Computing and Informatics, Vol. 41, 2022, 12-33, doi: 10.31577/cai_2022_1_12

USING MACHINE LEARNING FOR INTRUSION
DETECTION SYSTEMS

Quang-Vinh DANG

Industrial University of Ho Chi Minh City
Vietnam
e-mail: dangquangvinh@iuh.edu.vn

Abstract. Given the importance of the computer systems in our daily life today, it
is decisive to be able to protect the computer systems against attacks. Intrusion De-
tection Systems (IDSs) are the crucial component of modern cybersecurity systems.
IDSs are built-in in the devices of the major providers such as Cisco and Juniper.
Since the early days of the Internet up to now, the IDSs rely heavily on signature-
based detection methods. However, in recent years, researchers utilize the power
of machine learning techniques and achieve very good performance in classifying
network attacks. In this paper, we analyze the machine learning techniques that
have been proposed in recent years. We propose some new techniques to improve
the performance of the existing methods. The experimental results using real-world
datasets show that our suggestions can boost the predictive accuracy of the models.

Keywords: Intrusion detection system, machine learning, computer security, cyber
security

1 INTRODUCTION

It is hard to deny the importance of the computer systems in our modern life. As
the computers play more and more a crucial role for human being, the attackers
discovered more effective attacking methods to the systems. Furthermore, when the
Internet of Things (IoT) becomes a reality, it is believed that every device can be
attacked [I].

One of the most famous cyber-attacks is probably the Distributed Denial-of-
Service (DDoS) [2]. The first DDoS attack we know today occurred in 1996 to
Panix [3], one of the eldest ISPs in the world, using the SYN Flood attack [4].


https://doi.org/10.31577/cai_2022_1_12

Using Machine Learning for Intrusion Detection Systems 13

Overtime, the number of DDoS attacks has increased dramatically [5]. In October
2016, a major DDoS attack has been launched to Domain Name System (DNS) that
leads to a consequence that many websites such as Twitter, Netflix and Spotify have
been shut down [@].
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Figure 1. Number of DDoS attacks all over the world

Cybersecurity is defined as “prevention of damage to, protection of, and restora-
tion of computers, electronic communications systems, electronic communications
services, wire communication, and electronic communication, including information
contained therein, to ensure its availability, integrity, authentication, confidentiality,
and nonrepudiation.” [1].

In order to deal with the cyber-attacks, the intrusion detection systems
(IDSs) [8] are one of the most important components of the defense systems. We
rely on the definition of intrusion and IDS from the work of [9]. We recall the
computer system security policies that are Confidentiality, Integrity and Avail-
ability (CIA). An intrusion is an attack that tries to violate the CIA principles.
An IDS is the system that is to detect any intrusion from outside of the sys-
tem.

In years, the IDS are mostly based on signature matching techniques [9, 10}, [T1].
The IDSs based on signature-detection will look for predefined signature (or pat-
terns) of the incoming network flow to stop the suspected ones. In reality, the
techniques have achieved good performance in detecting known threats [12]. How-
ever, the systems that rely on signature matching cannot deal with novel attacks or
zero-day attacks [13].

In recent years, many research studies utilized the rapid development of machine
learning techniques to enhance the quality of IDSs. The core idea is to build a ma-
chine learning model that automatically learns the patterns rather than defining
them manually, then let the model classify the incoming flows. The experimen-
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tal results in several real-world datasets claimed the advantage of machine learning
based methods.

The rest of the paper is organized as follows. In Section [2] we review the up to
date methods, particularly machine learning techniques, that have been used as the
core of an IDS. We review the popular IDS dataset to train and evaluate models in
Section [3] We discuss our method to improve in Section [l We conclude our paper
and draw some potential future research directions in Section [

2 RELATED WORKS

Since the early days of the computer systems up to date, many IDSs rely on signature
matching to function. The method is known as knowledge based detection or misuse
detection [0]. A signature is defined as a pattern or string or any other specific
characters that is known to be as an attack or a threat [T4]. An IDS based on the
signature matching will try to match a network flow to a known attack to detect
them. As of this writing, two major network solution providers Cisco and Juniper
both implemented IDSs on their devices and they all rely on signature matching,
hence the signature database must be updated periodically. The most important
advantage of the approach is its speed that allows the devices to perform as in
normal conditions without affecting the entire network. On the other hand, in order
to use the approach the network devices cannot work autonomously, and it cannot
deal with novel and zero-attack [I5], [16].

Please contact dl-support@acm.org

Figure 2. A signature-based prevention method. In this case, the rule is: if the source IP
is in a black list, block it.

