Computing and Informatics, Vol. 24, 2005, 617-627

ON COMPUTATIONAL STUDY OF EMBODIMENT:
SOME REMARKS AND AN EXAMPLE

Jozef KELEMEN

Institute of Computer Science, Silesian University
746 01 Opava, Czech Republic

and Gratex International

821 09 Bratislava, Slovakia

e-mail: kelemen@fpf.slu.cz

Revised manuscript received 12 October 2005

Abstract. Eco-grammar (EG-) systems are proposed as an example of a suitable
formal framework for the study of some of the computationally relevant properties
of the behavior of collections of embodied agents — called herds in this article —
sharing a common environment, and acting in it in simple ways.

Keywords: Computatrion, agent, embodiment, emergence, grammar system

1 INTRODUCTION

Some of the specialists, especially some of those working in the fields of cognitive
science, artificial intelligence (AI), and advanced robotics, argue that the source of
problems with discovering more adequate and effective ways how to construct (es-
pecially how to program) machines in order to provide their continuous functioning
in dynamically changing environments consists in the embodiment of systems — the
phenomenon which remained almost completely ignored in our recent formal com-
putational models. The traditional mind-body problem of philosophers and cognitive
scientists [7] as well as the actual software-hardware problem of computer and robot
programmers [1] are from the perspective of embodiment in certain sense identical.

The core of the problem of embodiment consists, according to [14], in the fact
that since symbols are abstract entities, computations cannot be performed on them,
but have to be mediated through something physical (like organic bodies of living

618 J. Kelemen

beings or inorganic bodies of machines) that can be manipulated by some physi-
cal operations which correspond systematically to the ones performed during the
abstract computational processes over abstract symbols. Moreover, because of the
same reasons, the symbols themselves must be represented as physical entities in
certain ways. These entities are then manipulated by the above-mentioned physical
processes and the results of manipulations are reinterpreted as the results of abstract
computations.

The just described abstract-physical dichotomy remains unmentioned at all in
our theories so far, with all of the consequences of this ignorance; cf. e.g. [15]. But
when we concentrate to build embodied systems acting in a physically real, dynamic,
usually only hardly predictable environments, we are confronted with the question
how the abstract and the physical is interrelated and how this interrelation influences
the behavior of our robots, for instance. This is the core of the problem of embodi-
ment (at least for the purposes of this paper) — the problem which is highly topical
e.g. because of effective construction of different physically embodied autonomous
agents. Unfortunately, we have no effective enough tools at hand to study such
systems productively, with required theoretical rigor, and from a computationalistic
perspective.

In this paper, we will provide a particular example of how at least some of
computationally relevant questions concerning embodied agents may be approached
from the position of a well-elaborated theoretical (formalized) computational per-
spective. In particular, we will be interested in situations when several (artificially
created) agents are situated and execute tasks in real physical environments. In
such a case the agents are faced with objects with real physical properties existing
and acting in real time scales. Very hard problems appearing in such situations in
the traditional Al research were pointed out first — from very different positions and
with very different consequences — by M. Minsky [10] and R. Brooks [1].

Brooks in his concept of the so called novel Al emphasizes the principal role
of agents reactivity as a necessary condition of their rationality, while Minsky
stresses the principle of decentralization and organization of simplest agents (proto-
specialists) into more complex ones (into agencies) and presupposes that an agency
may play the role of a simple agent in a more complex agency. Both of these po-
sitions might be — according our conviction — combined into one approach. The
unifying idea behind this approach is based on two basic items:

1. to emphasize the role of as direct as possible interaction of the cognitive systems
with their environments at least at the lowest level of sensing and acting, and

2. to exploit the power of organization and of the emergence in lowest levels in
order to receive more complex behaviors in highest levels.

