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Abstract. It is well known that there does not exist a Boolean function f : Zm
2

→
Zn
2
satisfying both basic cryptologic criteria, balancedness and perfect nonlinearity.

In [9] it was shown that, if we use as a domain quasigroup G instead of the group Zn
2
,

one can find functions which are at the same time balanced and perfectly nonlinear.
Such functions have completely flat difference table. We continue in our previous
work, but we turn our attention to the worst case when all lines of Cayley table of G
define so called linear structure of f ([5]). We solve this problem in both directions:
We describe all such bijections f : G → Zn

2
, for a given quasigroup |G| = 2n, and

describe such quasigroups for a given function f .
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1 INTRODUCTION

It is well known that basic building blocks used in product ciphers are relatively
small S–boxes in connection with P-boxes. S–boxes are in fact Boolean functions
f : Zm

2
→ Zn

2
driven by relatively small keys. They provide confusion for the

ciphering algorithm. P–boxes are not controlled by a key, and provide diffusion for
the ciphering algorithm. As a rule they are permutations. Connection of these two
blocks produces so called S–P blocks, i.e. permutations

f : Zn
2
→ Zn

2
,

where Zn
2
= Z2×Z2×. . .×Z2, Z2 = {0, 1}. Elements of Zn

2
are usually represented as

binary numbers, and thus hereafter we use notation like 101 = [5]b. Clearly, there is
a bijection J from the set A = {0, 1, 2, . . . , 2n−1} to Zn

2
defined as follows: J(i) = [i]b

iff i = in−12
n−1 + in−22

n−2 + . . .+ i02
0 ∈ A and [i]b = (in−1, in−2, . . . , i0) ∈ Zn

2
. The

inverse mapping is J−1 : Zn
2
→ A, J−1([i]b) = i.

A design itself has in each iteration — called round — one layer consisting of an
affine mappings T : Zn

2
→ Zn

2
, and one layer of S-boxes f . It is a generalization of

substitution/permutation networks in which the affine mapping T is just a bit per-
mutation. Affine layer provides diffusion and layer with S-boxes provides confusion
according to classical Shannon’s encryption paradigm. This view enables to make
analysis of block diagram structure of a cipher (see [2]). Our generalization is not
going into structural analysis, but into layer with S-boxes. We simply change a tra-
ditionally considered S-box, i.e. the Boolean function f , to a mapping f : S −→ Zn

2

defined on a quasigroup S. This change yields that the difference table of S-box
(one of the basic parameters) can be completely “flat” (perfectly nonlinear — see
below) even in the case of identity mapping f = id. One possible design of this kind
is visualized in Figure 1, where k, x, y, x′y′ ∈ S = (A, ∗).
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Fig. 1. One round of a Feistel-like cipher with a quasigroup

For reader’s convenience we briefly recall some facts from algebra [3]:

groupoid Let S be a finite set. If there is a binary operation, “∗”, defined on S,
then (S, ∗) is called a finite groupoid. The full information on S is then given
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by so called Cayley table, i.e the table which shows how to multiply elements of
S. Here is a small example for S = {e, b, c}:

(S, ∗) e b c
e e b c
b b c b
c c e b

left unit e of a groupoid S is an element satisfying e∗s = s for all s ∈ S. Groupoid
from the previous example possesses such element. Similarly, one can define a
right unit. An element i of a groupoid S is called identity if it is both left and
right unit.

right simple groupoid A right simple groupoid S is a groupoid with the property
that x ∗ S = S holds for all x ∈ S, i.e., each row of its Cayley table is a
permutation of the elements of S. A left simple groupoid can be defined in a
similar way, and each column of its Cayley table is a permutation of the elements
of S. Clearly, groupoid from the example above is neither right nor left simple.

quasigroup A groupoid which is both right and left simple is called quasigroup.
Clearly, its Cayley table should be a Latin square over the set S, i.e. a well known
combinatorial structure containing permutations of elements of S in rows as well
as in columns. Here is a small example for S = {a, b, c}:

(S, ∗) a b c
a b a c
b c b a
c a c b

A quasigroup may, or may not contain a left (right) unit. If there is no left unit
we say that this is a quasigroup without left units, shortly QWLU.

group A groupoid which is both right and left simple, possessing a unit element i,
and for any elements a, b, c ∈ S the associative law is valid: a∗ (b∗ c) = (a∗ b)∗ c
is called a group.