In the last decade, many research studies focus on using machine learning to
replace the signature matching [I7, [I8]. In short, the aim of machine learning is to
equip a computer the ability to learn [I9]. Hence, the cybersecurity researchers do
not need to define explicitly the patterns anymore, and the signature database can
be updated automatically.

In this study, we classify the machine learning techniques using in IDSs in four
categories: supervised learning, unsupervised learning, deep learning and reinforce-
ment learning. There is no clear distinction between them as a method might use
a combination of different methods, or an algorithm might belong to more than one
category.
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The first category we consider is the supervised learning approach. In general,
the researchers have a set of network traffic that are labelled already, i.e. the re-
searchers know what flow is benign and what flow is malicious. The researchers will
generate the features to describe these flows, either manually or automatically [I8].
Then the researchers build a machine learning model which is usually a classifier to
learn the characteristics of different flow types, then use the model to classify the
future flows. As of this writing, supervised learning is probably the most popular
approach in literature.

As discussed above, a model that is employed inside an IDS must satisfy both
requirements: high accuracy in classification and little running time. Due to these
requirements and the limitation of the computational power of the network devices
where IDSs are installed, one of the most popular algorithms is the decision tree

algorithm [20], 10} 21} 22], random forest [23] and SVM [24] 25].
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Figure 3. A decision tree to classify the DDoS attack trained on the CICIDS2017 dataset.

Source: [15]

In Figure B, we visualize a single decision tree build on top of the CICIDS 2017
dataset [26]. Even the decision tree is simple and usually considered as a weak
learner [27], in many of cases its performance is good enough. More importantly,
it is easy to explain the prediction of a decision tree [28]. The requirement of
the explainability is addressed at least since the year of 2000 in a technical report
by [29] but the requirement has been ignored for a long time, mostly due to the
fact that the popular algorithms during this period of time are self-explainable.
However, in recent years there is more and more demand to request the machine
learning models be able to explain their outcome [I5]. In fact, the decision tree is
considered as one of the most easy to understand algorithms for human. Several
researchers [30] are working on converting any learning algorithms to the decision
tree to explain.
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There are several efforts to perform reverse engineering in a particular machine
learning model to convert the model into a decision tree [30]. However, the predic-
tive performance of the decision tree algorithm is usually not comparable to other
algorithms. The decision tree is often considered as a weak learner. Two main ap-
proaches to improve the predictive performance of a decision tree is boosting and
bagging, as visualized in Figure [
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Figure 4. Bagging and boosting mechanisms to improve the predictive performance of
decision tree [15]

The idea of the bagging approach is to build multiple trees independently then
summarize their outcome. On the other hand, the core idea of the boosting algo-
rithm is let the following tree to fix the error the previous trees made. The most
famous instance of the bagging mechanism is the random forest algorithm [31].
There are several implementations of the boosting mechanisms such as xgboost [32],
LightGBM [33] and CatBoost [34].

CatBoost has been evaluated in [35] to detect intrusion in the KDD99 dataset,
and xgboost is studied comprehensively in [I7]. We might conclude that their pre-
dictive performances are similar. However, the recent research work [36] showed
that CatBoost might not be as good as xgboost in term of the predictive accu-
racy, however its superiority lies on the computing speed which is much faster than
xghoost.

When the computational power of the network devices is improved, more com-
plicated algorithms are considered. For instance, in [I7], the zgboost algorithm [32]
is used. The authors achieved the near-perfect predictive results with the AUC
score is almost 1.0. However, the authors claimed that we might not need a heavy
model like zgboost to do the task: a careful feature engineering process can boost
the performance of other weak learning algorithms such as the Naive Bayes classifi-
cation.

As the predictive performance is reaching perfect in some scenarios, many re-
search studies are now focusing on reduction of the required computational powers
for IDSs.
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One approach is leveraging the active learning [37]. In the active learning setting,
a learning model starts with a small subset of the training dataset then actively
selects the new training instance from the pool based on some metrics to add to the
training dataset. By doing so, the learning model only need to deal with a small
number of training samples that have the highest impact to the performance while
ignoring the ineffective samples. Research studies [38, 139, 40, 41] showed empirically
that the strategy of using active learning can maintain the performance of the model
while reducing the training data size.