The above-mentioned emphases lead us to realize the principal difference be-
tween implementation of our ideas on how cognitive processes run in natural systems
and how they may run in artificial ones, and between embodiment of our ideas as
artificially constructed agents equipped with sensors (providing signals for them),

On Computational Study of Embodiment: Some Remarks and an Example 619

with processors (for signal processing and perhaps for computing the decisions), and
with actuators (for making changes in their real, dynamic, and noisy environments).

We will focus to the situation, when — for instance because of their embodiment —
not all but only some of agents of a multi-agent system are able to act in the shared
environment, and in which they are active in a very simple way which requires
no addressed interactions, no direct communication, no coordination of actions of
several agents, etc. Collections of agents of just sketched type look like herds in the
nature. So we will call them herds in this article.

The question is whether we are able to construct certain formal theories which
might reflect at least some of the properties of the possible behaviors with formal
rigor — e.g. the computational power — of herds. We will sketch a way how to deal
with this sub-problem in the theoretical framework of the so called eco-grammar (or
EG for short) systems.

2 THE TRADITIONAL VIEW OF COMPUTATION

As we have mentioned elsewhere [8], according the traditional understanding of
computation we can recognize any computing device as an externally passive entity
whose internal activity is based strictly on activities of a finite number of exter-
nally passive components with predefined message passing and on transformation
possibilities of this entity.

Thanks to the internal activities of components and their addressed communica-
tion the whole computing system transforms the inputs provided to it from certain
environment into required outputs. This activity — if it satisfies a dozen of previously
well-specified requirements — is interpreted as a computation in the traditional sense
developed during the modern history of computing which started in the 30ties of
the 20" century with the definition and first studies of (abstract devices equivalent
with) the Turing machine.

The Turing machine working in an environment gets its input in advance at
the beginning of its work, and outputs the result to the environment at the end of
its activity. During the computation, the environment is — from the perspective of
the Turing machine — completely passive. Computing and computation are under-
stood as specific processes which reflect the procedural side of function defined in
mathematics declaratively as a specific type of relations.

While the function declares a specific relation between variables and values in
a set theoretic sense (to definition of a function coincides with a defining a suitable
subset of the Cartesian product of its domain of variables and domain of its values),
the traditional view of a computation (of a function) is procedural one: a computa-
tion defines a function by means of specifying a step-by-step process of elementary
computable steps which transform the given input variable to a corresponding out-
put value (of the corresponding function).

The central problems of (theoretical) computer science originated from the point
of view of the just described traditional paradigm of computing are related with the

620 J. Kelemen

possibility, description, execution, and the effectiveness of an idealized rule governed
by algorithmic transformation of input data into the desired outputs.

Inside the just sketched picture of the traditional understanding of any imagin-
able process which we identify as a computation, in other words the general property
of computability — or the (partial) recursiveness (of mathematically defined func-
tions) — is derived from the computing power of the Turing machine. This is the core
idea of the so-called Church-Turing thesis, which, in a more (but not completely!)
precise formulation, states the Turing machine, logics, Church’s lambda calculus,
algorithmic computing, and the generative capacity of centralized rule-based sys-
tems (more precisely the Chomsky-type formal grammars) as equivalent universal
machineries for solving computational problems; cf. [18].

3 WHY TO CHANGE THE TRADITION?

In the present time there are strong efforts to prove that the notion of computation
might be enlarged beyond the traditional boundaries defined by the Turing machine
and the concept of the Turing-computability. In [2] it is proposed to call algorithms
and automata that are more powerful than Turing machines as super-recursive, and
computations that cannot be realized or simulated by Turing machines as hyper-
computations. In our following consideration on the possible views of computation
we will respect this proposal.

Another possibility of viewing systems as computing devices consists in consider-
ing a computing device as an externally active entity perceiving its dynamic (might
be hardly predictable, noisy, or completely unpredictable) outer environment, and
acting in it continuously according the perceived stimuli and the own inner rules
governing the behavior of the system in order to complete given tasks.

