
Computing and Informatics, Vol. 28, 2009, 1001–1028, V 2009-May-13

RULE-BASED USER CHARACTERISTICS
ACQUISITION FROM LOGS WITH SEMANTICS
FOR PERSONALIZED WEB-BASED SYSTEMS

Michal Barla, Michal Tvarožek, Mária Bieliková

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava
Ilkovičova 3
842 16 Bratislava, Slovakia
e-mail: {michal.barla, michal.tvarozek, maria.bielikova}@fiit.stuba.sk

Revised manuscript received 24 February 2009

Abstract. Personalization of web-based information systems based on specialized
user models has become more important in order to preserve the effectiveness of
their use as the amount of available content increases. We describe a user mo-
deling approach based on automated acquisition of user behaviour and its suc-
cessive rule-based evaluation and transformation into an ontological user model.
We stress reusability and flexibility by introducing a novel approach to logging,
which preserves the semantics of logged events. The successive analysis is driven
by specialized rules, which map usage patterns to knowledge about users, stored in
an ontology-based user model. We evaluate our approach via a case study using
an enhanced faceted browser, which provides personalized navigation support and
recommendation.

Keywords: User modeling, ontologies, log analysis, usage pattern, adaptive faceted
browser

1 INTRODUCTION

Both growing end user expectations and requirements as well as commercial con-
siderations drive the demand for ever improving state-of-the-art solutions in (web)
application development. In this respect, several contemporary initiatives pursue



1002 M. Barla, M. Tvarožek, M. Bieliková

the advancements in their respective fields of interest with the ultimate aim of im-
proving end user computing experience:

The Adaptive Web focuses on personalized services tailored to the specific needs
of individual users (i.e., the user context, composed of user characteristics, de-
vice and environment properties, etc.) in terms of content recommendation,
navigation adaptation and presentation customization. It is a response to the
“one-size-fits-all” approach which became increasingly unsuitable as the amount
of available information, its complexity and the diversity of its consumers in-
creased. Consequently, the Adaptive Web addresses issues such as information
overload, the “lost in hyperspace” syndrome as well as usability problems and
performance aspects [6, 7].

The Semantic Web as envisioned by Tim Berners-Lee aims at improving upon
the existing Web by adding a semantic layer of metadata (i.e., “meaning”),
which would allow for advanced machine processing of information and thus
ultimately improving application interoperability, data integration, sharing and
availability. This is accomplished by using ontologies (e.g., in RDF/RDFS or
OWL), which describe concepts and their relations with defined semantics using
unique identifiers – URIs, for data representation and reasoning [27].

Since each initiative aims at improving end user experience by addressing a some-
what different set of problems, the exploration of hybrid solutions taking advantage
of the synergetic effects of combining advantages of individual approaches is vital
for future research and its practical applications.

In practice, user needs can be classified as informational, navigational and trans-
actional [4]. Levene and Wheeldon describe four steps that are required to satisfy
either kind of need – the query, selection, navigation, query modification [20]. If
the target site is known beforehand (e.g., a home page or bookmarked page), users
iterate only through the selection and navigation steps. While the query, selection
and query modification steps are supported by existing search engines, these cur-
rently do not aid users during the crucial navigation step in which users browse the
information space and locate the required information.

The difficulties of navigation are even more pronounced in large heterogeneous
information spaces, where each subspace has different properties. If we consider the
Web, then finding specific information typically involves a query in a web search
engine, the selection of a suitable web page – often the root of a web site, and
navigation through the web site towards pages containing the required information.
However, each web site has a different layout and presentation style, which also
change over time making effective navigation difficult.

In order to address user support during the critical navigation step we pro-
pose a solution based on the aforementioned initiatives. We take advantage of the
Adaptive Web approaches and provide automated user model creation with minimal
user involvement, thus preventing disruptions to user experience. The user model
thereafter serves as a base for personalized navigation.



Rule-based User Characteristics Acquisition from Logs with Semantics 1003

We gather semantically enriched evidence of user interaction via a user model-
ing server, which is then evaluated by inference agents and stored as semantically
described user characteristics in the user model. These are then used to drive the
personalization engine of the presentation layer, which performs user adaptation
based on the acquired user characteristics and also collects new evidence of user
interaction within the browser.

The rest of the paper is structured as follows. Section 2 describes current ap-
proaches to both data collection and data processing as two major stages of the
user modeling process. In Section 3 we describe our ontology-based user model.
Section 4 contains description of our approach to the collection of evidence about
user actions. In Section 5 we describe the background knowledge used in our user
modeling approach, while Section 6 presents the user modeling process itself. Sec-
tion 7 describes our evaluation environment and elaborates on the experiments we
performed to evaluate our approach. We summarize our contribution in Section 8.

2 RELATED WORK

The adaptation process in adaptive systems consists of three stages (see Figure 1):

1. collection of data about users,

2. creation of the respective user models, and

3. adaptation based on the created user models.

Moreover, since the whole process works in an endless loop, the user model is con-
stantly updated as the system collects more data about users.

In this paper, we present contribution to the first two stages of the process. Data
collection is obviously based on user activity logging where two main approaches
exist: the use of standard web server logs or the deployment of proprietary log-
ging/reporting solutions often tailored to the needs of specific systems. User model
creation is based either on explicit user feedback or on automatic discovering user
characteristics based on collected data. The last, personalization stage is only briefly
mentioned in connection with evaluation of our approach to automated acquisition
of user characteristics.

2.1 Standard Web Server Logs

Standard web server logs are commonly used as input for various data mining
techniques in Web Usage Mining [13] whose results are mostly common sequen-
tial patterns or clusters of users and pages as was shown for example in [22]. These
techniques match the active user session (or its previously stored profiles) to usage
patterns of user groups. Because of their social aspect, they do not reveal charac-
teristics of an individual user, which is of our prime interest.

Another drawback of web server logs comes from their processing complexity,
incompleteness of information and system dependency. Web server logs cannot be



1004 M. Barla, M. Tvarožek, M. Bieliková

Data Collection

Data Processing

Model

processing

(adaptation)

Data about user

User model

Interaction

Adaptation effect

Fig. 1. Loop “user modeling—adaptation” in adaptive systems, according to [5]

used directly and require very complex preprocessing, trying to identify all accesses
of an individual user within a particular session [10]. Use of proxy servers and
tunnels makes this task non-deterministic, producing only estimations of log inter-
pretation.

Web server logs are often incomplete due to the caching mechanism of web
browsers, which usually do not re-request a resource which was accessed earlier
during previous sessions. As a result, server side logs cannot serve as a satisfactory
standalone source of all user behaviour evidence.

Web server log processing is entirely tied to a system’s implementation, because
of the basic principles of the HTTP protocol, which is a low-level stateless protocol
without clearly defined semantics of performed actions (e.g., GET and POST do
not supply adequate information). Furthermore, a web-based adaptive system with
dynamic page generation can produce two similar or even equal log entries which
result in completely different system responses due to changes in the user and domain
models.

