
Computing and Informatics, Vol. 28, 2009, 635–654

DESIGN AND DEVELOPMENT OF FINANCIAL
APPLICATIONS USING ONTOLOGY-BASED
MULTI-AGENT SYSTEMS

Weir Ying, Anjalee Sujanani

School of Computer Science and Engineering

School of Information Systems, Technology nd Management

University of New South Wales, Australia

e-mail: weir.ying@gmail.com, a sujanani@yahoo.com

Pradeep Ray

School of Information Systems, Technology and Management

University of New South Wales, Australia

e-mail: p.ray@unsw.edu.au

N. Paramesh

School of Computer Science and Engineering

University of New South Wales, Australia

e-mail: paramesh@cse.unsw.edu.au

Damien Lee, Ramaprasad Bhar

School of Finance, University of New South Wales, Australia

e-mail: lee.damo@gmail.com

Manuscript received 12 October 2006; revised 29 April 2009

Communicated by Jacek Kitowski

636 W. Ying, A. Sujanani, P. Ray, N. Paramesh, D. Lee, R. Bhar

Abstract. Researchers in the field of finance now use increasingly sophisticated

mathematical models that require intelligent software on high performance com-
puting systems. Agent models to date that are designed for financial markets have
their knowledge specified through low level programming that require technical ex-
pertise in software, not normally available with finance professionals. Hence there is
a need for system development methodologies where domain experts and researchers
and can specify the behaviour of the agent applications without any knowledge of
the underlying agent software. This paper proposes an approach to achieve the
above objectives through the use of ontologies that drive the behaviours of agents.
This approach contributes towards the building of semantically aware intelligent
services, where ontologies are used rather than low level programming to dictate
the characteristics of the agent applications. This approach is expected to allow
more extensive usage of multi-agent systems in financial business applications.

Keywords: Ontology, multi-agent systems, financial services domain

1 INTRODUCTION

Financial market is a mechanism that allows people to trade financial securities
(such as stocks and bonds) and other commodities. Financial services allow these
markets to operate by providing ways for communication and trade. Some of the
modern financial applications utilise intelligent mechanisms for transactions over
the Internet that connects geographically distributed entities. A multi-agent ar-
chitecture supports intelligent mechanisms through software agents that have the
capability to conduct conversation-like contract negotiations, which are critical dur-
ing coordination of business transactions. Agents also have the capability to build
up its intelligence and knowledge-base over time, allowing intelligent services. Fi-
nally, a software agent by definition has the ability to act autonomously and adapt
based on changes in the situation.

In order to gain a collective understanding of financial markets, it is important to
observe and investigate the relationships between trends and characteristics across
different markets. However, due to the complex conglomeration and distributed
nature of financial domain information, the majority of such analysis is carried out
at a low level, requiring extensive knowledge of programming languages. This can
be problematic for those financial information users, researchers and analysts who
do not have the expertise required for carrying out complex development in these
languages.

In this paper, we describe the processes we undertook in the design and deve-
lopment of Financial Market Builder (FinBuilder) – an application that facilitates
user customisation of agent interaction within the financial domain. We believed
that the introduction of an ontology-driven infrastructure for use in the financial
domain would enable experimentation activities such as pre-trade and behavioural

Design and Development of Financial Applications Using OBMAS 637

analysis of financial markets to be conducted by end-users at a more intuitive level
than is currently possible.

FinBuilder is currently built on an agent platform, as our main aim was to
investigate the combining of ontology semantics with a distributed application. The
application is deployable on the web, thus the concepts covered are applicable to
a web service platform. The integration of semantics with web services can be used
to assimilate data from different domains or sources, and to infer information based
on background knowledge of a domain.

In the following sections, we introduce financial multi-agent systems and their
current downfalls. Subsequent sections will illustrate the benefits of introducing
ontology into these systems. The FinBulder development process and architecture
will be discussed. This is followed by the results of testing and evaluation of the
application, and a summary of the research contribution concludes this paper.

2 MULTI-AGENT SYSTEMS IN FINANCE

Traditional mathematical methods used to study financial market behaviour such
as statistical analysis have been identified as having shortcomings such as the fol-
lowing [18]:

Description of macroscopic properties of a system, not the origin of these

properties. This analysis involves studying financial data from different finan-
cial markets and then identifying regular patterns of the data statistics. It
usually does not include examining the cause of such statistics.

They fail in situations where the assumptions of mathematical models are

not valid. The majority of statistical methods and techniques involve assump-
tions such as normal population. However, in many cases these assumptions do
not hold.

They do not adequately handle the heterogeneity of trade practices. Tra-
ditionally, the behaviours of traders have been described with mathematical
models under equilibrium conditions that is not always the case. Traders, for
example, display heterogeneity in their trade decision-making, interpretation of
company announcements and market trends, and adaptive behaviours.

In dealing with the dynamics of collections of entities, agent-based models
(multi-agent systems discussed in this paper) are better equipped to handle different
kinds of global dynamics that can result from these entities significantly impacting
each other through their interaction within changing environments.