This is the core idea of the third period of the history of modern computing
when the individual behaviors of more or less freely cooperating and communicating
interacting processors result in a behavior interpretable as a solution of a given
problem. The interactivity, as stated in [3] in connection with the analysis of the
computational power of the Turing machine coupled with its environment, or with
the same device appearing as the interactive Turing machine in [17] leads to the
hyper-computational power of the interacting in the Turing sense computationally
universal devices.

The activity of the above mentioned type of systems is based on their own
coupling of sensed data with appropriate acts performed in their environment,
or on the activities of individually autonomous components forming these sys-
tems, and communicating (directly or indirectly) with other components forming
them. Systems of this type are usually called agents, and the structures formed
by these agents are called multi-agent systems. In [8] we called the emerging new
paradigm of considering collections of such kind of autonomous ”"open” systems
as computing devices instead of the isolated ones as the agent paradigm of com-
puting.

On Computational Study of Embodiment: Some Remarks and an Example 621

Interactions of agents with other agents and with their (dynamically changing,
unpredictable, noisy, etc.) external environment during their activities in it are a real
promise how to enlarge computational power of systems; cf. e.g. [17]. In general,
interactions inside a multi-agent system involve the external word and the activities
of individual agents into the behavior (interpreted as a computation) of the whole
system during the computation (rather than before and after, as it is in the case
of the traditional algorithms) which may lead to the computations that cannot be
carried out by a Turing machine as stated in [6].

So, agents and multi-agent systems might be considered as very powerful compu-
tational devices and may contribute with many innovative concepts to our traditional
picture of the (theoretical) computer science and engineering.

An important dimension of the agent paradigm consists in considering agents
not only as products of the development of computer programming techniques and
as innovative tools for computer use, but also as products of development of electri-
cal, mechanical, and computer engineering, as electro-mechanical (usually computer
guided) devices for automation of different physical processes — as real autonomous
machines which do physical (mechanical) work. From such a point of view, as we
have mentioned already, there exists an important difference between real computers
and the abstract Turing machine.

For instance, in [15] it is stated, that computers, as built and used, are the result
of a convergence of the development of machine- and electrical engineering, and of
the progress in understanding computations as processes of performing actions on
symbols as the Turing machine do that.

Expressing Sloman’s observation in our terminology, real computers as well as
real agents — (artificially) intelligent systems, especially the cognitive robots — are
entities which cannot be divided into their hardware and software parts without
missing something fundamental (might be something which emerges) from the fun-
ctioning of their parts. According to [15], this difference makes computers useful,
but Turing machines irrelevant for Al research, for instance.

These two dimensions of agents — interaction with dynamically changing en-
vironment and embodiment — converge into a new understanding of machines as
embodied, autonomously sensing, acting and deliberating agents — into the form of
robots.

The above-mentioned difference, the properties such as the autonomy and con-
tinuity of machines behavior, the relevance of embodiment, and other physical con-
strains and limitations (especially the problematic concept of infinity with respect
to their behavior), the importance of communication between individually indepen-
dent, autonomous computational units in order to achieve common goals (intentio-
nally or as an emergent effect of their co-existence in a shared environment), etc.
seems to be crucial for embodied systems like robots [11].

Many computational processes in robots processors run continuously and au-
tonomously in different types of environments. Good examples are computing pro-
cesses running in autonomous mobile robots. When — for instance — a collision
avoidance module is programmed, its role is to process the input sensor data conti-

622 J. Kelemen

nuously during the robot mission into the data manipulating with robots actuators
in order to avoid obstacles in robots environments.

Of course, all the programs of a robot may be decomposed into the set of in-
terrelated programs of traditional type. However, this type of reduction does not
contribute to the solution of the problem of collision avoidance at all! Instead of
particular programs considered as translation of mathematical functions into some
more procedural languages we must think in terms of autonomy and continuity of
functioning of systems modules based on their ability to sense the environment and
act in it, and on their massive interactions.