To address some shortcomings of this approach and to capture information about
purely client-side interactions (e.g., hovering on tooltips) client-side logging methods
were proposed. Most are either pure client-side only systems [21] or standalone
desktop applications communicating with a server [15]. Standalone client-side ap-
plications can provide a high level of detail but may present serious threats to user
privacy. The use of standard client web technologies such as JavaScript or Java
applets [14] appears to be more suitable due to its restricted scope of operation and
higher user acceptance though still without event semantics.



Rule-based User Characteristics Acquisition from Logs with Semantics 1005

Pure client-side only solutions suffer from the loss of control over the logging
process as users can disable their execution. Therefore, it is suitable to combine
both client side logging with server side logging.

2.2 Proprietary Logging Solutions

Adaptive applications often imply tight integration of proprietary and application
tailored data collections and data analysis subsystems. However, there are efforts
that aim at separating the user model and enable its reusability across several adap-
tive applications in the form of user modeling server. We can thus analyze the
logging (often called reporting) subsystems of these servers, which gather logs from
several (adaptive) applications.

Personis [19], based on the UM toolkit [18], does not expect applications to
report information about user actions, but already partial user models, consisting
of the component and evidence elements. A component represents either preference,
knowledge, belief or a simple attribute, depending on its type. It has a name, value
and is either supported or negated by one more evidences (where each evidence has
a given reliability).

The Cumulate user modeling server [8, 36] for the educational domain is an ex-
ample of a server, which uses event reporting. It provides a servlet (report receiver)
which listens to applications reporting events about user activity. Each request
contains an identification of the reporting application, reference to a learning ob-
ject/action the user has been working with, a fragment of learning object/action
(where applicable), identification of the user, group and user session. Finally, it
contains the result of interaction (successful or unsuccessful). Applications may
also report custom string values, which are simply stored for later use and are not
processed by the server.

2.3 User Model Creation

Data processing which leads to a user model update is obviously limited by the na-
ture of the acquired data and the used representation of the user model. Many ap-
proaches exploit explicit user feedback (e.g., level of knowledge or interest in a given
topic) and transform this feedback directly into the user model. An enhancement of
this approach is based on the spreading activation model, which spreads the feed-
back from one particular concept of the respective domain model to other associated
concepts [31].

Some approaches leverage machine learning techniques to create and maintain
user models [33]. Certain approaches use predefined model schemes and try to fill
them with attributes, while others infer both the structure and attributes of the
model, e.g., using clustering and classification techniques. A disadvantage of most
approaches based on machine learning techniques is the need for large data sets.
They require not only a complex training data set, but need to see a relatively



1006 M. Barla, M. Tvarožek, M. Bieliková

large number of examples from the user in order to create a model with acceptable
accuracy.

Due to the uncertainty of the user modeling process, many solutions rely on
probabilistic approaches. The uncertainty comes from the difficulty of assessing the
reasons behind a user actions in complex environments such as the Web. Likely
the most widely used probabilistic approaches to user modeling leverage Bayesian
networks [25, 9]. Other known probabilistic approaches are based on Dempster-
Schafer theory of evidence [17] and fuzzy logic [12]. However, a model construction
using probabilistic approaches is not a straightforward process, requiring a lot of
training data. Many proposed methods for model construction are theoretical only,
or applicable only for small scale problems.

Many approaches do not build an explicit user model containing references to the
domain model, but use pre-trained classifiers and predictors to perform adaptation,
e.g., to recommend a next page to visit. The classifiers are either content-based or
collaborative, taking into account the domain content and the user’s interaction with
it or the experience of other – similar users respectively. The classifiers are trained
using user-specific data and thus correspond to an implicit user model. An example
of such approach can be found in [37]. The authors propose a specialized web
browser with enhanced tracking features (detailed client-side logging) collecting the
list of visited web pages along with the user’s feedback whether the page contained
useful information (information content page). Consequently, they extract some
domain and site-independent features from the pages such as the page type (search
engine, static, dynamic etc.), URL depth or user clickstream-related page features
(does the page follow the search engine page?, is it the last page in site session?,
how many pages have been visited since the last information content page? etc.).
The authors perform similar processing also on the content level of pages (i.e., text).
All these features are used to train standard classifiers such as C4.5 or Näıve Bayes
used during the adaptation process.

Another example of an implicit user model creation is presented in [24], where
a user model represented by a vector is created by using various attributes of docu-
ments read by the user. This user model serves as an additional context used for
enhancing (re-ranking) the search results returned by an ordinary search engine.

3 ONTOLOGY-BASED MODEL OF USER CHARACTERISTICS

The user model stores all persistent information about users which serve for adap-
tation purposes. We employ an ontology-based representation of the model [1] and
take advantage of RDF/OWL technologies to define classes of user characteristics
and their properties. The idea of ontological representation of user model is not
new [11, 16]. Probably the main advantage is the possibility to use standard in-
ference mechanisms based on description logic to infer additional knowledge about
users. Another significant advantage is the simplification for exchanging user model
between different user-adaptive systems, if they agree on the used vocabulary and



Rule-based User Characteristics Acquisition from Logs with Semantics 1007

structure. Such an agreement might be replaced by an ontology mapping mecha-
nisms such as the one presented in [34], which would however still need a human
intervention to control the results and to repair potential errors [32].

Our model consists of two parts. The domain independent part defines characte-
ristics like age or sex as well as the overall structure of a user characteristic and could
be therefore easily reused across domains and applications. The domain independent
part can be associated with multiple domain dependent models, which reflect user
characteristics typical for a particular domain and which reference concepts from
the respective domain models.

Each type of characteristic is derived from the Characteristic class, which defines
the common attributes of characteristics (Figure 2):

timestamp – the date and time of the characteristic’s last update;

goal to which it contributes (e.g., find a set of suitable publications);

relevance of the characteristic to accomplishing a given goal;

confidence – the quality of the characteristic’s estimation;

count of updates – how many times the characteristic was updated;

source – defines the inference agent which updated the characteristic.

In this paper, we focus on two characteristic types:

AttributePreference – which describes user preferences with respect to specific
domain properties (e.g., the duty location property of a job offer may be impor-
tant for a user);

RuleCharacteristic – which describes user preferences also with respect to values
(object type or data type) of properties (e.g., the preferred duty location is
Bratislava, Slovakia).

Our approach to user model representation is similar to the one described in [3].
We are not storing the user specific information in relation with one specific job offer,
but rather to a particular attribute of that job offer, which is surely repeated in more
job offers within the whole information space. Therefore, we can take advantage of
the model even in the case when the original job offer is no longer available.

The advantage of the proposed model structure is its enhanced reusability. Men-
tioned characteristics could be used in any domain with more complex ontological
representations such as the job offers or publications domain, where we can expect
many attributes along with their possible values. User model consisting of such
characteristics can serve as a basis for personalization of navigational tasks as well
as for personalized recommender systems.