However, of the financial agent systems described in the literature, we found that
most of the agents in these models were intrinsically algorithmically linked, with
mathematical functions dictating and modifying the agents’ behaviours [4, 5]. That
is, financial domain knowledge and business logic is implicit in the algorithms and
embedded in the agent code. There do exist multi-agent systems where the know-
ledge is represented more explicitly at organizational levels and using ontologies in

638 W. Ying, A. Sujanani, P. Ray, N. Paramesh, D. Lee, R. Bhar

other domains [6]. Furthermore, in the majority of the work surveyed, the agent
infrastructures were closely coupled with the application domain knowledge required
to dictate the agents’ behaviours. By placing most of the explicit domain information
within the agents themselves, any potential to re-use the multi-agent infrastructure
in conjunction with different domains was destroyed. Hence we propose ontology-
based multi-agent systems where the financial system behaviour can be controlled
through financial ontologies (defned by financial analysts with little software exper-
tise) that drive the underlying multi-agent software (designed by software experts).

3 ONTOLOGY-BASED MULTI-AGENT SYSTEMS

An ontology is a specification of the objects, concepts and entities that exist in a do-
main of interest and the relationships that hold among them. They have been used
in the fields of artificial intelligence, information retrieval, natural language pro-
cessing and knowledge engineering. In the domain of B2B markets, ontologies have
been utilised to address interoperability problems that enterprise and e-commerce
systems face when attempting to share information, due to differing configurations
and communication standards [1]. Additionally, ontology mapping has been used to
improve semantic translation between network management models, where multiple
information languages define the same set of resources to be managed [2].

Domain specific ontologies define concepts in terms of semantics that are ap-
plicable to a certain area. They can contain rules defined in machine processable
languages to perform automated reasoning. By defining domain ontologies as a com-
mon framework for specific requirements, ontology developers are able to reuse such
frameworks and provide for application and information integration.

It was our aim to apply the ontological concept to this end in a domain where
such work has hitherto been fairly sparse – the financial market domain. The finan-
cial landscape is complex and volatile by nature, making timely information about
market trends critical to strategic success. As a result, the study of financial market
behaviour exists as a consequential field of endeavour for researchers and financial
analysts alike.

It was felt that ontologies would offer a solution for the management of infor-
mation dissemination as the sharing of common domain concepts and relationships
could bridge the different viewpoints of agents. In addition, the creation of an onto-
logy relies to a greater extent on the knowledge of the domain of application – such
as finance – than on programming knowledge. A final advantage of using ontology in
capturing concept of trading is that reasoning engines can be used in the evaluation
of trading strategies.

A survey of current work discovered few financial domain ontologies, and none of
those found had been written with the purpose of utilisation in multi-agent systems
in the manner proposed by our project.

For instance, in the stock market ontology of [7], the low-level design details
that describe the elements, relationships and rules of a stock market domain are

Design and Development of Financial Applications Using OBMAS 639

presented. Though the paper focuses on the reusability of the ontology, it does
not provide an application demonstrating how this could be made possible. In
another two studies [8, 9], the authors propose the use of financial domain ontologies
within a multi-agent system. However, the ontologies developed were used only as
a common semantic interface for agents where domain knowledge still resides within
the agents. Our aim is to allow end-users (i.e. financial domain experts) to modify
the system without needing the knowledge required to program agent behaviour in
low-level languages. Other studies of financial market ontologies mainly focussed
on ontology mapping (such as mapping across different news sources or information
formats) [10], however this is not the focus of our paper. We also saw projects
such as [11] where ontology was introduced into multi-agent systems. Although
these projects have similarities in their overall intended goals, they were explored in
a different domain.

Thus, though the projects surveyed provided insights in developing ontologies
within the financial services domain, they were lacking in some key benefits of using
ontologies. We hence develop our own financial ontology.

3.1 Ontology Development

Ontology development methodologies are a series of steps defining a process in which
an ontology can be created systematically. Because of the myriad of factors involved
in developing an ontology, such as the purpose, intention and domain, finding a com-
mon methodology for ontology engineering is difficult [12]. The methodologies sur-
veyed in [13] either did not provide details of building steps or was not domain spe-
cific. Based on analysis of currently available methodologies and commonly adopted
steps we propose a five step methodology for the creation of our financial market
ontology. Below is a summary of the high level steps involved.

Knowledge Acquisition. In this stage, we determined the scope, domain and
purpose of the ontology to be created. Knowledge acquisition was a major
challenge that was faced during the ontology design phase. This problem was
simplified by our decision to scope down the ontology domain to focus primarily
on stock markets. In order to perform knowledge acquisition, we firstly studied
the market processes with focus on electronic trading. Further understanding
was gained through collaboration with financial experts and acquiring draft sets
of financial domain concepts and their relationships. We also examined financial
market data including historical trade data, order details and market statistics
in relation to company announcements.

Conceptualisation. This is the process needed to turn raw knowledge into clearly
established concepts used to create our ontology. With constant interaction and
consultation with financial experts, we structurally organized and conceptualized
the raw information into the following aspects:

640 W. Ying, A. Sujanani, P. Ray, N. Paramesh, D. Lee, R. Bhar

Concepts – These are keyword or phrase descriptions of the domain of our
ontology – for example securities, portfolios, stock symbols, buyers, sellers
and stock market prices.

Facts – Instances of some concepts may be facts. For example, it is a fact that
the instance TLS, of a stock symbol, stands for TELSTRA CORPORA-
TION (Australia’s leading telecommunications company). These instances
are usually populated after the ontology is complete.

