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Abstract. In this paper we show that in some peculiar cases, here the generation
of astronomical images used for high precision astrometric measurements, an opti-

mised implementation of the DFT algorithm can be more efficient than FFT. The
application considered requires generation of large sets of data for the training and
test sets needed for neural network estimation and removal of a systematic error
called chromaticity. Also, the problem requires a convenient choice of image en-
coding parameters; in our case, the one-dimensional lowest order moments proved
to be an adequate solution. These parameters are then used as inputs to a feed
forward neural network, trained by backpropagation, to remove chromaticity.
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1 INTRODUCTION

The European Space Agency has approved the mission Gaia [1], aimed at a high
precision astrometric survey of our Galaxy, for launch in 2011; the Announcement
of Opportunity for the data reduction has been issued on November 9, 2006. The
mathematical and computing tools used for modern astronomical experiments must
meet challenging requirements on resolution and precision, consistent with the mea-
surement goals.

In particular, the location of the diffraction image of an object measured by
a real instrument is affected by an apparent displacement, dependent on the source
spectral distribution; this effect is called chromaticity [2]; it is described from a math-
ematical point of view below and clarifications about the state of the art of its effects
and about the applied techniques to remove it can be found in [3]. Besides, the for-
mulation of the diffraction integral leads naturally to its implementation based on
the Fourier transform (FT).

The image of a star, considered as a point-like source at infinity, and produced
by an ideal telescope, with focal length F , an unobstructed circular pupil of diameter
D, at wavelength λ, has radial symmetry and is described by the Airy function (1)
(see [4] for notation).

I (r) = k [2 J1 (πrD/λF ) / (πrD/λF )]2 . (1)

Here J1 is the Bessel function of the first kind, order one, k a normalisation con-
stant, and r the radial coordinate on the focal plane. The image has a characteristic
size (the Airy diameter) 2.44λ/D.

The use of real telescope, however, produces diffraction images (hereafter called
real images) described by the square modulus of the FT of the pupil function eiΦ and
caracterized by a set of aberration values that depend on the phase aberration Φ:
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where {r, φ} and {ρ, θ} are the radial coordinates on image and pupil plane, re-
spectively, and the integration domain corresponds to the pupil: for the circular
case, 0 ≤ ρ ≤ 1; 0 ≤ θ ≤ 2π. In case of a rectangular pupil, it is more convenient
to use Cartesian coordinates on both image and pupil plane, e.g. {x, y} and {ξ, η}
integrated between the appropriate boundaries.

The phase aberration Φ describes for the real case the deviation from the ideal
flat wavefront, i.e. the wavefront error (WFE), and is usually decomposed by means
of the Zernike functions φn ([4]):

Φ (ρ, θ) =
2π

λ
WFE =

2π

λ

21
∑

n=1

Anφn(ρ, θ). (3)

If Φ = 0 (non-aberrated case, {An} = 0), we obtain a flat wavefront, i.e. WFE = 0,
and Equation (1) is retrieved for the circular pupil.
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The WFE itself is independent from wavelength, but wavelength dependence in
the pupil function is induced by the 2π/λ factor. Also, the nonlinear relationship
between the set of aberration coefficients An and the image is put in evidence by
replacement of Equation (3) in Equation (2).

The FFT algorithm associates the resolution in one of the domains to the full
range of the corresponding conjugate variable; besides, the diffraction integral is
physically limited to the real pupil size. Therefore, the simplest implementation
generates just two points over the characteristic length of the system, which is clearly
not sufficient to provide an acceptable image detail. A typical approach to overcome
this limitation consists in a formal extension of the pupil domain to a much larger
size, to achieve the desired resolution, provided the function used as argument is set
to zero in the extended interval. Besides, this approach involves a significant amount
of computation, required from the formal definition, over quantities set to zero. This
consideration led us to test the alternative approach of direct computation of the
DFT in its original formulation derived from discretization of the Fourier integral.