4 USER ACTIVITY LOGGING WITH SEMANTICS

Standard web server logs are unsuitable for the estimation of individual user cha-
racteristics, since they are often incomplete, require complicated preprocessing and



1008 M. Barla, M. Tvarožek, M. Bieliková

AttributePreference

hasWeight Float

relatesToAttribute Instance GenericAttribute

UserCharacteristic

hasTimeStamp String

hasCountOfUpdates Integer

hasSource Instance UMSource

contributesTo Instance* Goal

hasRelevance Instance c:LevelOrdering

hasConfidence Instance c:LevelOrdering

GenericUserCharacteristic

relatesTo Instance

isa
RuleCharacteristic

hasResultValue Float

hasClause Instance* Clause

isa

User

livesInRegionOfSize Integer

hasMaxAge Integer

hasChild Boolean

hasMinAge Integer

includes Instance* DomainSpecificUser

hasCharacteristic Instance* UserCharacteristic

hasCharacteristic*

DomainSpecificUser

includes*

isa

GenericAttribute

hasAttributeSequence Instance rdf:List

c:rEqual

c:Relation

io

c:rAbove

io

c:rBelow

io

Clause

hasDatatypeValue Any*

hasObjectTypeValue Instance*

hasRelation Instance c:Relation

hasAttribute Instance GenericAttribute

hasAttribute
hasRelation

hasClause*

Fig. 2. Representation of a user characteristic in the used user model



Rule-based User Characteristics Acquisition from Logs with Semantics 1009

lack the semantics of performed actions. Furthermore, if the presentation layer
of an adaptive web-based information system is comprised of several cooperating
presentation tools [28] (Figure 3), the events occurring in each of them should be
captured in order to allow for the discovery of meaningful user characteristics.

We propose a proprietary logging subsystem combining and enhancing both
client-side and server-side logging approaches to create a comprehensive log of user
actions while also preserving the semantics of individual actions (Figure 3, bottom
right). We believe that the combination of the two approaches is necessary, since we
have no direct control over the execution of client-side logging mechanisms (no data
can be gathered if the user disables monitoring on the client side). The combination
with the server side logging mechanisms guarantees that at least some data is always
available.

Portal

HTML

fragments

Events

Presentation

Adaptation

Presentation tools

Presentation

Adaptation

Input / Feedback

Web

browser

User

modeling

server

Client-side

logging

Inference

agents

Events

Events

Presentation

layer

Personalization

layer

User modeling

layer

Server Client
Personalized presentation layer

Application logic layer

Relevance

evaluation

agents

Annotation

Agents

Concept

comparison

agents

Data layer

Events

Fig. 3. Web-based IS architecture of the personalized presentation layer

4.1 Client-side Logging

Client-side logging captures precise time-related data describing individual actions
(events) that might be missed by server-side logging. The monitored events in-
clude:



1010 M. Barla, M. Tvarožek, M. Bieliková

Load: when a page is being displayed to the user,

Unload: when the user leaves a page,

Click: when the user follows a hyperlink on a page,

Mouseover: when the user points the cursor at an active page element,

Mouseout: when the user moves the cursor away from an active page element.

For each captured event, we collect the following data: type of event, time when
it occurred and the context of the captured event, e.g. what link was followed.

Furthermore, additional events invisible to the server-side might be captured
such as Change, invoked when the content of a form control changes. The sequence
of such events indicates the order in which a user fills a form. Another example is
the Scroll event, invoked when the user scrolls the content of a page.

4.2 Server-Side Logging

We propose a server-side event logging method that supports the logging of events
with defined semantics by both server-side and client-side tools, and their integration
into continuous streams of events for a particular user and user session. Moreover,
since only individual presentation/interaction tools “understand” the semantics of
events that they process we propose them to be responsible for the logging of their
own events by means of a specialized logging interface. Consequently, server-side
logging aggregates events from various sources and stores their semantics which
mostly include references to concepts from a domain ontology.

A key point of our logging approach, which further separates log analysis from
log creation, is the use of a common event ontology which defines the semantics of
individual events and their attributes (see Figure 4). Furthermore, to evaluate the
reasons behind user actions we also log the logical display state of the user interface
at the time when an event took place. This allows us to analyze user decisions (i.e.,
the occurred events) based on what the user saw in the web browser interface (i.e.,
what her reasons were).

If for instance the system was providing navigation in the information space
of job offers, one event could be to display details about a specific job offer, while
another might be to show only job offers in New York. For both of these events, the
meaning of the action would be logged (i.e., URI of the respective event) together
with attributes such as the URI of New York. Lastly, the logical display state would
be logged indicating amongst others which other job offers were displayed when the
user chose the details of a specific one.

5 USER BEHAVIOUR PATTERNS

Produced logs of user actions with semantics serve as an input to the process of user
model creation and maintenance. Our approach emphasizes the reusability aspect
in both user modeling process as well as in the user model itself.



Rule-based User Characteristics Acquisition from Logs with Semantics 1011

*
*

* 1

*1

*

1

*

* 1

*

0..1

*

0..1

1 *

1

sessions

id bigint unsigned

start datetime

end datetime

fromState

toState

events

id bigint unsigned

timestamp timestamp

displayStates

id bigint unsigned 1 *

displayedItems

id bigint unsigned

*

*

*

1

* *

*1

*

1

0..1

0..1

*

*

typesOfDisplayedItem

id bigint unsigned

name varchar(150)

users

login varchar(20)

uri varchar(150)

EventAttributes

id bigint unsigned

value varchar(150)

typesOfEvents

id bigint unsigned

name varchar(150)

typesOfEventAttributes

id bigint unsigned

name varchar(150)

displayedItemAttributes

id bigint unsigned

name varchar(150)

typesOfDisplayedItemAttributes

id bigint unsigned

name varchar(150)

Fig. 4. Data model of logs with semantics. The model consists of two layers: meta-layer
defining types of events, displayed items, their attributes and relationships among
them; and operational layer, which holds the actual data. Displayed items together
form a display state, a semantic description of what was displayed on the screen
when the event occurred. The result of an event is a transition between two display
states.

We designed the user modeling process to be independent from the adaptive
applications which contributed to the logs of user actions, working only with the
semantics of individual events from aforementioned event ontology. This allows us
to employ several reasoning agents, which process records of user interactions and
update the user model. The agents can “compete” against each other (i.e., the
best estimation will be used) or cooperate and use the results from other agents to
improve the estimation of user model.

We designed and implemented an inference agent, driven by a rule formalism (see
Figure 5) capturing interesting patterns of user-system interaction. All knowledge
the agent requires in order to process the log of events and update the user model is
stored in these rules, thus making the agent highly configurable and reusable. Each
rule consists of a pattern and a consequence part as follows.



1012 M. Barla, M. Tvarožek, M. Bieliková

Vlastnos�Vlastnos�

ZmenaZmena

Udalos�Udalos�

Rule

Pattern Consequence

Sequence

Event

AND/OR

continuity

Context

Type

Change
Class of

characteristic

Property

LoggedReferencing Processed

Count of

occurrence

Used

Fig. 5. Structure of rules used for estimation of characteristics. A pattern (left) consists
of sequences of events with various attributes and restrictions. A consequence (right)
is a set of changes applied on properties of particular characteristic instance in the
ontological user model.