Some examples of concepts that we have included in our minimal set of financial
domain ontology include Portfolio, Stock, Company and MacroEvent, represent-
ing macroeconomic events. The macroeconomic events are further broken down
into LossEvent, TakeOverEvent and ProfitDropEvent. They correspond to the
following, respectively:

• announcements of company losses

• announcements of company takeovers

• announcements of drops in profit compared with the previous period.

Semantic Modelling. In this stage, we systematically modelled and enriched the
meanings of concepts. Since the ontology is meant to be for agent consumption
rather than for humans, the semantics of the concepts were modelled keeping
the agent architecture in mind. For the sake of simplicity, a BDI agent [14] was
assumed. The semantics of a concept was specified in terms of the behaviour
required of the agent responsible for the task of trading. A semantic model for
a particular concept essentially includes a set of attributes that characterize the
meanings of the concept. These include:

Relationships – These are dependencies or connections between concepts –
for example stocks are bought and sold by traders or stock portfolios belong
to traders.

Constraints – The cardinality constraints on attributes of a concept.

Using the concepts mentioned previously, a partial branch of our financial do-
main ontology tree is illustrated in the following graphical representation.

Figure 1 presents a portion of our financial domain ontology where the concepts
Portfolio, Stock, Company and MacroEvent are children of an abstract root con-
cept called Concept. Additionally, the concepts TakeOverEvent, LossEvent and
ProfitDropEvent are child concepts of MacroEvent. The dotted lines connecting
concepts represent a non parent-child relationship. The relationships between
the concepts Portfolio and Stock are ‘containsStock’ and the inverse ‘isPartOf-
Portfolio’. Relationships for the concepts Company and Stock are ‘isIssuedBy’
and ‘ownsStock’. For Company and MacroEvent the relationships are ‘hasEvent’
and ‘eventBelongsTo’.

Design and Development of Financial Applications Using OBMAS 641

Portfolio

MacroEvent

Concept

Company

TakeOverEvent

LossEventStock

ProfitDropEvent

Parent/Child Relationship

Concept Relationship

is
A
p
ar
tO

fS
to
ck

co
n
tain

sS
to
ck

isIssuedBy

ownsStock

eventB
elongsTo

hasEvent

Fig. 1. Graphical representation of partial financial domain ontology

Knowledge Representation. Here, we formally encoded the semantics identified
and captured in the previous steps. We used Protégé which stored the onto-
logy internally as RDF for a number of reasons. Firstly, we felt the Protégé
interface was both intuitive and user-friendly, not requiring a large amount of
time to become familiar with. Secondly it contained a large number of plug-ins
that enabled the user to extend the editor’s core functionality. Some of the
plug-ins that looked especially useful were the OntoViz Tab, which enabled the
visualisation of Protégé ontologies and the XML Tab, which enabled Protégé
ontologies to be extracted from XML files and XML files to be translated into
Protégé ontologies. This could facilitate the depiction of the ontology in a more
presentable manner.

The final deciding factor was that Protégé projects could be translated auto-
matically into FIPA/JADE compliant ontologies using a tool called the Java
Ontology Bean Generator [15]. In past work, ontologies have had to be manually
translated into more restricted machine readable formats such as XML, database
schema, or object oriented schema in order to bridge the communication gap
between software agents and the actual ontology. As we had decided to use the
JADE multi-agent environment [16] for implementation of FinBuilder, we felt
that this added automation would be a great advantage, as it would remove
the need to manually translate the ontology from the editor specification into
an agent-understandable format. Using the editor, we encoded the financial
ontology within the Protégé environment. Methods such as proposed by [17]
were also considered. However, these methods were not as flexible or efficient
when used for our implementation.

Validation. Normally this step precedes the knowledge representation step. We see
a major benefit in postponing this step and exploit the tools associated with the
ontology representation language (e.g. OWL/DL) to perform automatic checking
of consistency. Any defect will lead back to the conceptualization step resulting
in a cyclic ontology development process. Figure 2 illustrates a section of the

642 W. Ying, A. Sujanani, P. Ray, N. Paramesh, D. Lee, R. Bhar

development as visualised within the Protégé environment. The left side of
Figure 2 shows a snapshot of the ontology structure in a tree form while on the
right, details of each concept, its attributes, relationships and constraints are
displayed.

Fig. 2. Protégé ontology development snapshot

4 FINBUILDER

4.1 FinBuilder Architecture

Following the acquisition of financial market knowledge, the conceptual outline of
the financial ontology was developed. The process of knowledge of semantic model-
ling and knowledge representation can then be done in Protégé. Verification and
validation of the ontology can then follow. Figure 3 illustrates the overall ontology
development and FinBuilder architecture.

We investigated a number of multi-agent platforms and decided to use the JADE
framework as it had the greatest ontology support. The content reference model in
JADE enabled ontologies subscribing to its model to be accessed by its agents.
The model required the inclusion of low-level ontological elements – predicates,
terms, concepts and agent actions. The Bean Generator Tool allowed us to generate
a FIPA/JADE compliant ontology from the ontology specified in Protégé.