The number of points used to evaluate the discrete Fourier transform by FFT is,
however, crucial, because of its impact on both resulting precision and required com-
putational effort; in this paper we present a method that allows usage of a number
of points suitable to the desired resolution, reducing at the same time the compu-
tational cost with respect to the classic FFT algorithm.

Because the real polychromatic image of an unresolved stellar source is produced
by integration over the appropriate bandwidth of the monochromatic PSF above,
it is evident that objects with different spectral distributions have different image
profiles; this fact implies that the position estimate produced by any location al-
gorithm (e.g. the centre of gravity, COG), evaluated on the image profile itself, is
affected by discrepancy with respect to the nominal position generated by an ideal
optical system.

The location estimate is sensitive to the algorithm used [5], in case of discrepan-
cies between the real signal and its expected profile, so that it is crucial to model the
instrument and maintain its calibration with high precision. The chromaticity can
be minimized by instrument design and construction [2], but the residual chromati-
city must be taken into account in the data reduction phase. In this paper therefore
our aim is the diagnosis of chromaticity that affects images which are realistic in the
sense of a signal profile variation compatible with our expectations on the imaging
quality of the instrument. Besides, at this stage we do not address the effects of
random noise, since we feel necessary to identify clearly the limiting performance
with respect to systematic errors. The realistic range of image variation is achieved
by selection of the aberration range (in Section 3); the PSFs are not affected by
readout or photon noise.

In past works [6] we developed a method for Seidel aberration estimate from the
focal plane images, but the greater number of aberration terms to be detected in
the Zernike decomposition would require a huge increase in the data set of exam-
ples for proper training, making the computational effort unbearable. Therefore,
here we study how to identificate chromaticity from the image profile itself, using
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the diagnosis capability of a neural network (NN) properly trained. Our choice is
due to the existence of different works concerning the use of NN in astronomical
adaptive optics (see [7, 8]) where NN always demostrated great robustness to noise
and damages and powerful capabilities of flexible learning.

Real-world image processing systems frequently represent a chain of hierarchi-
cally organized, interacting components ranging from basic preprocessing to high-
level image analysis and interpretation. Functional operations such as preprocess-
ing, feature extraction, data reduction/compression segmentation, object recogni-
tion, image understanding, and scene analysis have to be applied to different struc-
tural levels of data complexity ranging from pixel data, local features, structure and
texture level data to objects, object arrangements, scene and context description.
Neural networks, as a special kind of learning and self-adapting data processing
system, have to offer considerable contributions to this field. Their abilities to han-
dle noisy and high-dimensional data, nonlinear problems, large data sets etc. have
led to a wide scope of successful applications in digital image processing. A very
interesting survey on this theme can be found in [9].

Other interesting works can be found in literature about neural network capabil-
ities to solve diagnosis, recognition or classification tasks in the framework of image
processing: problems concerning character recognition ([10]), image processing in
medical applications ([11]), image compression ([12]), and so on.

A very interesting application concerns the use of cellular neural networks
(CNN); CNN are members of the hardware family called vision chips. Based on
state-of-the-art technology, a vision chip is defined as a VLSI chip that can perform
image processing tasks. The theory of CNN develops in two main fields: cellular au-
tomata and neural networks; as an interdisciplinary product, CNN utilizes cellular
hardware structures to gain ultrahigh image processing speed ([13]).

The paper is organized as follows: in Section 2 we discuss the Fourier trans-
form computation, comparing the proposed technique with the classical fast Fourier
transform algorithm, and we present the image encoding method. In Section 3 we
describe the generation of the data sets and in Section 4 we resume the main fea-
tures of sigmoidal NN and backpropagation algorithm, with a brief reminder of the
specific definitions, then we discuss the data processing and the obtained results.

2 FOURIER TRANSFORM COMPUTATION

AND DIFFRACTION IMAGE ENCODING

In this section we describe the generation of the Fourier transform and the identifi-
cation of convenient parameters for encoding of realistic images (as expected from
real telescopes), according to Equation (2).