Another approach to scale down the power consumption of an IDS is to limit the
number of dimension of the dataset using the dimensional reduction techniques such
as Principal Component Analysis (PCA) [42]. The core idea of PCA is to project the
existing data into a new space with fewer dimensions but it still can explain as much
as the variance of the original data. The researchers [43] 44] applied PCA before
feeding the new data into a classifier, here it is SVM. However, these approaches
have some limitation, as addressed in [I5]:

e Training PCA itself takes a lot of time.
e PCA requests the null-handling method is used beforehand.

e New data will need to be fed through the PCA model before the learning model,
thus increasing the entire processing time rather than reducing it.

More recently, the authors of [45] proposed to use the Deep Belief Networks [46]
for the automatic feature learning, integrating with Particle Swarm Optimization
(PSO). The model of the work is displayed in Figure [6}

The second category we study in this paper is the unsupervised learning ap-
proach. The unsupervised learning approach is used when the attacks are not known
or difficult to gather and define. The most popular unsupervised learning techniques
using in the literature is the family of anomaly detection techniques [47]. Several
traditional anomaly detection techniques such as LOF, k-nearest neighbors, Maha-
lanobis distance and unsupervised SVM are evaluated in [4g].

The authors of [49] rely on mixture models and probability modelling to detect
the anomaly. The work is extended to the Bayesian setting in [50]. In [51], the
authors included recent techniques such as Isolation Forest [52] into the comparison.
The idea of the Isolation Forest is to classify a single instance in the dataset. More
difficult it is to classify a particular instance, more outlier the instance is. The
authors of [A1] integrated the Isolation Forest into the active learning scheme to
select the next training instance.

In [53], the authors review comprehensively different anomaly detection algo-
rithms, including clustering algorithms like K-means, statistic-based methods like
Histogram-Based Outlier Score (HBOS) [54], classification methods like One-class
SVM or Isolation Forest, Neural Networks, neighbour-based methods like kNN,
angle-based methods [55], density-based methods [56] and mixed methods on dif-
ferent datasets, range from NSL-KDD (1999) to CICIDS 2018. The experimen-
tal results show that the classification methods (One-class SVM, Isolation Forest)
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Figure 5. Principal Component Analysis. If we project the original data to the green line,
we can reduce the number of dimension to 1 while keeping most of the variance of the
data.

achieve the highest predictive score. However, the authors pointed out a very im-
portant point: a high variation of performance of all algorithms between datasets.
It means we did not yet find a global anomaly algorithm that at least can reliably
perform in multiple data.

We refer to two reviews on the anomaly detection techniques in network intrusion
detection [57, B8] for a more detailed review of anomaly detection in the network.

We note that a different approach in clustering for anomaly detection which is
called fuzzy clustering existed [39]. However, the method has not been fully studied
in literature.

The third category we take into consideration is to use deep learning techniques
to power the IDSs. For instance, in [60], the authors use the multi-layer feed-
forward neural networks as the core model of the classification task. The authors
of [61] leveraged natural language processing techniques to analyze the system logs.

The deep learning techniques have been studied comprehensively in the IoT set-
tings [62]. The difference is that the problem can be formulated as the multi-agent
setting [34] in the IoT scenario. In [63], the researchers design a simulated test-bed
and a deep learning model follows a feature selection using random decision trees
and Pearson correlation. Deep learning has been also utilized in other IoT envi-
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Figure 6. Deep belief networks with weighted SVM [45]

ronments, such as in-vehicle IoT [64] or IoT at home [65]. Most recently, several
research studies utilize the graph neural networks to detect the anomaly [66, 67, 62].
For instance, [66] suggested to use an attention-based temporal graph convolu-
tional neural network [68] to detect the anomalous edges. The most prominent
usage of deep learning is probably to be used as a feature extractor [I8]. One
instance is [45] where the researchers used the Deep Belief Networks [46] for the
automatic feature learning — followed by the Particle Swarm Optimization (PSO).
The authors of [69] used LSTM-Auto Encoder to extract the features automati-
cally.

The fourth category we study is the reinforcement learning for intrusion de-
tection systems. One of the earliest works is [70]. The idea of the reinforcement
learning is that the model does not know fully the nature (benign/malicious) of the
network flows like in the supervised learning but something about the impact (the
reward) that the allowed flows might cause to the system. By interacting with the
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system (allow/deny a particular flow), the model can gain enough information to
make a better decision [71], [72] [73].
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Figure 7. Reinforcement Learning algorithms learns by interacting with the environment,
here the external networks. The agent performs something and observes the response
(reward), then updates the policy.