5.1 Pattern

Our data analysis approach is based on predefined patterns detected in the user
action log, which at the top-level are defined as sequences of event types and other
subsequences. A pattern is detected when events prescribed by a sequence are
successfully mapped to specific events found in the user event log.

Sequence. A sequence can require the occurrence of all its events and subse-
quences (equivalent to the logical AND function), or the occurrence of just one of
its events or subsequences (equivalent to the logical OR function). Furthermore, we
divide sequences into continuous and discrete. A continuous sequence requires that
all of its events must succeed each other without interruption while the events of
a discrete sequence can be separated by any number of other events and sequences.
A sequence can thus span through multiple user sessions.

We define the following sequence attributes:



Rule-based User Characteristics Acquisition from Logs with Semantics 1013

Count-of-occurrence prescribes the required count of sequence repetitions in
a pattern. The execution engine will continue to process the next sequence
only if this count was reached. This attribute is also used to define an optional
sequence as optional.

Context is an optional attribute which defines the restrictions for events mapped
to the current sequence. For example, a context restriction can define the types
of displayed items’ attributes which must stay constant for all events mapped
to the sequence.

Event. An event represents an elementary part of a pattern. During pattern
detection, we map events from the user activity log to events prescribed by patterns.
The type of each event corresponds to a known event type from the meta-level of
the event model. Each event can be assigned a weight determined by considering
various factors such as time to the next event or a predefined constant.

Similarly to sequences, events can also have contextual restrictions, which define
restrictions solely on the attributes of the event while the context of a sequence deals
with changes of displayed items (i.e., the display state).

SameAsPrevious/DifferentThanPrevious are event context conditions restricting
the value of a defined event attribute to be the same as in/different from the previous
event of a sequence. Another possible context condition MinValueOfWeight requires
the weight of an event to be higher than some defined value. For instance, if an
event “show detail” is immediately followed by a “show overview” event, it will be
assigned a low weight, since it does not satisfy a defined contextual restriction (the
user did not have the time to read the page with the details). Therefore, this event
will not be mapped onto the sequence.

Figure 6 shows an example of the pattern “result browsing”. Let us consider
a job offer repository and a user who is interested in job offers satisfying some
criteria. When the user selects some restrictions on information space presented,
a set of results that satisfy these restrictions is returned. The user can browse the
set for further details.

At the top level a pattern is formed by a discrete OneRequired sequence. Our
heuristic assumes that users browse in the search results if they perform a browsing
action at least four times. That means the sequence has to be found four times in the
user activity log for the pattern to be matched. The sequence also has a contextual
restriction which refers to an attribute of a displayed item. All mapped events
have to be connected to display states, which have for all displayed items of type
facet a constant value of the actually chosen restriction. In other words, the user
is not changing the currently selected restrictions and is only browsing the list of
search results. Thus, events can be of the following types: PageNext, PagePrevious,
PageSelect, ShowDetails and ShowOverview. The former three event types represent
navigation through individual results pages while the latter two, joined in a conti-
nuous subsequence, represent the display of details and the navigation back to the
list of results.



1014 M. Barla, M. Tvarožek, M. Bieliková

Rule

Pattern Consequence

Sequence

Event

OR

(one event required)

discrete

Context

Type:

PageNext

Count of

occurrence:

4

Type:

PagePrevious

Type:

PageSelect

Event Event

Sequence

Event Event

AND

continuous

Count of

occurrence: 1

Typ:

ShowDetails

Type:

ShowOverview

relatesTo:

DisplayedItemAttribute

Type:

Facet

Type of attribute:

CurrentRestriction

Fig. 6. Example of the pattern part of the rule “results browsing”

5.2 Consequence

Consequences consist of an unlimited number of changes of user characteristics and
determine what and how should be updated in the user model if an instance of
a pattern is matched. Each change describes the type of the updated user charac-
teristic (the class of the characteristic) and several property attributes prescribing
the changes of object and data type properties of the respective characteristic in-
stance. Changes can have the following properties:

Used property – directly defines the value of a property (i.e., a constant).

Processed property – used for numerical data-type properties such as confidence
or relevance, it defines how to compute the value of a given property, such as
increasing/decreasing its existing value, what change strategy to use (e.g., pro-
gressive or uniform), or what increment/decrement and what interval boundaries
(where the rule takes effect) to use.

Referencing property – references a given event attribute in the rule pattern and
defines the property value as the value of that attribute. Referencing proper-
ties distinguish (optionally also with used properties) a characteristic, i.e., their
values are used in order to retrieve an instance of a characteristic from the
repository.



Rule-based User Characteristics Acquisition from Logs with Semantics 1015

Logged property – references a given event attribute in the rule pattern and de-
fines the property value as the value of that attribute, identically to any refer-
encing property. However, a logged property is not used to retrieve the instance
of characteristic and is therefore suitable for storing various context and nu-
merical values, which are to be changed to values from the event log each time
a characteristic is updated.

Figure 7 shows an example of the consequence part of the rule “result browsing”.
The consequence changes instances of the RuleCharacteristic and defines referencing
properties which take their values from attributes of currently displayed items of
the type Facet. Namely, we are interested in the attribute CurrentDimension which
will be used as the type of stored value in the characteristic and in the attribute
CurrentRestriction, which will serve as the value itself. Thus, we are interested in
the restriction of information space the user has defined by selecting values in facets.
The meaning of Used and Processed properties is understandable from the figure.

ChangeChange

Rule

Pattern Consequence

Change RuleCharacteristic

Used

property

contributesTo FindAJobGoal

Referencing

property

relatesTo:

displayedItem

Attribute

Type of Value:

CurrentDimension

Value:

CurrentRestriction

Processed

property

hasRelevance

increase

ProgressiveUpdate

Strategy

Min: 60, Max: 100,

delta:10

Type of disp. item:

Facet

Fig. 7. Example of the consequence part of the rule “results browsing”

6 USER LOG ANALYSIS

Our method for log analysis uses the knowledge represented by the aforementioned
rule-based mechanism. The analysis process consists of entry preprocessing, pattern
detection and user model update.



1016 M. Barla, M. Tvarožek, M. Bieliková

6.1 Data Preprocessing

The nature of the collected data requires no complex preprocessing, since user ses-
sions and accesses are already present in the log and thus need not be discovered,
unlike in other solutions that use web server logs [10].

This stage consists mainly of filtering consecutive events of the same type and
context, which often result due to user impatience and repeated clicks on the same
item (e.g., because of slow system response times). In this stage, weights are assigned
to individual events as described in the previous section.