The notion of perfect nonlinearity and balancedness [10] was defined for the case
when S = Zn

2
. In [9] we extended this notions to the class of all quasigroups without

left units.

Definition 1. Let g : S → Z2. Then g is balanced if

∑

x∈S

g(x) =
|S|

2
. (1)

Obviously in this case there exists an integer ℓ such that |S| = 2ℓ. If we denote
A0 = {i ∈ S | g(i) = 0}, and A1 = {i ∈ S | g(i) = 1}, then |A0| = |A1| = |S|/2.
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It is clear that the notion of balancedness is independent of the algebraic structure
of S.

Let S be any nonempty set. Then to any subset B ⊂ S we assign its character-
istic function fB : S → Z2. Conversely, any function f : S → Z2 can be considered
as a characteristic function of the set B = {x ∈ S| f(x) = 1}. Hence, fB is the
membership function for B.

Hereafter Zn
2
is assumed together with the coordinate wise exclusive or operation

⊕, which is the group. Any S-P block is a permutation on this group. Changing the
domain, say by A, one can study a similar situation on a quasigroup G = (A, ∗),
where for a fixed a, ga : A → A, ga(x) = a ∗ x is a permutation. In fact permutation
belonging to ga is located in the row of Cayley table headed by a. The same is valid
for columns as well. This yields that the Cayley table of G is a Latin square.

Definition 2. Let S be a quasigroup without left units. The characteristic function
fA : S → Z2 of a set A ⊂ S is perfectly nonlinear (shortly PN) if for any i ∈ S, the
function

DifA : S → Z2, DifA(x) = fA(i ∗ x)⊕ fA(x) (2)

is a balanced function.

In the same paper [9] we extended this definition to the case of vector functions
g : S → Zm

2
, |S| ≥ 2m.

Definition 3. Let S be a nonempty set, |S| ≥ 2m, and

g : S → Zm
2
, g = (g1, g2, . . . , gm).

Then g is balanced if for any c = (c1, c2, . . . , cm) ∈ Zm
2
, c 6= 0, c.g : S → Z2,

c.g(x) =
⊕m

i=1
cigi(x) is a balanced function. The dot product c.g is assumed with

⊕ operation.

For example, let S = {0, 1, . . . , 2n − 1} and π be any permutation on S. Then
J ◦ π is balanced.

Definition 4. Let (S, ∗) be a quasigroup without left units. A function f : S → Zm
2

is generalized perfectly nonlinear (shortly GPN) if for any i ∈ S, Dif : S → Zm
2
,

Dif(x) = f(i ∗ x)⊕ f(x) is a balanced function.

In [9] we define G such that J : G → Zn
2
, J(x) = [x]b possesses ideal difference

feature. By this we mean that for any i ∈ G the function

(DiJ) : G → Zn
2
, (DiJ)(x) = J(i ∗ x)⊕ J(x) (3)

is balanced, and J is (GPN). As a consequence, so called difference table possesses
only one’s. The difference table of J is a table with rows labeled by elements of G,
and columns labeled by elements of Zn

2
. In the cell belonging to i ∈ G and [j]b ∈ Zn

2

there is the number of x ∈ G such that (DiJ)(x) = J(i ∗ x) ⊕ J(x) = [j]b. The
best one to be expected from the point of view of immunity to so called differential
cryptanalysis is a table with all entries 1’s only. A small example for n = 4 follows.
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Example 1. Our construction consists from the following steps:

• Select a transversal1 of the group Z2

2
. (Marked below in Cayley table for Z2

2
by

boxes.)

• The selected transversal defines a permutation α on Z2

2
.

• Then β defined by
β([x]b) = α([x]b)⊕ ([x]b)

is a permutation on Z2

2
.