In order to apply this new experience in modeling complicated systems (e.g.
in economics, sociology, biology, robotics, etc.), the following methodological expe-
rience seems to be important: Instead of the necessity to aggregate specific particu-
lar data on individual objects as the basis for (mathematical) modeling, the agent
paradigm provides a tool for model each individual behavior separately and then
study the emerging behavior of the society of these individuals. This methodology
is present in many present day experiments with biological, ecological, economic,
electro-mechanical (robotic) or conceptual societies of agents.

4 THE COMPUTATIONAL POWER OF HERDS

In the following, the interactions of agents of systems will be in the center of our at-
tention. We will sketch the influence of collections of individually autonomous agents
with traditional computing power to the computing power of the whole system set
up from these agents, considering the activity of the whole system as a computation.

rom computational point of view an appropriate sub-problem of the above-
described problem of embodiment consists in rigorous specification of the compu-
tational character of results of interaction of the rule governed algorithmic symbol-
manipulating processes which run inside the agents which interact with their
dynamic environments. Usually we are interested in as precise as possible knowledge
of the behavior of an agent or of a multi-agent system in its environment despite of
the fact that we have no complete knowledge of the behavior of the environment.

The solution of this problem is twofold: We may study the possibility of perform-
ing a specified type of behavior thanks to the agents behaviors under the conditions
which we put to the behavior of the environment. To solve this type of problem
is — in certain extent — the traditional role of theoretical computer science. Another
possibility is to concentrate on the feasibility (of course, it will be necessary to define
rigorously what we mean by feasibility in our considerations). We will deal with the
first type of problems using the theoretical framework of the so-called eco-grammar
(EG-) systems.

According to [4], an eco-grammar system ¥ consists, roughly speaking, of

e a finite alphabet V/,

e a fixed number (say n) of agents, and evolving according set of rules Py, Py, ...,
P, applied in a parallel way as it is usual in L-systems [13], and of

On Computational Study of Embodiment: Some Remarks and an Example 623

e an environment of the form of a finite string over V' (the states of the environment
are described by strings of symbols wg , the initial one by wy).

The rules of agents depend, in general, on the state (on the just existing form
of the string) of the environment. The agents act in commonly shared environment
by sets of sequential rewriting rules Ry, Ry, ..., R,.

The environment itself evolves according a set Pg of rewriting rules applied in
parallel as in L systems. The model is schematically depicted in Figure 1.

The evolution rules of the environment are independent on agents’ states and
of the state of the environment itself. The agents’ actions have priority over the
evolution rules of the environment. In a given time unit, exactly those symbols of
the environment that are not affected by the action of any agent are rewritten.

In the EG-systems we assume the existence of the so called universal clock that
marks time units, the same for all agents and for the environment, and according
to which the evolution of the agents and of the environment is considered.

L 22, n devel tal

| P | Py oo | P, Tl(llﬁses opmen aA

parallel G

} w1 u : wWo u : Wy, u rewriting E

: I b ‘?‘deseription N

| P 1: lT/)z lwn T

| S

\ ! | ! | }

Sl N) B S

| I | ‘ . E

sequential N

| | | rewriting 5

‘ wg Jdescription

R

parallel (0]

Trewriting N

P, develop- M

£ monta&3 rules %

Fig. 1. A schematic view of a traditional EG-system [4]

In [5] a special variant of EG-systems has been proposed in which agents are
grouped into subsets of the set of all agents — into the so-called teams — with fixed
number of members. The idea was to express in the model the embodiment of
agents in certain way, especially in this case through limitation of active agents by
some space-requirement put on their activities. However, the term herds instead
of teams seems to be more adequate, because of the lack of direct cooperating and
communicating between the agents sharing the common environment and acting in
it individually, only.