6.2 Pattern Detection

Pattern detection is the key part of our log analysis approach. It works similarly to
standard forward chaining production systems and maps events prescribed by rules
to specific events in the user action log. Events are mapped to instances of rules for
each user, with each rule instance referencing the instances of its sequences in order
to track their current count-of-occurrence. Outline of proposed method of pattern
detection is as follows:

Method DetectPatterns()

Input: Event

candidateRules ← FindCandidateRules(Event);1

foreach rule in candidateRules do2

applicableRuleInstances ← FindApplicableRuleInstances(rule, Event);3

foreach ruleInstance in applicableRuleInstances do4

ruleInstance.apply(Event);
end5

FindCandidateRules eliminates rules (from the further processing) which have
no potential to change the state of inference for the current user and processed event.
Candidate rules are found as follows:

Step FindCandidateRules(Event) (line No. 1 of DetectPatterns())

Output: candidateRules

foreach rule in knownRules do1

if Event.type = rule.pattern.firstExpectedEvent.type then2

candidateRules← candidateRules + rule;3

create ruleInstance of the rule for currentUser;4

end5

else if currentUser has ruleInstance of rule that6

expectedEvent.type = Event.type then7

candidateRules← candidateRules + rule;8

end9

end10

return candidateRules11



Rule-based User Characteristics Acquisition from Logs with Semantics 1017

After finding a set of candidate rules, we examine their instances belonging to
the current user and decide whether they can be mapped to an event (map the event
to the pattern part) or not. This process is described by the following pseudo-code:

Step FindApplicableRuleInstances() (line No. 3 of DetectPatterns())

Input: rule, Event
Output: applicableRuleInstance

foreach ruleInstance of Rule belonging to currentUser do1

checkContextOfCurrentSequence(Event);2

checkContinuity(Event);3

if all checks passed then4

applicableRuleInstance← applicableRuleInstance + ruleInstance;5

end6

end7

return applicableRuleInstances8

Having applicable rule instances, we map an event onto the pattern part and
start the user model update process if the pattern was matched:

Step RuleInstance.Apply(Event) (line No. 4 of DetectPatterns())

map(Event, RuleInstance.expectedEvent) ;1

updateState(RuleInstance);2

// updating nextExpectedEvent, count-of-occurrences, ...;
if Pattern was detected then3

performConsequence(RuleInstance);4

end5

6.3 User Model Update

The update of the user model is driven by changes specified in the consequence parts
of rules. It performs these steps for each change:

Method UserModelUpdate()

characteristic← RetrieveInstanceOfCharacteristic;1

foreach property in processedProperties do2

update value according to given strategy;3

end4

foreach property in loggedProperties do5

update value according to log entry;6

end7

update timestamp;8

update count-of-updates;9



1018 M. Barla, M. Tvarožek, M. Bieliková

Step RetrieveInstanceOfCharacteristic() (line No. 1 of UserModelUpdate)

check value of all referencing properties;1

check value of all used properties;2

if source of characteristic set strictly to the current UM agent then3

check value of source of characteristic;4

end5

if no instance fulfills these criteria then6

create a new instance;7

set all referencing and used properties;8

set source;9

end10

return found or created instance;11

7 EVALUATION

For evaluation, we developed LogAnalyzer – a prototype of our rule-based user
modeling agent, which implements selected parts of the proposed user modeling
method. Since LogAnalyzer relies on a user interface front-end for user interac-
tion, we evaluated it as part of the personalized presentation layer proposed in [28]
and integrated it with the personalized faceted browser – Factic [30], which also
facilitates automatic user model acquistion via semantic logging of user interaction
evidence.

We performed experiments in three different application domains – online job
offers (project NAZOU [23], nazou.fiit.stuba.sk), scientific publications (project
MAPEKUS, mapekus.fiit.stuba.sk) and digital images.

For each domain, we have constructed both a domain and a user ontology de-
scribing the main domain concepts and their properties. The job offer ontology had
the most complex schema consisting of some 740 classes with hierarchical classifica-
tions up to 6 levels deep. The publication ontology was of medium complexity with
only one hierarchical classification (the ACM classification), while the digital image
ontology had a relatively simple flat schema.

We populated the ontologies with instance data of different sizes acquired from
publicly available web resources (e.g., www.careerbuilder.com, eurojobs.com,
profesia.sk, DBLP, Springer and ACM DL). We worked with manually/semi-
automatically created “toy-size” datasets having 100s-1000s of instances to auto-
matically acquired, large integrated datasets in excess of 100,000s of instances and
several times that many triples.

Our experiments indicated that our approach is best suited for the job offers
domain due to its rich structure and broad user interaction possibilities. Therefore,
we present the results achieved in the job offers domain.

We opted for formative evaluation based on the layered evaluation approach [26]
and focused on two key aspects of our solution:



Rule-based User Characteristics Acquisition from Logs with Semantics 1019

User modeling – how well and how fast can we estimate the user’s real/perceived
preferences using our automated rule-based user modeling approach. We exa-
mine the estimated confidence of the acquired user characteristics with respect to
the user’s own perceived needs. We also examine how fast we acquire (changing)
user characteristics and make them available to the personalization engine of the
faceted browser.

Personalization – the impact of personalization on overall user experience. We
examined how much does personalization improve user experience (e.g., time,
click count, result quality, user satisfaction).

7.1 Personalized Faceted Browser Overview

Faceted browsers employ faceted navigation, which is based on faceted classifica-
tion – an orthogonal multidimensional classification of information artefacts, which
was originally developed in library sciences [35]. Its basic principle lies in the use
of facets, describing individual properties of instances in an information space, to
specify the desired properties of instances in the visible information space. The final
search query combines restrictions from individual facets via the logical AND func-
tion resulting in an unordered list of instances that satisfy all specified restrictions.

Faceted browsers allow users to perform view-based search by providing gra-
phical user interfaces (GUI) that enable users to interactively select specific sub-
spaces of the original information space and ultimately view the details of its in-
stances – information artefacts (e.g., documents, job offers or publications). This
is done by visually constructing (semantic) search queries via navigation by defin-
ing one or more restrictions in the set of available facets of inventing and writing
keywords.

In practice, faceted browsers can be effectively used for faceted browsing of an
information space without a specific goal, e.g. to get an overview of what information
is available, or for faceted search if the specific properties of the desired search results
are known, e.g. if journal papers on adaptive hypermedia and the Semantic Web not
older than 3 years should be returned.

The GUI of our personalized faceted browser builds upon the generic faceted
browser layout and functionality (see Figure 8). Furthermore, Factic extends “clas-
sical” faceted browsers with personalization support based on an automatically ac-
quired user model [29].

Facet personalization adapts the set of available facets and restrictions based on
the in-session user behavior and based on more long term user characteristics stored
in the user model also considering the characteristics of other users. Individual
facets are hidden or disabled if they seem less relevant to the current user task,
or reordered based on their relevance. Restrictions are annotated with additional
information (e.g., instance count or relevance based on the user model) and/or
recommended (e.g., shown with different background colors). Consequently, we
evaluate personalization with respect to these adaptation options:



1020 M. Barla, M. Tvarožek, M. Bieliková

Fig. 8. Example of our personalized faceted browser Factic in the digital image domain,
employing the general faceted browser layout (facets on the left, query at the top,
search results in the centre, optional manual search result customization, e.g. sorting,
above search results).