• The couple (α, β) yields one row of Cayley table of S, say for i. The operation
∗ on S = {0, 1, 2, 3} is defined as follows:

i ∗ x = J−1(α([x]b)).

• Then clearly

(DiJ)(x) = J(i ∗ x)⊕ J(x) = α([x]b)⊕ [x]b = β([x]b).

It is readily seen that (DiJ)(x) is a permutation, and thus a balanced function.
The i-th row of difference table described above possesses only 1’s:

S\Z2

2
00 01 10 11

0
...
i 1 1 1 1
3

The result is visualized in the following Cayley tables:

[x]b 00 01 10 11
α 00 10 11 01
β 00 11 01 10

Z2

2
00 01 10 11

155 00 00 01 10 11

01 01 00 11 10

10 10 11 00 01

11 11 10 01 00

→

S 0 1 2 3
0
...
i 0 2 3 1
3

1 A transversal of a Latin square of order N is a set of N cells, one in each row, one in
each column, and such that no two of the cells contain the same symbol.
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• The next transversal α′([x]b) is obtained by adding a constant term, i.e.
α′([x]b) = α([x]b) ⊕ [a]b. For, e.g. [a]b = 11 we have 11, 01, 00, 10. This yields
another row of the Cayley table, namely: 3, 1, 0, 2.

• The quasigroup is then as follows:

S 0 1 2 3
0 0 2 3 1
1 3 1 0 2
2 1 3 2 0
3 2 0 1 3

This represents a “positive extreme”. The main toolkit for finding such Cayley
tables was the existence of so called transversals in Latin squares.

Our main results in [9] are

Theorem 1. For any n > 1 there exists a quasigroup S without left units, |S| = 2n,
and a generalized perfectly nonlinear bijection f : S → Zn

2
.

More quasigroups and functions of our interest can be obtained by the following
costruction.

Corollary 1. Let S be a QWLU, |S| = 2n, and f : S → Zn
2
, f arbitrary generalized

perfectly nonlinear bijection. Let ρ be a right regular permutation2 of S, and g :
Zn

2
→ Zn

2
be a linear bijection. Then F = g◦f ◦ρ is a generalized perfectly nonlinear

bijection.

Next we turn to a “negative extreme”. It is well known that the existence of
so called linear structures for Boolean function f : Zm

2
→ Zn

2
is a weakness both

for block and stream ciphers [6, 11, 5]. Thus it is of particular importance to avoid
such cases. In this paper we continue in our previous work when we generalize the
domain of f providing the best possible quality of S-boxes not accessible for Boolean
functions.

In Section 2 we generalize the notion of a linear structure from [5], and in
Section 3 we describe all such bijective functions. Special attention is devoted to
quasigroups without left units playing the crucial role in the “positive case”. While
in previous section we discuss constructions of a quasigroup G to the given function
f , in Section 4 we solve the converse, i.e. to given quasigroup G find functions which
posses at least one linear structure.

2 Let (S, ∗) be a QWLU, and ρ : S → S be a permutation of elements of S such that
for any x, y ∈ S, ρ(x ∗ y) = x ∗ ρ(y). Then ρ is called a right regular permutation [1].
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2 LINEAR STRUCTURES

Let us assume again the function J : A → Zn
2
, J(x) = [x]b where A = {0, 1, . . . , 2n−

1}. Our aim is to define an operation ∗ on A such that

1. G = (A, ∗) would be a quasigroup

2. there exists at least one i ∈ G, such that DiJ from (3) is the constant function,
i.e. there exists [a]b ∈ Zn

2
such that (DiJ)(x) = [a]b for all x ∈ G.

If this is the case then the difference table for J , namely in the row labeled by
i ∈ G, possesses zeroes only except of one entry 2n.

In details, from (3) we have

J(i ∗ x)⊕ J(x) = [i ∗ x]b ⊕ [x]b = [a]b
or [i ∗ x]b = [a]b ⊕ [x]b

which yields i ∗ x = J−1([a]b ⊕ [x]b)

-

?