2.1 Discrete Fourier Transform

There are many science applications for which an accurate Fourier transform of the
signal is necessary. For example, to achieve the frequency spectrum X(ω) of a time
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dependent signal x(t), sampled at N time instants tn (i.e. the signal has a finite du-
ration, with N contiguous nonzero samples), the Discrete Fourier Transform (DFT)
is:

X(ω) =
N−1
∑

n=0

x(tn)exp(−jωtn). (4)

Frequently, the sampling is uniform (tn = n∆T ; x(tn) = x(n)), so that Equa-
tion (4) becomes:

X(ω) =
N−1
∑

n=0

x(n)exp(−jnω∆T ), (5)

where T is the sampling period. Usually X(ω) is also evaluated at a set of N
points ωn, often evenly spaced (ωn = nω0). A natural choice of frequency values is
ωn = 2πn/N , (n = 0 . . .N − 1), so in terms of real frequencies we have a resolution
of ∆ω = 2π/(NT ) or ∆f = 1/(NT ).

Throughout the following sections of this paper, we retain the uniform sampling
notation for ease of comparison with the FFT case; however, we do not use further
specializations of the algorithm, such as the Goertzel methods (see [14]), because
it is restricted to this condition, whereas in our future applications non-uniform
sampling may be required.

The frequency sampling can be modified e.g. by adding extra zeros to the sig-
nal [15]; if we want to multiply by M the frequency resolution we can add (M −1)N
zeros in the sequence x(n), thus obtaining a new sequence of length K = NM .
The alternative of simple interpolation of the FFT output is often acceptable, but
the choice requires caution with respect to the effective information content (signal
resolution and duration), and to the possible introduction of artefacts.

If we assume M = N , for simplicity, the zero-padding approach is associated to
a computational cost for the usual FFT algorithm of order of K logK = N 2 log(N 2),
against order of K2 = N 4 for standard DFT. However, in many applications it
is necessary to achieve a higher resolution within a small frequency interval only,
which makes convenient the evaluation of the DFT by direct matrix multiplication
(hereafter, DFT tout-court). Actually, in this case, the computational cost for the
Fourier transform of N samples for N frequency values in a given interval is N 2, i.e.
smaller than the above cost of the FFT algorithm by a factor log(N 2). It should be
noted that the FFT cost estimate is valid when the data size is a power of two, and
the actual computation time is extremely variable depending on data factorisation,
and therefore on the implementation.

Moreover, since we deal with two-dimensional images, the computational cost
of the Fourier Transform evaluation increases for both methods. Assuming simple
repetition of either one-dimensional FT algorithm, or for N 2 (FFT) and N (DFT)
times, the computational cost becomes of order of N 2 log(N 2) × N 2 for FFT and
N 2 × N for DFT by direct matrix multiplication. The practical implementation
can be further optimised, of course; besides, the estimate is valid only within the
computation-limited regime, and for any real computer, at increasing size of the
processed arrays, the case becomes input/output-limited, when the physical memory
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is saturated and the virtual memory mechanisms start swapping data towards the
mass storage devices.

We verify these considerations by performing FT evaluation by both FFT and
DFT, on square format images, over the range 10 ≤ N ≤ 65 points. Since the actual
image format for the FFT size is N 4, the largest array considered is 4K × 4K, i.e.
16 mega-pixels. At this point, our desktop computers already have a significant
virtual memory access.
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Fig. 1. Processing time comparison: direct matrix multiplication is always faster

In Figure 1, we plot the FFT and DFT processing times as functions of N ,
showing that direct matrix multiplication is always faster.

In Figures 2 and 3, each curve is shown together with its theoretical fitting
function, i.e. αN 3 and βN 4 log(N 2), where α and β are two constants.