Active facet count determines the number of simultaneously active facets (i.e.,
with visible/annotated contents) thus affecting the complexity of the GUI and
the time required to process user actions (i.e., facet and restriction annotation
and processing time).

Active facet selection identifies active facets, whose contents are shown, and in-
active facets, whose contents are hidden yet available on demand.

Facet recommendation simplifies access to facets by showing often used and/or
relevant facets at the top of the facet list.

Restriction recommendation provides users with navigational shortcuts to re-
levant restrictions by showing additional facet restrictions with different back-
ground color.



Rule-based User Characteristics Acquisition from Logs with Semantics 1021

7.2 Rules Used for User Model Inferencing

Based on the observation of user behaviour in the enhanced faceted browser Factic,
we devised the following set of user modeling rules:

R01 – After login restriction. This rule defines a pattern which is matched
if the first user action after login is a restriction selection, i.e. the selection of
a value in a facet. The pattern allows for the refinement of the restriction. If,
for example, the user chose hasDutyLocation–Europe, then Slovakia and then
Bratislava, all events are mapped to the pattern.

The pattern is associated with two changes: the first change indicates the re-
levance of the property hasDutyLocation represented by a facet. This is stored
as an AttributePreference characteristic in the user model. The second change
focuses on the last chosen value (Bratislava from our example) and stores it in
the user model using RuleCharacteristic.

R02 – Facet enable and restriction selected. This rule defines a pattern which
expects the user to enable a previously disabled facet (so the user would see
facet values) and to choose a restriction within this facet. The pattern allows for
refinement of the restriction as described for rule R01. Similarly to R01, it stores
the property associated with the facet in the AttributePreference characteristic
while the chosen value is stored in the RuleCharacteristic.

We also defined a similar rule which distinguishes this behavior if it was the first
action of the user after login, which leads to higher relevance of the revealed
characteristic.

R03 – Result browsing. This rule defines a pattern representing user brows-
ing in the current result set, which signals a deep interest in the currently se-
lected restrictions. The pattern is matched when any event from ShowDetails-
ShowOverview, PageNext, PagePrevious or PageSelect occurs four times in a row
without changing the currently selected restrictions.

All currently selected restriction values are stored in a RuleCharacteristic in the
user model.

R04 – Refining restriction. This rule defines a pattern corresponding to at
least three restriction refinements on one property in a row, yet also allows
for further refinement. As a consequence, the restricted property is stored in an
AttributePreference characteristic while the last chosen restriction is stored in
a RuleCharacteristic in the user model.

R05 – Disabling a Facet. This rule defines a simple pattern consisting of only one
event: FacetDisable. If such an event occurs in the log, relevance of the property
represented by the facet is lowered in an AttributePreference characteristic.

R06 – Selecting Sorting Order. This rule defines a simple pattern consisting
of only one event: Selection of sorting order (e.g., order by Salary). If such
an event occurs in the log, relevance of the chosen property is raised via an
AttributePreference characteristic.



1022 M. Barla, M. Tvarožek, M. Bieliková

7.3 Users and Scenarios

We performed several experiments in the job offers domain with participants from
our research lab. Each participant was asked to prepare a job search profile describ-
ing his or her ideal job offer. Thereafter, all participants performed two navigation
sessions in our faceted browser Factic, impersonating the created search profile.

Their goal for the first session was to find the information subspace containing
suitable job offers matching their predefined profile and browse some of them, or
alternatively to find out whether there are no job offers available that would match
the participant’s search profile.

The second session simulated a repeated search for job offers matching the same
profile (e.g., newly added job offers). Participants were supposed to reach the same
goal though not necessarily by the same means – sequences of actions.

We evaluated the total user effort (number of clicks) that was necessary to
complete the scenario. Our hypothesis was that the required effort would be lower
in the second session due to facet recommendation. As all users were familiarized
with the system and the faceted browsing paradigm prior to the experiment, we did
not expect the results of the second session to be significantly biased by previous
user experience in the first session.

Furthermore, each participant was asked to rate the level of conformance of his
or her current user model with the predefined search profile after each session. We
expected higher ratings after the second session, as the model would be more refined
after being updated several times.

7.4 Results

Table 1 provides an overview of the most interesting experimental results on selected
participants, which show how the number of clicks affects the user model. For each
user we show the model state (count of characteristics) after the first and second
session along with count of user model updates, which were performed during the
session.

User Session #Clicks #Characteristics Rating #Model updates/session

A 1 13 5 2 5
2 8 5 2 4

B 1 27 8 2 8
2 20 8 2 4

C 1 42 9 2 10
2 22 9 2 6

D 1 5 2 0 5
2 12 4 1 4

Table 1. Examples of collected data



Rule-based User Characteristics Acquisition from Logs with Semantics 1023

We observed that most users used predominantly two facets: hasDutyLocation
and offersPosition denoting the location and type of the job offer respectively. Con-
sequently, the evaluation of these two facets rose quickly to high levels of both
relevance and confidence in their user models.

This was apparently due to the fact that for our dataset, these two facets could
often narrow down the information space enough to the users’ predefined search
profiles, optionally using sorting based on the salary attribute. This also indicates
that most users view job search as a two dimensional task involving the position and
location – what and where, which explains why only few new characteristics were
discovered in the second user session.

We also observed lower click count in the second session compared to the first one
indicating successful adaptation via navigational shortcuts based on the user model
acquired during the first session (which was still updated in the second session).

Moreover, the initially identified characteristics were reinforced in the second
session while only few new ones were found indicating consistent user behaviour
(i.e., good estimation of characteristics on the same search goals). These findings
were confirmed since users rated their estimated profiles after each session with
predominantly positive ratings implying successful user characteristics acquisition.

Lastly, we point out that in the performed experiments, significantly higher
numbers of clicks did not result in significantly more detected user characteristics
(i.e., users behaved consistently with their profiles). The acquired characteristics,
however, tended to have higher confidence and relevance estimates if more clicks
were evaluated.

While most users chose to follow the recommended navigational shortcuts in the
second session (which led to reinforcement of already present characteristics), users
who were not successful at finding their desired job offers in the first session changed
their search behaviour and tried to find results by different means (thus the count
of required clicks did not decrease). This behaviour led to the discovery of different
characteristics.

The last row of Table 1 shows such a situation (5 clicks in the first session
against 12 in the second session). A user wanted to find a programmer position in
Central Europe, and during the first session he quickly discovered that there were
only few offers available after selecting Central Europe as the location. User model
inference discovered only two characteristics: Central Europe as the preferred duty
location along with duty location attribute preference, which led to lower rating of
the user model by the user. However, in the second session, he chose instead to
search for job offers using restrictions on offersPosition, resulting in more newly
discovered characteristics.