In [16], where — similarly as in [5] — a variant of EG-systems without internal
states of agents is studied, the fixed number of members proposed in [5] is replaced by
a dynamically changing number of agents in teams (herds). As the mechanism of re-
configuration, a function, say f, is defined on the set N of integers with values in the

624 J. Kelemen

set {0,1,2,...,n} (where n is the number of agents in the corresponding EG-system)
in order to define the number of agents in teams (herds): For the i*" step of the work
of the given EG-system, the function f relates to a number f(i) € {0,1,2,...,n}.
The subset of the set of all agents of thus EG-system of the cardinality f(i) is
then selected for executing the next derivation step of the EG system working with
Witjen-type teams. Watjen [16] proved, roughly speaking, that there exist EG-
systems such that if f is (in the traditional sense) non-recursive function, then the
corresponding EG-system generates a non-recursive (in fact a super-recursive) lan-
guage.

The language is defined in the case of Wétjen’s type EG-systems, say 3, using in
each derivation step only agents from the corresponding subset of the cardinality f(7)
of the set of agents of 3, thus:

L(Z, f)={v:w =Wy 270w, 2=y e Nywg ... w, € Vi

The proof is given in [16] given by contradiction. A recursive language is gene-
rated by a special EG-system using arbitrary computable function f. Wétjen uses
the EG-system

Y= (V,PE,Rl,RQ,. ..,Rn,wE)

where
V: {a’7b7b17b27"'7bn}7

Py={a—adb— b u{b —bi=1,2,...,n},
Ri={b—bb},1<i<n,
wo = a’b*n + 3m,m € N.

This EG-system generates the following language:

L(%, f) = {a®b®*n + 3m}U

2k+1 2 2
U {a }perm bbiys .., b, b . , b
keN 1SRy S 2k=1(2n+3m)—f(k) times

i 7150 G735 15,3 <f (k)

This language is recursive, if the function f is recursive. Then the Watjen’s proof
is based on demonstration of a contradiction in such a way:

For the non-recursive f it is supposed that the language L(X, f) remains re-
cursive. This leads, however, to a contradiction in the following way: If L(X, f) is
a recursive language, then the words belonging to it can be effectively listed in some
order. Now, choose an arbitrary k € N. Then there exists a word wy, which belongs
to L(X, f). This word is listed after finite number of steps, and because of that we
can compute the value f(k) for it. So, f is computable. This is the contradiction.
Consequently, the language L(X, f) is non-recursive.

On Computational Study of Embodiment: Some Remarks and an Example 625

As we have mentioned already in [8], in the context of the sketched framework
of the EG systems with agents organized into teams as proposed in [5] and in [16],
we may imagine and suppose — in a very intuitive level — that the physical bodies of
agents are the very things we want for prohibition of all of agents activities in certain
extent during the rewriting process, in other words for creating teams of agents. In
the case of fixed number of agents in teams [5] we recognize no principal influence
of teams to the computational power of the EG systems. However, in the case of
changing number of agents in teams — as proved in [16] and as we have sketched
in this section — the computational power of the EG systems basically depends on
the computational properties of functions which define the number of active agents
in teams. Non-recursive functions appearing in this model cause the possibility
of generating non-recursive languages — behaviors — using the corresponding EG
systems. The non-recursiveness of the function f in the model can be interpreted
as incorporation of the randomness of grouping embodied agents into teams in the
model.

We conjecture that if this randomness incorporated into EG systems will be
at the level expressible only through a hyper-computable functions f, then the
corresponding EG systems which will use such type of functions will be — using the
terminology proposed in [2] — super-recursive, so that they will be able to perform
hyper-computations.

In any case, the interpretation of the result from [16] concerning the computa-
tional power of EG systems with changing number of teams in them proves that
embodiment of agents significantly influences the computational power of commu-
nities of agents in comparison with the individual computational power of agents
forming herds and participating on their activities. In certain sense the difference
between the behavior of the agents and of the whole herds formed by them might be
comprehended as a surprise required in the test of emergence formulated in [12], and
the non-recursiveness (or the above hypothesized super-recursiveness) of societies of
agents as an emergent effect of agents embodiment.