The main disadvantage of the reinforcement learning scheme is that the model
requires to interact with the system and be allowed to fail enough times. This re-
quirement might not be available in practice. The authors of [74] suggested a novel
method to replace the environment by a sampling strategy from a labelled dataset,
but it limited the application of using the reinforcement learning. There is still
a lot of room for improvement in using reinforcement learning for intrusion detec-
tion.

Lately, the research works on offline reinforcement learning [75] shed a new light
into the problem of using reinforcement learning for the intrusion detection problem.
In offline reinforcement learning, the agent (here the IDS) does not interact with
the environment, but sampling the data from an offline dataset. The setting makes
the reinforcement learning more practical in real-world settings.

3 DATASETS AND EVALUATION METRICS
3.1 Datasets

In this section we review some most popular datasets to train and evaluate the IDSs.
We refer the audience to recent surveys [76] for further details. Most of the widely
used IDSs datasets in the literature belong to the NetFlow family [77].

The very first dataset for IDSs is probably the dataset DARPA98 created at
MIT Lincoln Lab. The enhanced version of the dataset, known as KDD-99 [78], is
one of the most popular dataset used in the literature [58], together with another
enhanced version which is NSL-KDD [79]. These datasets play an important role in
the development history of intrusion detection research, but even since the beginning
the quality of the datasets have been questioned [I7]. A common critical point is
that the dataset does not reflect the true distribution of attacks. As of this writing,
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these datasets are somehow outdated and do not represent an efficient tool for the
current attack methods [76].

The DEFCON-8 and DEFCON-10 datasets are releases of 2000 and 2002, re-
spectively [80]. These datasets were created for a competition and not supposed to
be realistic. However, the datasets have been used extensively for evaluation [26].

In the year of 2005, the Lawrence Berkeley National Laboratory released the
LBNL dataset [81]. The CDX dataset [82] is released to be a replacement of KDD
datasets. However, both datasets are considered as not realistic enough to be used
in practice [83].

The Canadian Institute for Cybersecurity (CIC) has spent a lot of time and
effort in recent years to create a realistic dataset for training and evaluating IDSs.
The first outcome was introduced in 2012 [84] as the result of seven days of data
collection, but the dataset lacks of HTTPS traffic [76]. The enhanced version of this
dataset is CICIDS 2017 which includes a lot of modern protocols [26, 83]. One year
later, the CIC released an improved version of the CICIDS 2017 which is known as
CSE-CIC-IDS2018 [85]. The CIC also released the dataset DoHBrw-2020 [86] for
a specific type of attacks on Domain Name System.

As the CICIDS 2018 is considered as a modern intrusion dataset that is built
upon a realistic context, it still has a problem of extremely imbalanced dataset [I5].
It means that a number of attack types have very few instances, so we cannot draw
any statistically significant conclusions.

Dataset Testbed Traffic Labeled | IoT | Attacks | Full New
Config- Realis- Diverse | Packet | Gen-
uration tic erated
Realistic Features

Bot-IoT T T T T T T T

CAIDA T T F F F F F

DARPA 98 | T F T F T T F

DEFCON 8 | F F F F T T F

KDD 99 T F T F T T T

CICIDS T T T F T T T

2017

CICIDS T T T F T T T

2018

DoHBrw T T T F F T T

2020

Table 1. Summary of the intrusion datasets

One major drawback of the above datasets is that they do not explicitly state
the testset, hence each researchers might (and actually will) use a different configu-
ration of train/test split. Usually the split is random and not reproducible, so it is
impossible to accurately compare the performance of different algorithms.
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Another drawback is that the datasets are released with predefined features but
not the raw data. It limits the potential of researchers to create features different
from the existing ones. Furthermore, it is difficult to join the different datasets
because they have different feature sets.

3.2 Evaluation Metrics

As the problem of intrusion detection is formalized as a classification problem, stan-
dard evaluation metrics are often being used [87]. These metrics include accuracy,
true positive rate, false positive rate, Fl-score and MCC [88]. These metrics all
require the confusion matrix to calculate, meaning that they require an instance in
the testset needed to be labelled as benign/malicious directly by the IDS. We recall
the formulas of the metrics as follows.

#of _correct_prediction

accuracy = (1)

#of _prediction

Fl— 9y precision * recall

precision + recall’
TP x TN — FP x FN

MCC = . (3)
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

On the other hand, the AUC score does not require the confusion matrix but
probability of being malicious assigned to each instance by the IDS. The AUC gives
more power to the practitioners because they can modify the threshold to satisfy
the business requirements. Furthermore, let us consider a case when there are two
instances with the probability of being malicious determined by an IDS as 0.499999
and 0.5000001 — in fact the two instances are mostly the same from the point of
view of the IDS, but if we use the threshold of 0.5, one will be blocked and the
other one can go through to enter the computer system. Unfortunately the AUC is
available only for binary classification, even though there are some efforts to extend
the metric to the multi-class classification case [89].