2.2 Image encoding

To maximise the field of view, i.e. to observe simultaneously a large area on a given
size detector, typical astronomical images are sampled over a small number of pixels.
Typical sampling requirements, related to the Nyquist-Shannon criterion, are of
order of two pixels over the full width at half maximum, or about five pixels within
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Fig. 2. Experimental processing times (dots) and theoretical fitting curve for FFT

the central diffraction peak. The detected signal is then affected by significant
variation depending on the phase of the pixel array with respect to the photon
distribution. The pixel values are then not convenient for direct evaluation of the
discrepancy of the effective image with respect to the nominal case, and suitable
descriptors are to be identified.

Higher sampling resolution would minimise the effects of the finite pixel size [5],
at the expense of the field of view, which is not acceptable. Besides, even in case of
well sampled images, usage of a large number of pixels as input to the NN is imprac-
tical, because of the large computational load involved. We then identify a more
compact encoding that allows extraction of the desired information for chromaticity
diagnosis. Each input image is described by the centre of gravity (and a few low
order central moments) according to the definitions

µy =
∑

n

yn · In / Iint

σ2
y =

∑

n

(yn − µy)
2 · In / Iint (6)
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Fig. 3. Experimental processing times (dots) and theoretical fitting curve for DFT

M(j) =
∑

n

(

yn − µy

σy

)j

· In / Iint, j > 2

where Iint =
∑

n In is the measured photometry. We adopt a weighted version
of the real images, described in Equation (2), multiplying them by the detected
non-aberrated image; so doing we provide better performances in cases affected by
photon noise and add effectiveness to treatment of realistic data [5].

The Gaia measurement [1] is mainly one-dimensional: most images are inte-
grated in the low resolution direction for telemetry reasons. Thus the signals (In)
are also reduced to one dimension, y in the Gaia convention. One-dimensional en-
coding is a further change with respect to previous investigations [6], in which we
took advantage of the full two-dimensional image structure to estimate the aber-
ration terms. The moments in the low resolution direction were verified to have
negligible effect on chromaticity. It is then possible to use simple combinations of
the standard one-dimensional measurements for processing.

The central moments are much less sensitive than individual intensity values to
the effects related to pixel size and phase. Thus, they can be computed conveniently
also from the detected low resolution images. The usage of moments as NN inputs
for image profile description is discussed in more detail in [16].
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3 DATA SETS GENERATION

In this section we describe the generation of the training and test sets and the
identification of the most convenient image parameters.

With respect to our previous work on chromaticity (see [3]), the current simu-
lation takes into account a number of realistic instrument contributions, although
some still in a simple form. In general, such terms have the effect of reducing the
image sharpness, which in turn reduces both the chromaticity and the signature
on the moments. It is therefore important to verify whether the principle of chro-
maticity estimation from the moments still holds, also in the case of more realistic
images, and to evaluate the impact on the performance. In practice, the relationship
between chromaticity and some critical moments might be degraded significantly, or
the number of cases required for proper NN training might increase to unmanageable
levels.
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Fig. 4. From top to bottom: distribution of chromaticity vs. image centre of gravity, RMS
width, third and fifth order moments

We verify that the relationship between chromaticity and moments remains good
(see Figure 4); also, in the neural processing results we verified that the performance
on the test set significantly improves, thus allowing us to avoid the pre-processing
previously necessary ([3]).

The spatial resolution on the focal plane (previously 2 µm on each coordinate)
is improved to 1 µm in the along scan direction, and relaxed to 6 µm in the across
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scan direction (much less critical), compatibly with basic sampling requirements and
computing time optimisation. Also, the computation is restricted to the region of
interest corresponding to the planned readout windows (with margins).

The spectral representation has also been improved with respect to the previ-
ous monochromatic case. The polychromatic images are built by superposition of
monochromatic PSFs, weighed with a distribution centred on the effective wave-
lengths 787 nm and 617 nm, estimated for blackbody sources at 3 000 K (red) and
30 000 K (blue), with FWHM of 200 nm, considered representative of the overall in-
strument and detector response. The basic parameters of the Gaia telescope (aper-
ture, focal length) are used.

