communicating Automata. I&C, Vol. 204,
2006, No. 6, pp. 920–956.

[20] Ghezzi, C.—Jazayeri, M.—Mandrioli, D.: Fundamentals of Software Engineer-
ing. Prentice-Hall, 2nd edition, 2002.

[21] Hamon, G.—Rushby, J.M.: An Operational Semantics for Stateflow. In FASE,

Vol. 2984 of LNCS, pp. 229–243, Springer 2004.

[22] Harel, D.: Can Programming Be Liberated, Period? Computer, Vol. 41, 2008,
No. 1, pp. 28–37.

[23] Harel, D.—Marelly, R.: Come, Let’s Play. Springer 2003.

[24] Henriksen, J.G.—Mukund, M.—Kumar, K.N.—Sohoni, M.—Thiagara-

jan, P. S.: A Theory of Regular MSC Languages. Inf. and Comput., Vol. 202, 2005,
No. 1, pp. 1–38.

[25] Holzmann, G. J.: The Theory and Practice of a Formal Method: Newcore. In IFIP
Congress (1), pp. 35–44, 1994.

[26] ITU-TS Recommendation Z.120 (04/04): Message Sequence Chart, 2004.

[27] Kof, L.: Scenarios: Identifying Missing Objects and Actions by Means of Compu-
tational Linguistics. In 15th IEEE RE, pp. 121–130, 2007.

[28] Lynch, N.: Distributed Algorithms. Morgan Kaufmann, 1997.

[29] Mäkinen, E.—Systä, T.: MAS – An Interactive Synthesizer to Support Behavioral
Modeling in UML. In ICSE, pp. 15–24, IEEE Computer Society 2001.

SMA – The Smyle Modeling Approach 71

[30] Nuseibeh, B.—Easterbrook, S.: Requirements Engineering: A Roadmap. In

ICSE, pp. 35–46, ACM, 2000.

[31] Peled, D.: Specification and Verification of Message Sequence Charts. In
FORTE/PSTV, Vol. 183 of IFIP Conference Proceedings, pp. 139–154, Kluwer, B.V.

2000.

[32] Pressman, R. S.: Software Engineering: A Practitioner’s Approach. McGraw-Hill
2004.

[33] Royce, W.: Managing the Development of Large Software Systems: Concepts and
Techniques. In ICSE, pp. 328–338, IEEE Computer Society 1987.

[34] Sommerville, I.: Software Engineering. Addison-Wesley Longman, Amsterdam,
8th edition, June 2006.

[35] Tanenbaum, A. S.: Computer Networks. Prentice Hall 2002.

[36] Uchitel, S.—Brunet, G.—Chechik, M.: Behaviour Model Synthesis from Prop-
erties and Scenarios. In ICSE, pp. 34–43, IEEE Computer Society 2007.

[37] Uchitel, S.—Kramer, J.—Magee, J.: Synthesis of Behavioral Models from Sce-
narios. IEEE TSE, Vol. 29, 2003, No. 2, pp. 99–115.

Benedikt Bollig received his Ph.D. degree from Aachen Uni-
versity of Technology (RWTH Aachen) in 2005. A revised ver-
sion of his thesis on automata models and logics for message
sequence charts has been published by Springer. In 2003/2004,
the German Academic Exchange Service (DAAD) funded his six-
month research stay at Birmingham University. Since 2005, he is
a CNRS full-time researcher. His research interests are centered

around logics for specification, formal languages and automata,
with a focus on applications in the synthesis and verification of
concurrent and timed systems.

Joost-Pieter Katoen is a Full Professor at the RWTH Aachen
University and is associated to the University of Twente. His
research interests are concurrency theory, model checking, timed
and probabilistic systems, and semantics. He co-authored more
than 100 journal and conference papers, and recently published

a comprehensive book (with Christel Baier) on “Principles of
Model Checking”.

72 B. Bollig, J.-P. Katoen, C. Kern, M. Leucker

Carsten Kern received his diploma in computer science in 2005

from RWTH Aachen University. In August 2009 he success-
fully defended his dissertation at the chair of Software Model-
ing and Verification at the RWTH Aachen University where he
is employed for another two months. His current research in-
terests cover learning of nondeterministic and communicating
automata.

Martin Leuker is currently a Professor at the Technische

Universität München for theoretical computer science and soft-
ware reliability. He obtained his Ph.D. at RWTH Aachen, Ger-
many, and worked afterwards as a postdoc at the University
of Philadelphia, USA, and, within the European Research and
Training Network on Games, at Uppsala University, Sweden. He
pursued his habilitation at TU München while being a member
of Manfred Broy’s group on Software and Systems Engineering.
He is the author of more than 60 reviewed conference and jour-
nal papers ranging over software engineering, formal methods,
and theoretical computer science.