Z
Z
Z
Z

Z
Z
Z
ZZ~

G
J

Zn
2

π

Zn
2

f

Fig. 2. Diagram for f = π ◦ J : G → Zn
2

In other words, if we compare Cayley tables for G and Zn
2
, the row labeled by

i ∈ G in Cayley table for quasigroup G is the same as “decoded from binary” row
labeled by [a]b ∈ Zn

2
.

Recall that element i ∈ G has the property that there exists [a]b ∈ Zn
2
such that

J(i ∗ x)⊕ J(x) = [a]b. Following [11, 5] we call such element i linear structure of J .
More precisely:

Definition 5. Let G = (A, ∗) be a quasigroup, and f : G → Zn
2
be a function.

An element i ∈ G is called linear structure of f if there exists [a]b ∈ Zn
2
such that

f(i ∗ x)⊕ f(x) = [a]b for all x ∈ G.

First of all we emphasize a very close relation between linear structures and ho-
momorphisms of quasigroups. Let h : G → Zn

2
be an arbitrary homomorphism.

Then
h(i ∗ x) = h(i)⊕ h(x)

yields
h(i ∗ x)⊕ h(x) = (h(i)⊕ h(x))⊕ h(x) = h(i) = [a]b.

Thus, any i ∈ G is the linear structure of a homomorphism h.
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3 LINEAR BIJECTIVE STRUCTURES

Next we describe linear structures of a bijection f in the case |G| = 2n. Clearly, any
bijection f is a composition of our function J , and a permutation π : Zn

2
→ Zn

2
(see

Fig. 2):
f = π ◦ J : G → Zn

2
,

f(x) = (π ◦ J)(x) = π(J(x)) = π([x]b). (4)

Let us suppose that there exists a linear structure i ∈ G of f . Thus there exists
[a]b ∈ Zn

2
such that for any x ∈ G

f(i ∗ x)⊕ f(x) = [a]b.

Using (4)
f(i ∗ x) = [a]b ⊕ f(x) = [a]b ⊕ π([x]b). (5)

Since
αa : Z

n
2
→ Zn

2
, αa([y]b) = [a]b ⊕ [y]b

is a permutation on Zn
2
we can write in (5)

f(i ∗ x) = αa(π([x]b)) = αa(f(x)),

or equivalently
i ∗ x = (f−1 ◦ αa ◦ f)(x). (6)

Hence relation (6) defines the row of Cayley table of G belonging to i ∈ G. Further,
it is not difficult to prove that for [a]b 6= [u]b, the following two permutations g, h on
G are different:

g = f−1 ◦ αa ◦ f and h = f−1 ◦ αu ◦ f .

To define αa ◦ f : A → Zn
2
one must assume the group structure of Zn

2
.

We summarize:

1. Let f : A → Zn
2
be a bijection, and i ∈ A is fixed. Then on A there exists

operation ∗ such that G = (A, ∗) is a quasigroup, and i is a linear structure of
f : G → Zn

2
. This can be accomplished by choosing a fixed [a]b ∈ Zn

2
, and the

row of Cayley table of Zn
2
belonging to this element (see (6)). Other rows can

be chosen arbitrarily to fill in a Latin square.

2. Let f : A → Zn
2
be a bijection. Then there exists operation ∗ such that G =

(A, ∗) is a quasigroup, and any i is a linear structure of f : G → Zn
2
. This can

be accomplished by choosing to each particular i a fixed [a]b ∈ Zn
2
, and the row

of Cayley table of Zn
2
belonging to this element [a]b. Hence we use, step by step,

all rows of Cayley table of Zn
2
.

We state this fact exactly as
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Lemma 1. Let f : A → Zn
2
be a bijection. Then there exists (2n)! different ways

to define an operation ∗ on A such that G = (A, ∗) is a quasigroup, and each i ∈ G
is a linear structure of f : G → Zn

2
.