Notably, using the standard FFT approach, the sampling in either pupil or focal
plane is variable with respect to wavelength, which is not physically sound. In
our previous experiment, the focal plane sampling was retained, to avoid the need
for image interpolation, thus inducing wavelength dependent sampling of the WFE
corresponding to the current aberration case.

Realistic degradations due to nominal detector (finite pixel size and clocking
in time-delayed integration) are taken into account, by filtering the PSF through
representative functions. In the current approximation, the latter are rectangles
with constant value over a width associated to the pixel size (10 µm) and the four-
phase clocking (5 µm). Further realistic contributions (e.g. the modulation transfer
function) can be easily introduced in future developments.

The polychromatic PSF for each source case is then integrated in the across
scan direction (implementing the planned binning readout), and the one-dimensional
moments are computed, for later neural processing. The chromaticity is estimated
as COG difference between the blue and red star images.

A set of aberration cases is generated, in the regime of small image degradation,
i.e. of reasonably good imaging performance. The Zernike aberration coefficients are
generated from a Gaussian random distribution with σ = 50 nm for each component.
The coefficient range is not configuration specific, but covers a set of mathematically
possible cases, larger than the physically feasible optical systems. The correspond-
ing RMS WFE on the aperture, averaged over the data set, is about 50 nm. The
sample considered is thus representative of a range of realistic optical configura-
tions.

Some of the moments do not have a significant trend with respect to chromati-
city, and can therefore be neglected. The moment selection was verified on the NN
using a pruning technique, i.e. selectively removing some of them and checking the
convergence, until reaching the minimum number of parameters compatible with
good training.

The NN inputs are thus defined in terms of the local instrument response, ex-
pressed by the local aberration values, then encoded in the moments for red and blue
sources, which can be considered one as the reference and the other as the generic
star of known spectral type. In particular, the COG of the reference object is the
deviation of the image position with respect to an ideal system, and it is associated
to the classical distortion; therefore, it is a system property which can be calibrated
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Fig. 5. Histogram of the distribution of test set input chromaticity

from the science data. The other inputs from the reference source are the image
RMS width, the third and the fifth order moments. The inputs associated to the
measured signal, from a star of different, known spectral type, are the third and
fifth order moments.

The histogram of input chromaticity distribution in the test set is shown in
Figure 5, and it is approximately Gaussian.

4 NEURAL PROCESSING AND RESULTS

Neural networks learn from examples; that is, given the training set of N multi-
dimensional data pairs {(xi, F (xi)) /xi ∈ ℜP , F (xi) ∈ ℜQ}, i = 1, . . . , N, after the
training if xi is the input to the network, the output is close to, or coincident with,
the desired answer F (xi) and the network has generalization properties too, that is
it gives as output F (xi) even if the input is only “close to” xi, for instance a noisy
or distorted or incomplete version of xi; a comprehensive review on NN properties
and applications can be found in [17].

In our work we use the multilayer perceptron, first introduced in 1986 (see [18]),
as an extension of the perceptron model [19].
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The multilayer perceptron, with sigmoidal units in the hidden layers, is one of
the most known and used NN models: it computes distances in the input space using
a metric based on inner products and it is usually trained by the backpropagation
algorithm. The architecture of a sigmoidal NN is schematically shown in Figure 6,
in which we find the most common three-layers case.

Fig. 6. Sigmoidal neural network with one hidden layer

The network is described by Equation (7):

ak+1
j =

∑

j′
wjj′o

k
j′ + biasj

ok+1
j = σ(ak+1

j ) ≡ 1

1+e
−a

k+1

j

oout
m ≡

∑

j
wmjo

out−1
j .

(7)

Here a is the input to each unit, o is its output and wij is the weight associa-
ted to the connection between units i and j; each unit is defined by two indexes,
a superscript specifying its layer (i.e. input, hidden or output layer) and a subscript
labelling each unit in a layer.