Design and Development of Financial Applications Using OBMAS 643

The complexity of the financial domain such as reactions to different financial
events and trading decisions influenced the design of the behaviours of the FinBuilder

agents. The input source was market data that was manipulated and fed into the
FinBuilder tool. Interaction with the ontology directly enabled agents to understand
and process the data feed and make trade decisions. This is illustrated in Figure 3
(adapted from [18]) by the external entity Trading Data Sources which produce the
Market Data feeds.

Financial

Transactions

Financial Domain

Knowledge

FIPA/JADE

Compliant Ontology

Java Ontology

Bean Generator

Protégé

 Multi Agent Platform

Trading

Results

Receive Order

In Stock?

Print Invoice To Shipping

Distributor Not Available

Financial Ontology

Conceptual Design

Specify Ontology

Agent Behaviour

Simple

Trader

Smart

Trader

AccessAccess

Convert With

Create

Market Data

Feed

Produce

Demonstration and Evaluation Environment

Trading Data

Sources

AgentComponent Tool

Fig. 3. Overall Architecture

4.2 Agent and Reasoning

We developed some scenarios with which to test the FinBuilder tool in this market
environment. Figure 4 illustrates the agents that are created and the ontological
layers each used for communication.

Order Agent: This agent is comparable to an electronic trading website that al-
lows traders to submit buy and sell orders. The role of this agent is to facilitate
an interface between the market and the traders.

In Figure 4, all trader agents are able to internally submit orders to this agent
without the requirement of additional message translation as the agents are
committed to the same ontology. An interface was created for entering external
orders into the system. This allowed us to mimic market behaviour as we enter
series of orders into the system and observe the agent’s reaction to the change
of the market state. Both order and order processing agents are apart of the
market mechanism block as shown in Figure 4.

644 W. Ying, A. Sujanani, P. Ray, N. Paramesh, D. Lee, R. Bhar

Order Layer

Portfolio Layer

Macroeconomic Event Layer

Event

Agent

broadcast events

Financial Ontology

Order Agent Behaviour

Order

Agent

Order Processing

Agent Behaviour

Event Agent Behaviour

update

portfolio

Stock Layer

submit buy/sell orders order process request

Preferences

Goals

Perceptions

Actions

Interpretations

MARKET MECHANISM

send transaction details

update

buy/sell tables

Trader

Agent

Trader

Agent

Trader

Agent

Simple Trader Behaviour

Intermediate Trader Behaviour

Advanced Trader Behaviour

Order

Processing

Agent

perform

order matching

Price

Developments

Fig. 4. Agent-Ontology Interaction [18]

Order Processing Agent: This agent represents the functions of a stock market
trading engine. This agent performs tasks such as receiving new orders from the
Order Agent and replies with confirmation of order submission. Order Process-
ing Agent also updates the market buy and sell order tables by performing order
matching. These tables display a continual listing of the current buy and sell
orders – including the prices set for limit orders, the stock name and symbol,
and the order quantity. Once a successful transaction is completed, the agent
either removes the orders from the tables, or updates the buy and sell quantities
displayed.

Event Agent: The Event Agent mimics the movement of stock prices in our ar-
tificial market by introducing macroeconomic events. The Event Agent repre-
sents these events, and disseminates announcements relating to companies to all
traders. Macroeconomic events change both agent behaviour and stock prices.
Communication between this agent and the trader agents is carried out through
messages conforming to the macroeconomic event ontology layer. Each trader
agent’s reaction to these events varies according to its level of sophistication.
The macroeconomic events considered are represented by the concepts in Fi-
gure 1.

Trader Agent: These agents represent traders in our stock market. Trader agents
comprise the main entities of interest in the prototype. Through their perfor-

Design and Development of Financial Applications Using OBMAS 645

mance, the ability to simulate trading with the financial ontology can be eva-
luated. FinBuilder models the heterogeneity of stock market traders through
three different trader agent types. These are:

Simple Agent – exhibits primitive trading behaviour.

Intermediate Agent – has moderately informed trading behaviour.

Advanced Agent – possesses sophisticated trading behaviour.

In order for meaningful comparison of agent performance to take place, each
agent is initialised with an ownership of the same number and valuation of
stocks. Each agent is also provided with a list of stocks that are interested in
buying. This reflects real-world trading decisions to invest in technology stocks
or blue chip stocks. For the purposes of better performance comparison, we
decided to standardise the number of shares each agent buys or sells on each
trade. Additionally, FinBuilder enables these settings to be defined at trader
initialisation.

The main differences in behaviour arise from the agents’ buying and selling
strategies, and from their reaction to market macroeconomic events. For example,
being the most primitive, the Simple Agent type is designed to ignore trend indi-
cations given by market macroeconomic events, while the Intermediate Agent and
Advanced Agent behaviours react to these events. The reasoning behaviour of the
agents is implemented through a series of conditional statements of the form

(C1&...&Cn) → do : Ai, ..., Aj

for all C conditions and A actions. Agents evaluate each conditional statement
to true or false by consulting the financial ontology. The statements vary depending
on the sophistication of each trader agent. For example, an agent of intermediate
intelligence incorporates the following conditions in its behaviour:

(company has loss) →
do: suspend trading for x time

(drop in profit) →
do: suspend trading for x time

(company is being taken over) →
do: buy shares

(currently hold takeover target company shares) →
do: suspend trading for x time; sell shares

An advantage of the use of ontologies is that the conditions can be classified through
description logic reasoning. For a simplistic example using the ontology illustrated
in Figure 1, we could create defined concepts GoodInvestmentCompany as a sub-
concept of the concept Company. The GoodInvestmentCompany is defined as:

GoodInvestmentCompany ≡ Company⊓ ∋ hasEvent.TakeOverEvent. (1)

646 W. Ying, A. Sujanani, P. Ray, N. Paramesh, D. Lee, R. Bhar

This simply means that a GoodInvestmentCompany is Company and is being taken
over. We then create another concept called GoodStock as a sub-concept of Stock
to define the stocks issued by instances of GoodInvestmentCompany.