Example 2. Let n = 3. Then Cayley table for Z3

2
is as follows:

Z3

2
[0]b [1]b [2]b [3]b [4]b [5]b [6]b [7]b

[0]b [0]b [1]b [2]b [3]b [4]b [5]b [6]b [7]b
[1]b [1]b [0]b [3]b [2]b [5]b [4]b [7]b [6]b
[2]b [2]b [3]b [0]b [1]b [6]b [7]b [4]b [5]b
[3]b [3]b [2]b [1]b [0]b [7]b [6]b [5]b [4]b
[4]b [4]b [5]b [6]b [7]b [0]b [1]b [2]b [3]b
[5]b [5]b [4]b [7]b [6]b [1]b [0]b [3]b [2]b
[6]b [6]b [7]b [4]b [5]b [2]b [3]b [0]b [1]b
[7]b [7]b [6]b [5]b [4]b [3]b [2]b [1]b [0]b

This means that e.g. [5]b ⊕ [3]b = 101 ⊕ 011 = 110 = [6]b. Let the mapping
f : A → Zn

2
be given by the table

x 0 1 2 3 4 5 6 7
f(x) [1]b [2]b [4]b [7]b [6]b [3]b [5]b [0]b

One can write f = π ◦ J as a composition of J(x) = [x]b, and the permutation
π : Z3

2
→ Z3

2
:

[x]b [0]b [1]b [2]b [3]b [4]b [5]b [6]b [7]b
π([x]b) [1]b [2]b [4]b [7]b [6]b [3]b [5]b [0]b

Then (αa ◦ f)(x) = [a]b ⊕ f(x). Tables for all such mappings are easy to get if
we change the heading line of the Cayley table for Zn

2
by permutation π, and change

columns with respect of this permutation. Rows represent values for fixed [a]b.

[a]b�f(x) [1]b [2]b [4]b [7]b [6]b [3]b [5]b [0]b
[0]b [1]b [2]b [4]b [7]b [6]b [3]b [5]b [0]b
[1]b [0]b [3]b [5]b [6]b [7]b [2]b [4]b [1]b
[2]b [3]b [0]b [6]b [5]b [4]b [1]b [7]b [2]b
[3]b [2]b [1]b [7]b [4]b [5]b [0]b [6]b [3]b
[4]b [5]b [6]b [0]b [3]b [2]b [7]b [1]b [4]b
[5]b [4]b [7]b [1]b [2]b [3]b [6]b [0]b [5]b
[6]b [7]b [4]b [2]b [1]b [0]b [5]b [3]b [6]b
[7]b [6]b [5]b [3]b [0]b [1]b [4]b [2]b [7]b

Finally, applying f−1 to all rows we get all functions f−1 ◦ αa ◦ f : A → A.
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(A, ∗) 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 7 5 6 4 3 1 2 0
2 5 7 4 6 2 0 3 1
3 1 0 3 2 6 7 4 5
4 6 4 7 5 1 3 0 2
5 2 3 0 1 5 4 7 6
6 3 2 1 0 7 6 5 4
7 4 6 5 7 0 2 1 3

By this construction we have one quasigroup G = (A, ∗) where each line, say i,
is a linear structure of the bijection f , and

f(i ∗ x)⊕ f(x) = [i]b.

To change the constant value [i]b in the row it is sufficient to interchange rows, say
by permutation σ : A → A, in this Cayley table. Then for each i, x ∈ G

f(i ∗ x)⊕ f(x) = [σ−1(i)]b.

3.1 Linear Structures and QWLU

It was shown in the papers [8, 9] that quasigroups without left units are of particular
interest for cryptography. Next we study relations between the existence of a linear
structure and left units.

For α0 : Z
n
2
→ Zn

2
, α0([x]b) = [0]b ⊕ [x]b = [x]b, and for arbitrary f : G → Zn

2
we

have
α0 ◦ f : G → Zn

2
, α0(f(x)) = [0]b ⊕ f(x) = f(x).

Hence α0 ◦ f = f , and for the corresponding row for i ∗ x of Cayley table of G we
have

i ∗ x = (f−1 ◦ α0 ◦ f)(x) = x (7)

which yields i ∈ G is a left unit.