The training procedure is finalized to find the best set of weights {wij} solving
the approximation problem o (xi) ≈ F (xi) and this is usually reached by the iterative
process corresponding to the standard backpropagation algorithm.

At each step, each weight is modified accordingly to the gradient descent rule
(a more detailed description can be found in [18]), completed with the momentum
term, wij = wij+∆wij, ∆wij = −η ∂E

∂wij
where E is the error functional defined above.

This procedure is iterated many times over the complete set of examples {xi, F (xi)}
(the training set), and under appropriate conditions it converges to a suitable set of
weights defining the desired approximating function.

Convergence is usually defined in terms of the error functional, evaluated over
the whole training set; when a pre-selected threshold ET is reached, the NN can be
tested using a different set of data {x′

i, F (x′

i)}, the so called test set.
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We use a sigmoidal NN with five inputs describing each blue and red star image
plus the blue COG, one output (the chromaticity), and a single hidden layer with
30 units. The NN is trained by 10 000 iterations on a training set made by 10 000
instances, and its performance is verified on the 3 000 instances of the test set; in
particular, the discrepancy between the NN output (estimated chromaticity) and
target (actual chromaticity for the test set data instances) can be considered as the
residual chromaticity after correction obtained from the NN results.

Input Chromaticity Residual Chromaticity Residual Chromaticity
(with outliers) (without outliers)

[nm] [nm] [nm]

Min. −697.25 −66.76 −13.83

Mean −1.20 −2.49 −2.51

Max. 750.62 153.29 9.253

RMS 190.50 4.08 1.91

Table 1. Main parameters of input and residual chromaticity in test set

The main statistical parameters of the residual chromaticity distributions, com-
pared with the corresponding values of nominal chromaticity distribution (test set),
are listed in Table 1. The central column refers to the diagnosis performances with
outliers, i.e. on the whole test set; we noted, however, that on some values the so
called outliers (18 instances, 0.6 % of data) performances are not so good, and they
are outside the ±3σ interval. This problem will be the object of future works de-
voted to better understand this difficulty; however, we evaluated again the residual
cromaticity distribution without these values obtaining the diagnosis performances
listed in the right column; this distribution is shown in Figure 7. The 99.4 % of
originally processed data is, however, within the ±3σ interval.

Since the goal is the computation of output values coincident with the pre-
defined target values, the plot of output vs. target, shown in Figure 8, should be
ideally a straight line (y = a + bx) at angle π/4, passing for the origin, i.e. with
parameters (a = 0, b = 1).

We compute the best fit parameters of the NN output vs. target distribution
and their standard deviation; the results, shown in Table 2, are quite consistent with
the expectations.

Offset a = −2.498 ± 0.074
Slope b = 0.998 ± 3.9e−004

Table 2. Main parameters and errors of the linear fit

5 CONCLUSIONS

In this paper we use a neural network to diagnose and correct the systematic as-
trometric error of chromaticity, in a framework consistent with the mission Gaia
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Fig. 7. Histogram of the distribution of test set residual chromaticity

measurements. The science data are efficiently encoded in a set of low order im-
age moments. The NN, with 300 internal nodes, is trained on a set of 8 000 data
instances, and evaluated on a test set of 2 000 cases.

The NN diagnostics on the test set appears to be quite effective, as the residual
chromaticity distribution, after data correction based on the NN results, is greatly
reduced with respect to the initial distribution (Table 1).

Applying the NN output for correction of the chromaticity on the Gaia mea-
surements, we may expect a significant reduction of the associated error; also, the
residual chromaticity is expected to be random.

Future developments will include evaluation of the sensitivity to measurement
noise, propagated through the image moments, which will induce practical limita-
tions to the correction effectiveness, depending on the source brightness.

From the current results, NN diagnostics used to greatly reduce the chromatic
error on astrometric measurements appears to be a tool able to produce effective
results.
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Fig. 8. Output vs. target distribution of chromaticity values over the test set
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