GoodStock ≡ Stock ⊓ ∀isIssuedBy.GoodInvestmentCompany (2)

Through the use of inferencing we could derive instances of the concepts ‘GoodStock’
which can be used by the trading agents.

Each agent also has a trading portfolio, comprising of realised and unrealised
profit tables. These can be viewed at any time during a FinBuilder simulation, and
are dynamically updated every time an order transaction is successfully completed.
The updating of the portfolio is carried out through the passing of information
committed to the portfolio ontology layer. In addition, a graph of the profits over
the total trading time can be viewed and is updated automatically.

An example of a scenario would start with a macroeconomic event agent creating
an instance of TakeOverEvent concept. The instance of the TakeOverEvent concept
is shown below by an OWL/RDF representation.

<TakeOverEvent rdf:ID="takeOverByCompanyX">

<isTakenOverBy rdf:resource="#CompanyX"/>

<eventBelongsTo rdf:resource="#CompanyY"/>

</TakeOverEvent>

This is sent through the Macroeconomic Event Layer of the financial ontology. Be-
cause the trader agent shares the same ontology, it would immediately understand
the concept and compute a response. Depending on the sophistication of the trader
agent reasoning, conditional statements will be evaluated using the TakeOverEvent
concept. A response by the trader agent will either be nothing or creation of an in-
stance of OrderDetails with attributes representing sell or buy orders of certain
quantities of stock. An example of an OrderDetails instance in OWL/RDF is shown
below:

<OrderDetails rdf:ID="OrderDetailsInstance16">

<amount rdf:datatype="&xsd;int">10</amount>

<price rdf:datatype="&xsd;float">143.2</price>

<orderType rdf:datatype="&xsd;string">Buy</orderType>

<stockOrder rdf:datatype="&xsd;string">CompanyXStock</stockOrder>

</OrderDetails>

The instance of OrderDetails is then sent to the order agent through the order
layer of the ontology. Once matching and validation is complete, the instance of
OrderDetails get passed onto the order processing agent which in essence updates
our virtual stock market.

4.3 Implementation Evaluation

We developed an evaluation strategy based on a heuristic evaluation technique de-
scribed in [19]. This involved both testing FinBuilder with predefined inputs and

Design and Development of Financial Applications Using OBMAS 647

demonstrating it to a number of different individuals with varying knowledge and
expertise in the fields of information technology and finance.

We ran FinBuilder using several variations of macroeconomic events derived
from the financial market data. Figure 5 shows the graph of the portfolio values of
a Simple Agent and an Intermediate Agent, that both traded with an equal number
of shares from the same company over a common time period.

0

10

20

30

40

50

60

70

80

90

100

Dec-05 Jan-06 Feb-06 Mar-06 Apr-06 May-06 Jun-06 Jul-06 Aug-06 Sep-06 Oct-06 Nov-06 Dec-06 Jan-07 Feb-07

Simple Agent- Unrealised Profit/Loss Simple Agent - Realised Pro"/Loss

Intermediate Agent - Unrealised Pro"/Loss Intermediate Agent - Realised Profit/Loss

D
o

ll
a

rs

Month/Year

Macroeconomic Event

Fig. 5. Portfolio values of a Simple Agent Trader and an Intermediate Agent [18]

The macroeconomic event that occurred during this period was an announce-
ment that the company was the target in a takeover. This announcement occurred
at the start of the trading period – in Dec-05.

The Simple Agent, which was not responsive to the macroeconomic event, con-
tinued trading, as it normally would have. The black line on the graph goes to zero
in Aug-06 as the agent has sold all its holdings, and has realised all its profits. The
Intermediate Agent, on the other hand, was receptive to the company announcement
through interaction with the financial ontology and reasoning. As a result it ceased
trading for a short time to allow for market stabilisation, before re-commencing.
In this instance, its strategy was successful. While the results obtained by each
simulation were not always the same, they did show that FinBuilder successfully
demonstrated the use of ontologies with heterogeneous agents within the financial
domain.

In addition to studying the FinBuilder results, a set of evaluation parameters
was defined, under which individuals carried out their evaluation. These parameters
focussed on evaluating FinBuilder from a user perspective and were: Ease of Use,
Flexibility, Scalability, Modularity and Domain Relevance. We asked those familiar
with the finance area to provide their evaluation of the first and last parameters,
and those with IT expertise to rate all the parameters.

648 W. Ying, A. Sujanani, P. Ray, N. Paramesh, D. Lee, R. Bhar

Users of the tool gave the prototype on average 9/10 for relevance to the domain,
and useability was given an average rating of 8/10. Those who had IT experience
found their main problem was not so much in understanding how to use the interface
but rather in understanding the financial concepts well enough to use the interface.