Lemma 2. Let f : A → Zn
2
be a bijection. Then there is no operation ∗ such that

G = (A, ∗) would be a QWLU, and at the same time each i ∈ G would be a linear
structure of f : G → Zn

2
.

One can read equation (7) as follows: in Cayley table of such a special G there
exists a row (generated by [0]b) which “coincide” with the first row of Cayley table
of Zn

2
. Now the question arise: Under which circumstances we will have other rows

which coincide with rows of Zn
2
? This problem may be rephrased by decomposition

of f .
Recall that according (4) any bijection f : G → Zn

2
can be expressed in the

form f = π ◦ J . If i ∈ G is a linear structure of f then due to (6) there exists
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a permutation αa such that i ∗ x = (f−1 ◦αa ◦ f)(x) for all x ∈ G. Combining these
two expressions we have

i ∗ x =
(

f−1 ◦ αa ◦ f
)

(x) =
(

J−1 ◦ π−1 ◦ αa ◦ π ◦ J
)

(x). (8)

Clearly, if
αa ◦ π = π ◦ αa (9)

then

i ∗ x =
(

J−1 ◦ αa ◦ J
)

(x) = J−1(αa([x]b)) = J−1([a]b ⊕ [x]b). (10)

We just proved that the row labeled by i ∈ G coincide in this case with the row
labeled by [a]b ∈ Zn

2
.

To finish our task we identify all permutations π : Zn
2
→ Zn

2
for which (9) is

valid. In fact this requires for any [x]b ∈ Zn
2

[a]b ⊕ π([x]b) = (αa ◦ π)([x]b) = (π ◦ αa)([x]b) = π([a]b ⊕ [x]b).

Such permutation on a group is right regular. On the other hand, let π : Zn
2
→ Zn

2

be a right regular permutation. Then (αa◦π)([x]b) = (π◦αa)([x]b) for any [a]b ∈ Zn
2
,

and (10) is valid. We summarize

Lemma 3. Let f = π ◦ J : A → Zn
2
be a bijection. Let G = (A, ∗) be a quasigroup

such that all i ∈ G are linear structures of f : G → Zn
2
. Then each row of Cayley

table of G can be obtained from appropriate row of Cayley table of Zn
2
iff π : Zn

2
→

Zn
2
is a right regular permutation.

Remark 1. Let H = (A,⊙) be a quasigroup, and let π : H → H be a right regular
permutation. If H possesses a right unit, say e, then π(x) = π(x⊙ e) = x⊙ π(e) for
any x ∈ H. Then all values of π are uniquely determined by π(e).

4 CONSTRUCTION OF BIJECTIONS HAVING NO LINEAR STRUC-

TURES

Finally we solve the following problem: under which circumstances for a given quasi-
group G = (A, ∗) there exists a bijection with a linear structure.

We start with Example.

Example 3. We continue in Example 2. Let σ : A → A be as follows:

i 0 1 2 3 4 5 6 7
σ(i) 2 7 0 1 5 3 6 4

Then we can define a quasigroup G, where3

f(i ∗ x) ⊕ f(x) = [σ−1(i)]b

3 For definition of f see Example 2.
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for any i, x ∈ G. Its Cayley table is as follows

(A, ∗) 0 1 2 3 4 5 6 7
0 5 7 4 6 2 0 3 1
1 1 0 3 2 6 7 4 5
2 0 1 2 3 4 5 6 7
3 2 3 0 1 5 4 7 6
4 4 6 5 7 0 2 1 3
5 6 4 7 5 1 3 0 2
6 3 2 1 0 7 6 5 4
7 7 5 6 4 3 1 2 0

and one can verify that

f(x) [1]b [2]b [4]b [7]b [6]b [3]b [5]b [0]b
f(4 ∗ x) [6]b [5]b [3]b [0]b [1]b [4]b [2]b [7]b

f(4 ∗ x)⊕ f(x) [7]b [7]b [7]b [7]b [7]b [7]b [7]b [7]b

and
f(4 ∗ x) ⊕ f(x) = [σ−1(4)]b = [7]b.