A somewhat similar situation could occur if a user tried to look for a completely
different type of job offer. As our adaptation engine does not force the user to
“stay within” his or her already discovered characteristics, the system would simply
learn something new with each user interaction. Since every characteristic has ad-
ditional metadata (confidence, relevance, timestamp and count-of-updates), we can
distinguish between more recent (recent timestamp) or more stable characteristics



1024 M. Barla, M. Tvarožek, M. Bieliková

(higher count-of-updates, confidence) and old and rather accidental characteristics.
This in turn is reflected in the adaptation engine which weights recent short-term
user characteristics higher than older long-term characteristics (ideally) resulting in
seamless adaptation to changing user preferences (e.g., a new type of desired job
offer).

8 CONCLUSIONS

We presented a novel method of automated user modeling for adaptive semantic
web-based systems, based on comprehensive logs of user actions with semantics and
a rule formalism designed to support potentially elaborate navigational patterns.

We evaluated our approach with promising results in three application domains –
job offers (presented in this paper), publications and digital images. The tool Lo-
gAnalyzer, which realizes the proposed method, served as the user modeling agent
for an adaptive presentation front-end – the enhanced faceted browser Factic. The
evaluation shows that the approach is able to reveal relevant user characteristics
which form a solid basis for personalization.

During evaluation, we also encountered several bottlenecks that at present se-
riously limit widespread deployment of applications for the Semantic Web, mainly
the general immaturity of ontological repositories in terms of their processing speed
(slow processing of ontological queries).

The key advantages of our approach are:

Complete separation of the user model inference process from the presen-

tation layer by means of semantic user interaction evidence logging based on
an Event ontology. Logs contain detailed information about each occurred event
including its context (i.e., the description of displayed user interface items).

Log processing flexibility – all domain-dependent logic required to transform
logged events into the resulting user model is stored in externally supplied rules.
This, along with ontology based user model representation allows for extremely
straightforward execution and maintenance of the user modeling process. If for
example a new presentation tool is introduced into the system or an existing
one is changed, or if the user model representation changes, the functionality
of the user modeling process does not break with the only requirement being
up-to-date rule definitions.

The pattern parts of our user model inference rules can be defined manually (e.g.,
by domain experts) or identified by observing real usage of the used presentation
tools and applying various web usage data mining techniques.

We see several directions for future work. Enhancements of our rule mechanism
such as the introduction of dynamic parameters (e.g., count-of-occurrence) that with
values from the current user context, or meta-rules that could drive the changes in
the working set of rules for individual users appear interesting. Meta-rules could
prescribe the maximum number of uses of a particular rule, and could also influence



Rule-based User Characteristics Acquisition from Logs with Semantics 1025

the parameters of the rule so a particular pattern would become “harder” to detect
if it was already detected once, etc.

Another enhancement is the incorporation of feedback processing. Implicit feed-
back (replacement of an explicit user rating of displayed content) is in its nature
a sequence of specific events, thus a pattern, which can be defined using our rule
mechanism and subsequently identified during log processing. Once the ratings of
various items are available, we can estimate the user’s preferences by comparing
similarly/differently rated domain instances (e.g., using a specialized complex com-
parison tool [2]). If two different instances were rated similarly, the small fraction,
which is common for both of them can be considered as relevant for the user and
vice versa.

Acknowledgement

This work was partially supported by the Slovak Research and Development Agency
under the contract No. APVT-20-007104, the State programme of research and
development “Establishing of Information Society” under the contract No. 1025/04
and the Scientific Grant Agency of the Slovak Republic, grant No. VG1/3102/06.

REFERENCES

[1] Andrejko, A.—Barla, M.—Bieliková, M.:. Ontology-based User Modeling for
Web-based Information Systems. In Information Systems Development (ISD 2006),
Budapest, Hungary, Springer, 2006.

[2] Andrejko, A.—Bieliková, M.: Estimating Similarity of the Ontological Concepts
Instances for the Adaptive Applications Based on Semantic Web. In V. Snášel (Ed.),
Znalosti 2008, pp. 30–41, 2008 (in Slovak).

[3] Bieliková, M.—Matuš́ıková, K.: Social Navigation for Semantic Web Ap-
plications Using Space Maps. Computing and Informatics, Vol. 26 2007, No. 6,
pp. 281–299.

[4] Broder, A.: A Taxonomy of Web Search. SIGIR Forum, Vol. 36, 2002, No. 2,
pp. 3–10.

[5] Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. User Model.
User-Adapt. Interact., Vol. 6, 1996, No.2–3, pp. 87–129.

[6] Brusilovsky, P.: Adaptive Hypermedia. User Model. User-Adapt. Interact.,
Vol. 11, 2001, No. 1–2, pp. 87–110.

[7] Brusilovsky, P.—Kobsa, A.—Nejdl, W. Eds.: The Adaptive Web, Methods
and Strategies of Web Personalization. LNCS 4321, Springer 2007.

[8] Brusilovsky, P.—Sosnovsky, S.—O. Shcherbinina, O.: User Modeling in
a Distributed E-Learning Architecture. In L. Ardissono, P. Brna, A. Mitrovic (Eds.),
User Modeling 2005, LNCS 3538, Edinburgh, Scotland, UK, pp. 387–391, Springer
2005.



1026 M. Barla, M. Tvarožek, M. Bieliková

[9] Bunt, A.—Conati, C.: Probabilistic Student Modelling to Improve Exploratory

Behaviour. User Model. User-Adapt. Interact., Vol. 13, 2003, No. 3, pp. 269–309.

[10] Chen, Z.—Fu, A.—Tong, F.: Optimal Algorithms for Finding User Access Ses-
sions from Very Large Web Logs. World Wide Web, Vol. 6, 2003, No. 3, pp. 259–279.

[11] Denaux, R.—Dimitrova, V.—Aroyo, L.: Integrating Open User Modeling and
Learning Content Management for the Semantic Web. In L. Ardissono, P. Brna,
Mitrovic (Eds.), User Modeling 2005, LNCS 3538, Edinburgh, Scotland, UK,
pp. 9–18, Springer, 2005.

[12] Eckhardt, A.—Horváth, T.—Vojtáš, P.: Learning Different User Profile An-
notated Rules for Fuzzy Preference Top-k Querying. In H. Prade and V. S. Subrah-
manian (Eds.), SUM2007, LNCS 4772, pp. 116–130, Springer 2007.

[13] Eirinaki, M.—Vazirgiannis, M.: Web Mining for Web Personalization. ACM
Trans. Internet Techn., Vol. 3, 2003, No. 1, pp. 1–27.

[14] Etgen, M.—Cantor, J.:. What Does Getting WET (Web Event-Logging Tool)
Mean for Web Usability? In 5th Conference on Human Factors& The Web, Gaithers-
burg, Maryland, USA, 1999.

[15] Fenstermacher, K.—Ginsburg, M.: Mining Client-Side Activity for Personali-
zation. In WECWIS, pp. 205–212, 2002.