FinBuilder was demonstrated under a Windows platform, however JADE frame-
work is also able to integrate with web browsers and Java Applets, so the applica-
tion could be translated into a web service in the future, enabling greater flexibility.
Similarly, due to the underlying JADE infrastructure, the prototype may be run on
multiple computers with little complication. Hence it was assessed as being scalable.

The prototype consisted entirely of the financial ontology layers and agents.
Hence its design was modular. In addition, coupling was loose, as agents commu-
nicated with each other through sending and receiving of messages that subscribed
to the ontology. Thus they did not necessarily need to know the names of the other
agents to whom they were sending messages to as generic broadcasting techniques
could be employed.

The ontology modelled in Protégé enables sharing across applications and agents.
The layered approach taken to the development means that concepts could be spe-
cified in separate smaller ontologies and then combined into a larger encompassing
ontology. This facilitated the reuse and sharing of the ontology as well as providing
a degree of interpretability for the agents.

The ontology plays a crucial role as agent communication is solely carried out
through the passing of messages that subscribe to the ontology. This means that
whenever an agent receives information for another agent – for example, when the
Order Agent receives a sell order from a Trader Agent – no meaning translations are
required to understand the communication. Thus, the need for the actual financial
domain information to be coded at the infrastructure layer in order for all agents to
understand is removed. Also eliminated is the need for human interpretation and
supervision to facilitate agent reasoning and dictate behaviour.

5 DISCUSSION

Through the process of developing the FinBuilder Tool, we have derived a Design
Methodology for Ontology-Based Multi-Agent Applications (MOMA) [23]. MOMA
attempts to systematically address the lack of support for ontologies in existing
Agent-Oriented Software Engineering (AOSE) methodologies. MOMA addresses
some of the difficult problems of ontology development using recent developments,
such as Grounded Theory (GT) described next.

Identification of concepts for the purpose of ontology modelling can be a very
time-consuming task. It also follows a very implicit and intuitive process. To make it
easier for domain experts (who might not have expertise in knowledge engineering),
a more methodological approach is needed. Hence, the identification of concepts
and relationships is guided by the principles of Grounded Theory (GT) [21, 20].
GT facilitates the production of core categories and relationships from data through

Design and Development of Financial Applications Using OBMAS 649

a systematic method of constant comparison where new data is continuously com-
pared to existing data. Although GT originates in the social sciences, it has been
proven to be valuable when applied to ontology construction [22]. The key points
are marked with a series of codes, which are extracted from the text. The codes are
grouped into similar concepts, in order to make them more workable. From these
concepts categories are formed. In the context of ontology, the codes are extracted
from requirements and domain information. Concepts and sub-concepts are the
results.

MOMA involves both knowledge engineering as well as agent development.
Hence it is broken down into two parts: ontology development and agent develop-
ment. Ontology development includes the modelling and representing the ontology
as described in Section 3 to the code generation of the ontology. Agent development
involves the design and development of the agents and its environment using agent
theories. The MOMA process can be summarised as the following sequence of steps
for ontology development:

Step 1: Identify Generic, Domain and Task ontology – Gathering of domain know-
ledge, identifying concepts and building upper layer ontology. Reuse of existing
ontology can also be done in this step.

Step 2: Customising Domain ontology for Application – Extending ontological con-
cepts from the previous step for specialised domains and application concepts.

Step 3: Building the Mediation ontology – Mediation ontology is used for heteroge-
neous multi-agent systems that make use of external entities. It provides a layer
of abstraction to those external sources.

Step 4: Building the Communication ontology – The communication ontology will
help define the syntax in which the agents communicate with.

Step 5: Adding logic through Rules and Axioms – Although ontology, through
languages like OWL, support reasoning, it is very hard to model complicated
logic using ontology. This is the reason for the introduction of rule languages
such as SWRL (A Semantic Web Rule Language). This step helps define logic
that can not be expressed in ontological representation languages such as OWL.

Step 6: Specifying ontological mappings between application ontology – Ontologi-
cal mapping is a semantic correspondence between two concepts of two different
ontology. Mapping in this step is used to bridge the semantic gap between
concepts in those application ontologies.

Step 7: Code Generation – This step involves the generation of the ontology into
semi-executable code. This code will then be used in the agent implementation.

Table 1 is an evaluation summary of the objectives of MOMA when applied to
FinBuilder as a case study.

650 W. Ying, A. Sujanani, P. Ray, N. Paramesh, D. Lee, R. Bhar

Objective Evaluation

1. Reuse and sharing MOMA provides a structured meta-model to
model the ontology. This meta-model guides the

user into creating ontologies that can be easily
shared and reused. This meta-model also allows
the reuse of existing generic ontologies.

2. Move business logic

and domain knowledge
from underlying agent
code to higher level

Domain knowledge has been moved from the

agent code to the ontology. However, some of
the behaviour and business logic of the agents
themselves still needs to be coded in the Agent
Development Part. This is due to the fact that
generation of code for axioms and rules is not
supported by current tools.

3. Facilitate the use of
tools to accelerate de-
velopment

MOMA is driven by the use of tools as a part of
its processes. The use of tools definitely speeded
up the development, especially for time consum-
ing tasks such as concept identification.