Moreover, f(4 ∗ (4 ∗ x))⊕ f(4 ∗ x) = [7]b, or f(4 ∗ (4 ∗ x)) = f(4 ∗ x)⊕ [7]b = f(x) in
this case. Since f is a bijection 4 ∗ (4 ∗ x) = x is valid as well. Thus the row labeled
by 4 in Cayley table is an involution.

Obviously, there is nothing special on the choice i = 4, and we have

Lemma 4. A necessary condition for i ∈ G to be a linear structure of a bijection
f : G → Zn

2
is that

σi : G → G, σi(x) = i ∗ x (11)

is an involution (without fixed elements), or identity.

Now we turn our attention to sufficient conditions. Below we show one possible
construction of f . Clearly, when σi from (11) is identity mapping, then i∗x = x and
since f(i ∗ x) ⊕ f(x) = [0]b we conclude i is a linear structure of arbitrary bijection
f : G → Zn

2
.

Let σi be an involution without fixed elements. Then for any k ∈ G we have: if
i ∗ k = ℓ then i ∗ ℓ = k and k 6= ℓ. Let us call it (k, ℓ)-cycle. All together we have
2n−1 such cycles for k < ℓ. Since i is a linear structure, there is an [a]b ∈ Zn

2
such

that f(ℓ)⊕ f(k) = [a]b. This yields a definition of f for each cycle (k, ℓ) as follows:

1. Let
GK = {k ∈ G| there exists (k, ℓ)− cycle, k < ℓ}

and
GL = {ℓ ∈ G| there exists (k, ℓ)− cycle, k < ℓ}.

Obviously, GK ∪GL = G,GK ∩GL = ∅.
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2. The necessary condition for f : G → Zn
2
is

f(ℓ) = [a]b ⊕ f(k)

for any ℓ ∈ GL and k ∈ GK .

3. Hence, arranging all cycles (kj, ℓj) ∈ GK×GL, j = 0, 1, . . . , 2n−1−1 we conclude
that the bijection must establish a partition K ∪ L of the group Zn

2
, where

K = f(GK) = {f(kj) : j = 0, 1, . . . , 2n−1 − 1}

L = f(GL) = [a]b ⊕ f(GK) = {[a]b ⊕ f(kj) : j = 0, 1, . . . , 2n−1 − 1}.

One of possible solutions is to take a subgroup K of the order 2n−1 and its coset
L = [a]b ⊕ K, [a]b 6∈ K. The definition of bijection f follows: assume a subgroup
K ⊂ Zn

2
of the order 2n−1, and arbitrary bijection

f : {kj : kj ∈ G, j = 0, 1, . . . , 2n−1 − 1} → K, (12)

and extend it due to cycles (kj, ℓj) by f(ℓj) = [a]b ⊕ f(kj).

Recall that there exist exactly n subgroups of the order 2n−1 (each consisting
of one coordinate fixed). Therefore, one can find (2n−1)! mappings of the type (12).
This yields n × (2n−1)! different bijections. Other constructions using subgroups of
the lower order are possible too. We summarize:

Theorem 2. Let G be a quasigroup, |G| = 2n, and σi : G → G, σi(x) = i ∗ x be an
involution without fixed elements. Then there exists a bijection f : G → Zn

2
such

that i ∈ G is a linear structure of f .

The last Theorem describes completely the quasigroups possessing linear struc-
tures. In fact, our main aim is to find quasigroups having no linear structures. Thus,
the main relevance of this Theorem is to avoid involution without fixed elements from
rows of used Cayley tables.

5 CONCLUSIONS

In this paper we have presented a construction of all bijections f : G → Zn
2
such

that i ∈ G is a linear structure of f for a given quasigroup |G| = 2n. Moreover,
quasigroups formed by linear structures only, for a given function f are described
too. These elements are a nightmare for designers of block and stream ciphers since
they allow various attacks on round functions or scrambled counters. The case
G = Zn

2
was treated in [5]. In particular, it was proven that they form a linear

subspace of Zn
2
. Contrary to this case, for arbitrary quasigroup, they do not form

any algebraic structure.
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