[16] Heckmann, D. et al.: GUMO – The General User Model Ontology. In L. Ardissono,
P. Brna, A. Mitrovic (Eds.): User Modeling 2005, LNCS 3538, Edinburgh, Scotland,
UK, pp. 428–432, Springer, 2005.

[17] Jameson, A.: Numerical Uncertainty Management in User and Student Modeling:
An Overview of Systems and Issues. User Model. User-Adapt. Interact., Vol. 5, 1995,
No. 4, pp. 193–251.

[18] Kay, J.: The um Toolkit for Cooperative User Modeling. User Model. User-Adapt.
Interact., Vol. 4, 1995, No. 3.

[19] Kay, J.—Kummerfeld, B.—Lauder: Personis: A Server for User Models. In
P. de Bra, P. Brusilovsky, R. Conejo (Eds.), Adaptive Hypermedia and Adaptive
Web-Based Systems, AH 2002, LNCS 2347, Malaga, Spain, pp. 203–212, Springer
2002.

[20] Levene, M.—Wheeldon, R.: Navigating the World Wide Web. In M. Levene,
A. Poulovassilis (Eds.), Web Dynamics – Adapting to Change in Content, Size, To-
pology and Use, pp. 117–152, Springer 2004.

[21] Lu, H.—Luo, Q.—Shun, Y.: Extending a Web Browser with Client-Side Min-
ing. In X. Zhou, Y. Zhang, Orlowska (Eds.), Web Technologies and Applications,
APWeb2003, LNCS 2642, pp. 166–177, Springer 2003.

[22] Machová, K.—Bednár, P.—Mach, M.: Various Approaches to Web Information
Processing. In Computing and Informatics, Vol. 26, 2007, No. 6, pp. 301–327.

[23] Návrat, P.—Bartoš, P.—Bieliková, M.—Hluchý, L.—Vojtáš, P. (Eds.):
Tools for Acquisition, Organization and Presenting of Information and Knowledge,
Research Project Workshop, Bystrá Dolina, Low Tatras, Slovakia, 2006.

[24] Návrat, P.—Taraba, T.: Context Search. In Y. Li, V. V. Raghavan, A. Broder,
H. Ho (Eds.), 2007 IEEE/WIC/ACM International Conferences on Web Intelligence



Rule-based User Characteristics Acquisition from Logs with Semantics 1027

and Intelligent Agent Technology (Workshops), Silicon Valley, USA, pp. 99–102. IEEE

Computer Society, 2007.

[25] Ono, Ch.—Kurokawa, M.—Motomura, Y.—Asoh, H.: A Context-Aware
Movie Preference Model Using a Bayesian Network for Recommendation and Pro-

motion. In Rule-based User Characteristics Acquisition from Logs with Semantics,
C. Conati, K.F. McCoy, G. Paliouras (Eds.), User Modeling 2007, LNCS 4511,
pp. 247–257, Springer 2007.

[26] Paramythis, A.—Weibelzahl, S.: A Decomposition Model for the Layered Eva-
luation of Interactive Adaptive Systems. In L. Ardissono, P. Brna, A. Mitrovic (Eds.),
UM2005, LNCS 3538, pp. 438–442, Edinburgh, Scotland, UK, Springer 2005.

[27] Shadbolt, N.—Berners-Lee, T.—Hall, W.: The Semantic Web Revisited.

IEEE Intelligent Systems, Vol. 21, 2006, No. 3, pp. 96–101.

[28] Tvarožek, M.—Barla, M.—Bieliková, M.: Personalized Presentation in
Web-Based Information Systems. In van Leeuwen, J. et al. (Eds.), SOFSEM ’07,

LNCS 4362, pp. 796–807, Springer 2007.

[29] Tvarožek, M.—Bieliková, M.: Personalized Faceted Navigation for Multimedia
Collections. In SMAP ’07: Proc. of the 2nd Int. Workshop on Semantic Media Adap-

tation and Personalization, pp. 104–109, IEEE CS, 2007.

[30] Tvarožek, M.—Bieliková, M.: Personalized Faceted Navigation in the Semantic
Web. In L. Baresi, P. Fraternali, G.-J. Houben (Eds.), ICWE2007, LNCS 4607,

pp. 511–515, Springer 2007.

[31] šimún, M.—Andrejko, A.—Bieliková, M.: Ontology-Based Models for Persona-
lized E-Leaning Environment. In ICETA 2007 – 5th Int. Conference on Emerging

E-Learning Technologies and Applications, pp. 335–340, 2007.

[32] Wang, P.—Xu, B.: Debugging Ontology Mappings: A Static Approach. Computing
and Informatics, Vol. 27, 2008, No. 1, pp. 21–36.

[33] Webb, G. I.—Pazzani, M. J.—Billsus, D.: Machine Learning for User Modeling.
User Model. User-Adapt. Interact., Vol. 11, 2001, No. 1–2, pp. 19–29.

[34] Wong, A.K.Y.—Yip, F.—Ray, P.—Paramesh, N.: Towards Semantic Inter-
operability for IT Governance: An Ontological Approach. In Computing and Infor-
matics, Vol. 27, 2008, No. 1, pp. 131–155.

[35] Wynar, B. S.—Taylor, A.G.: Introduction to Cataloging and Classification. Li-
braries Unlimited Inc., 1992.

[36] Yudelson, M.—Brusilovsky, P.—Zadorozhny, V.:. A User Modeling Server
for Contemporary Adaptive Hypermedia: An Evaluation of the Push Approach to
Evidence Propagatation. In C. Conati, K. McCoy, G. Paliouras (Eds.), User Modeling
2007, LNAI 4511, pp. 27–36, Corfu, Greece, Springer 2007.

[37] Zhu, T.—Greiner, R.—Ha̋ubl, G.: Learning a Model of a Web User’s Interests.
In P. Brusilovsky, A. T. Corbett, F. de Rosis (Eds.), User Modeling 2003, LNCS 2702,
pp. 65–75, Springer 2003.



1028 M. Barla, M. Tvarožek, M. Bieliková

Michal Barla received his Master degree in 2007 from the

Slovak University of Technology in Bratislava. Currently he is
a Ph.D. student at the Faculty of Informatics and Information
Technologies of the same university. His research interests in-
clude web-based systems, with focus on the user modelling in
adaptive web-based systems.

Michal Tvaro�zek received his Master degree in 2007 from the
Slovak University of Technology in Bratislava. Currently he is
a Ph.D. student at the Faculty of Informatics and Information
Technologies of the same university. He is doing research in
personalized navigation, information retrieval and user interfaces
for adaptive Semantic Web applications.

Mária Bielikov�a received her Master degree (with summa cum
laude) in 1989 and her Ph.D. degree in 1995, both from the Slo-
vak University of Technology in Bratislava. Since 2005, she has
been a Full Professor, presently at the Institute of Informatics
and Software Engineering at the Slovak University of Technolo-

gy. Her research interests include software knowledge engineer-
ing and web information systems, especially adaptive web-based
systems including user modelling.