4. Reuse of existing on-
tology

Refer to 1

5. Distinguish roles

between domain expert
and agent developer

There is a clear distinction between the roles of

domain expert and agent developer. The two
parts of MOMA separates these roles. However,
there is still requirement for the agent developer
to request information from the domain expert.

6. Usability by do-
main expert without the
agent developer

This objective has not been satisfied. With-
out the agent developer, at its current state
MOMA cannot produce a working agent appli-
cation. The ultimate goal is to have the ontology
be generated into a code that can be plugged di-
rectly into a generic agent framework. There is
also an assumption that the domain user under-
stands the basics of knowledge engineering.

Table 1. Evaluation of Objectives of MOMA [23]

6 CONCLUSIONS

This paper has presented an ontology-driven approach for the development of intel-
ligent applications based on multi-agent systems, illustrated through a case study in
financial applications. This approach helps domain experts and financial researchers
experiment with muti-agent mathematical models without having to know the low-
level programming details. Basically, application developers have to focus on onto-
logy development and tools, such as Protg that takes care of the generation of the
code that works on multi-agent platforms, such as JADE. Although some financial
ontologies have existed in the past, they were not designed to drive agents. Hence

Design and Development of Financial Applications Using OBMAS 651

this approach looks promising from the point of view of intelligent application de-
velopment in finance and other business areas. Therefore, we have attempted to
help the adoption of this approach through the development of a new Methodolo-
gy for Ontology based Multi-agent Applications (MOMA) and associated tools for
practical deployment.

During the development of FinBuilder, our assessment was that the financial
ontology provided a useful way of separating the application infrastructure from
financial domain knowledge, thereby enabling agents to communicate more effec-
tively. Its use enabled those with greater knowledge in the domain of finance than
that of IT to extend and increase the ontology in complexity in an incremental
fashion without requiring greater expertise in low-level languages or technologies.
This was substantiated by testing, appraisal of results and evaluation by external
individuals.

However, we found that it was necessary to change some agent design aspects,
though ontologies we were able to help generate most of the code for domain know-
ledge, some agent logic and behaviours will still need to be implemented with the
agent.

More research is needed to establish this methodology in a practical environment.

Acknowledgments

This research was partially funded by the Australian Cooperative Research Centre
(CRC) for Technology Enabled Capital Markets (CMCRC).

REFERENCES

[1] Smith, H. (Director of Strategy, E-Business, CSC Europe): The Role of Ontolo-
gical Engineering in B2B Net Markets, August 2000, http://ontology.org/main/

papers/csc-ont-eng.html.

[2] López de Vergara, J. E.—Villagrá, V.A.—Asensio, J. I.—Berrocal, J.:
Ontologies: Giving Semantics to Network Management Models, IEEE Network, Spe-
cial issue on Network Management, Vol. 17, May/June 2003, No. 3.

[3] Swarm Development Group (SDG): Agent-based modelling resource on the World
Wide Web, Introduction to Swarm, Accessed April 2004, http://wiki.swarm.org/
wiki/.

[4] Neuberg, L.—Bertels, K.: Heterogeneous Trading Agents, Complexity Journal,
pp. 28–35, May 2003.

[5] SFI Artificial Stock Market, Accessed March 2004.

[6] Ambroszkiewicz, S.—Cetnarowicz, K.: On the Concept of Agent in Multi-

Robot Environment. Workshop on Radical Agent Concepts (WRAC), 2005,
NASA Goddard Space Flight Center, Greenbelt, MD (Washington DC) USA,
http://www.santafe.edu/sfi/publications/Bulletins/bulletinFall99/news/

stockMarket.html.

652 W. Ying, A. Sujanani, P. Ray, N. Paramesh, D. Lee, R. Bhar

[7] Alonso, S.—Bas, J.—Bellido, S.—Contreeas, J.—Benjamins, R.—Gomez,

J.: WP10: Case study eBanking D 10.7 Financial Ontology DIP. http://dip.

semanticweb.org/documenets/D10-7-Stock-Market-Ontology.pdf.

[8] Zhang, Z.—Zhang, C.—Ong, S. S.: Building an Ontology for Financial Invest-

ment. In Proc. Of Intelligent Data Engineering and Automated Learning – IDEAL
2000: Data Mining. Financial Engineering, and Intelligent Agents 19. LNCS 1983,
2000.

[9] Zhang, Z.—Zhang, C.: Agent-Based Hybrid Intelligent Systems, LNAI 2938.

[10] Snoussi, H.—Magnin, L.—Nie, J.: Toward an Ontology-Based Web Data Ex-
traction. The Fifteenth Canadian Conference on Artificial Intelligence AI 2002,
BASeWEB Proceedings.

[11] González, E. J.—Hamilton, A. J.—Moreno, L.—Marichal, R. L.—

Toledo, J.: Ontologies in a Multi-Agent System for Automated Scheduling, Com-
puting and Informatics. Vol. 23, 2004, No. 2, pp. 157–177.

[12] Fan, J.—Ren, B.—Xiong, L.: Modeling and Management of Ontology-Based
Credit Evaluation Meta-Model. IEEE International Conference on Systems, Man and
Cybernetics (SMC 04), 2004.

[13] Uschold, M.—King, M.: Towards a Methodology for Building Ontology. In work-
shop on basic ontological issues in knowledge sharing: International Joint Conference
on Artificial Itelligence, pp. 373–380, 1995.