4 EXPERIMENTAL RESULTS

In this section we analyze our experiments. We performed multiple classification
with comparison, and applying different techniques to enhance the predictive per-
formance of the classification, including data augmentation, regularization, feature
selection and active learning [41]. The feature selection is done based on the feature
importance assessment of models [I6], hence we keep removing the features until
the predictive performance of the model drops. We try some data augmentation
techniques [90].

We use the CICIDS 2018 dataset for the evaluation. We divided the train —
evaluation — test set by the ratio of 60:20:20.
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TPR

Figure 8. Area Under the Curve. We measure the performance of a classifier by the area
under the curve formed by the True Positive Rate (TPR) and False Positive Rate (FPR).
Higher value is better.

We present our experimental results in Table 2] and Figure )] We can see that
xgboost and catboost achieved the near-perfect predictive results. Furthermore,
the training and inference time of algorithms are presented in Table [}l We notice
that, due to the very good performance already of tree ensemble methods, feature
engineering does not significantly improve the performance anymore.

We can confidently claim that there is no much room for improvement in tra-
ditional benign/malicious classification problem as the classifier is almost perfect.
The future research studies should focus on different research problems. We discuss
these problems in the next section.

Algorithm AUC
Naive Bayes 0.5
Logistic Regression 0.55
SVM (linear kernel) 0.62
OCSVM (RBF kernel) 0.57
Random Forest 0.92
xgboost 0.9992
xgboost with Active Learning [41] 0.95
xgboost with Feature Engineering [I5] | 0.999995
catboost 0.9992

Table 2. AUC of different classifier in binary setting [17]

5 CONCLUSIONS

In this study, we review and present the usage of machine learning models, in-
cluding supervised learning, unsupervised learning, deep learning and reinforcement



24

Q.-V. Dang
Algorithm Training Time | Predicting Time
(seconds) (seconds)
Naive Bayes 2 0.2
Logistic Regression 8000+ 20
SVM (linear kernel) 10000+ 25
OCSVM (RBF kernel) 4000+ 24
Random Forest 300 2.3
xgboost 3600+ 10
xgboost with Active Learning [41] 3600+ 10
xgboost with Feature Engineering [15] 3600+ 10
catboost 700+ 12

Table 3. Training and inference time of different classifier in binary setting [17]

learning for the problem of intrusion detection. The core idea is to detect an in-
trusion before letting it enter the protected computer system. The IDSs do that by
classification and allow only benign network flows go through. We review several
popular datasets, started from some classical ones like DARPA 98 up to the recent
released datasets. We claim that, by using the state-of-the-art machine learning
algorithms running on powerful machines, the classification problems are mostly

solved.

We believe that the future research works should address the following problems:

e How to optimize the running cost of the IDSs?

— It is not an accident that big companies like Cisco still use signature-based
methods. The IDSs are usually employed in network devices with limited
computational power but real-time processing requirements. A comprehen-
sive algorithm might be good in research but will not be practical in real

life.

e How to learn with limited number of training data points?

— In fact, many research studies have to ignore some kinds of attacks, such as
the Heartbleed attack in the CICIDS 2018 dataset [I6] because there is not
enough instances of these attacks for both training and evaluation. However,
letting only one instance of attacks to the internal system might be more than
enough to destroy the entire system. We need to find a method to cope with

serious attack like this.

e How to let the IDSs to work completely autonomously, including self-evolving

without a human intervention?

— An IDS shall have the ability to know when the database is outdated, or
there is some error/noise in the training dataset and retrain itself.

e Distributed IDSs and sharing data to deal with novel and rare attacks.
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Figure 9. Confusion matrix of the intrusion classifier on all types of attacks [15]

— When a novel attack occurs in one node, the entire network should be noticed.
Furthermore, the training process might be distributed to speed up and
utilize the idle nodes.

e Off-policy reinforcement learning for IDSs.

— A standard reinforcement learning is not applicable in the context of IDSs
as we cannot let the attacks happen to learn from the feedback of the envi-
ronment.

e Robust anomaly detection for IDSs.

— Current anomaly detectors tend to vary in term of predictive performance
in different datasets, hence they cannot deal with distribution shift.

It is no doubt that the problems like IDSs will never be completed, as new attack
methods will be introduced over time and new problems will be raised in the future.
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