[14] Wooldridge, M.: Reasoning about Rational Agents. The MIT Press Cambridge,
Massachussetts/London, England, 2000.

[15] Java Ontology Beangenerator, Accessed July 2004, http://www.swi.psy.uva.nl/
usr/aart/beangenerator/.

[16] JADE – Java Agent Development Framework, Accessed July 2008, http://jade.
tilab.com/.

[17] Laclav́ık, M.—Balogh, Z.—Bab́ık, M.—Hluchý, L.: AgentOWL: Semantic
Knowledge Model and Agent Architecture, Computing and Informatics, Vol. 25, 2006,
pp. 419–437.

[18] Sujanani, A.—Ray, P.—Paramesh, N.—Bhar, R.: The Development of Onto-
logy Driven Multi-Agent Systems: A Case Study in the Financial Services Domain.
ACM International Conference Proceeding Series, Vol. 87, Hong Kong, 2005.

[19] Ray, P.: Integrated Management from E-Business Perspective – Concepts, Archi-
tectures and Methodologies. Kluwer Academic/Plenum Publishers, New York, 2003.

[20] Strauss, A.—Corbin, J.:Basics of Qualitative Research: Techniques and Proce-
dures for Developing Grounded Theory. Second edition. Sage Publications, Thousand
Oaks 1998.

[21] Strauss, A.—Corbin, J.: Grounded Theory Methodology: An Overview, Hand-
book of Qualitative Research, Sage Publications, Thousand Oaks, 1994, pp. 273–285.

[22] Kuziemsky, C.—Downing, G.—Black, F.—Lau F.: A Grounded Theory
Guided Approach to Palliative Care Systems Design International Journal of Medical
Informatics. Vol. 76, Issue null, pp. S141–S148.

Design and Development of Financial Applications Using OBMAS 653

[23] Ying, W.: Design Methodology for Ontology-Based Multi-Agent Applications. Mas-

ter of Philosophy thesis, School of Information Systems, Technology and Manage-
ment, University of New South Wales, Sydney, 2009.

Weir Ying is a recent graduate of Bachelor of Software Engi-
neering and Bachelor of Commerce from the University of New
South Wales. He is currently undertaking research in the area
neural networks and network management. He has interest in
the areas of network management, multi-agent systems, Seman-
tic Web technologies and Ontology driven systems.

Anjalee Sujanani recently completed her Masters degree in
computer science from Stanford University with a specialization
in databases. She obtained her Bachelors in software engineering
from the University of New South Wales, Sydney, Australia. Her
research interests include data modeling, text retrieval and data
mining, software design and implementation, database manage-
ment systems and strategy in technology.

Pradeep Ray is the Director of the new Asia Pacific ubiqui-
tous Healthcare Research Centre (ApuHC) at the University of
New South Wales, Australia. Ontology-Based Multi Agent Sys-
tems (OBMAS) is one of the three major research programs at
APuHC. His research interests include e-Health, ubiquitous care,
networked network/systems/services management, network se-
curity, networked enterprise services in various business sectors,
such as telecommunications, healthcare and finance. He has
more than one hundred international refereed publications (in-
cluding two research books) in these areas. He has been working

for a decade on the use of Internet and related technologies for the healthcare including
aged care. He is the founder of IEEE Healthcom conference that brings together people
from healthcare, information technology and business to discuss problems and emerging so-
lutions in e-Health that includes aged care using information technologies. He has also lead
a number of international initiatives in e-Health, such as the IEEE/ITU-D Mobile e-Health
for Developing Countries and the International Ubiquitous Healthcare (u-Health) Initia-
tive. He has been the Chair of the IEEE Technical Committee on Enterprise Networking

(EntNet). More details can be found at his home page http://www.apuhc.org/pradeep.

654 W. Ying, A. Sujanani, P. Ray, N. Paramesh, D. Lee, R. Bhar

N. Paramesh is a Senior Lecturer in the School of Computer

Science and Engineering, University of New South Wales, Syd-
ney, Australia. He carries out research in the areas related to
agent technology and applications in problem solving in dynamic
situations. He is currently involved in the design and implemen-
tation of ontology-based agent dialogs in enterprise applications.

Damien Lee is a Ph.D. student in the School of Finance at

the University of New South Wales. He holds a Bachelor of
Commerce/Bachelor of Science degree majoring in actuarial stu-
dies and computer science. His current area of research includes
stochastic volatility modelling and forecast density evaluation.

Ramaprasad Bhar completed the Ph.D. in quantitative fi-

nance in 1997 from UTS on non-Markovian term structure of
interest rate modelling. Prior to joining academia in 1992, he
worked in system software development for several years in va-
rious capacities in India, Australia, and The Netherlands. He
studied computer science at the University of Waterloo, Canada
with a scholarship from the Canadian Government. His indus-
try experience includes multinational firms like Credit Lyonnais,
Nederland and Unisys, U.S.A. He published two research inten-
sive books with Springer in 2004 and 2005 jointly with S. Hamori,

Kobe University, Japan. He was awarded the fellowship of the Japan Society for the Pro-
motion of Science in 2005. His current research interests include stochastic modelling,
pricing credit default swap, asset pricing subject to Markov chain and application of cop-
ulae to financial market problems. Personal website is at www.bhar.id.au.