A cknowledgement

The author’s research on the topic is supported by the Czech Science Foundation
Grant No. 201/04/0528.

REFERENCES

[1] BrROOKS, R. A.: Cambrian Intelligence. The MIT Press, Cambridge, Mass., 1999.

[2] BURGIN, M.—KLINGER, A.: Preface — Three Aspects of Super-Recursive Algorithms
and Hyper-Computation or Finding Black Swans. Theoretical Computer Science 317,
2004, pp. 1-11.

[3] CopELAND, B. J.: Hypercomputation — Some Philosophical Issues. Theoretical Com-
puter Science 317, 2004, pp. 251-267.

626

[4]

[5]
(6]
[7]
8]

[9]

J. Kelemen

CsuHAJ-VARJU, E.—KELEMEN, J.—KELEMENOVA, A.—PAUN, GH.: Eco-
Grammar Systems — A Grammatical Framework for Lifelike Interactions. Artificial
Life 3, 1997, pp. 1-28.

CsUHAJ-VARJU, E.—KELEMENOVA, A.: Team Behaviour in Eco-Grammar Systems.
Theoretical Computer Science 209, 1998, pp. 213—224.

EBERBACH, E.—WEGNER, P.: Beyond Turing machines. Bulletin of the EATCS 81,
2003, pp. 279-304.

HumMmPHREY, N.: How to Solve the Mind-Body Problem. Imprint Academic, Thorver-
ton, 2000.

KELEMEN, J.: The Agent Paradigm — Foreword. Computing and Informatics, Vol. 22,
2003, pp. 513-519.

KELEMEN J.: May Embodiment Cause Hyper-Computation? In: Advances in Ar-
tificial Life, Proc. ECALO05 (M.S. Capcarrére et al., eds.). Springer-Verlag, Berlin,
2005, pp. 31-36.

MiINSKY, M.: The Society of Mind. Simon and Schuster, New York, 1986.

PARKER, L.: Current Research in Multirobot Systems. Artificial Life and Robotics 7,
2003, pp. 1-5.

RONALD, E. M. A.—SIPPER, M.—CAPCARRERE, M. S.: Design, Observation, Sur-
prise! A Test of Emergence. Artificial Life 5, 1999, pp. 225-239.

ROZENBERG, G.—SALOMAA, A.: The Mathematical Theory of L-Systems. Acade-
mic Press, New York, 1980.

ScHEUTZ, M.: Computationalism — The Next Generation. In: Computationalism
(M. Scheutz, Ed.). The MIT Press, Cambridge, Mass., 2002, pp. 1-21.

SLOMAN, A.: The Irrelevance of Turing Machines to Artificial Intelligence. In:
Computationalism (M. Scheutz, Ed.). The MIT Press, Cambridge, Mass., 2002,
pp. 87-127.

WATJEN, D.: Function-Dependent Teams in Ecogrammar Systems. Theoretical
Computer Science 306, 2003, pp. 39-53.

WEGNER, P.: Why Interaction Is More Powerful than Algorithms. Communications
of the ACM 40, 1997, No. 5, pp. 81-91.

WEGNER, P.—GoLDIN, D.: Computing Beyond Turing Machines. Communications
of the ACM 46, 2003, No. 4, pp. 100-102.

On Computational Study of Embodiment: Some Remarks and an Example 627

Jozef KELEMEN received his degrees in mathematics at the
Comenius University, Bratislava, Slovakia, in theoretical cyber-
netics at the Academy of Sciences, Moscow, Russia, and in com-
puting technology at the Slovak Technical University, Bratislava,
Slovakia. In the past, he was associated (in the positions of asso-
ciate or full professor) with the Comenius University and Univer-
sity of Economics, Bratislava, Slovakia, and with Lorand Eotvos
University, Budapest, and Istvan Szechenyi University of Tech-
nology, Gyor, Hungary, among others. Now, he is a full professor
of computer science and the head of the Institute of Computer
Science at the Silesian University at Opava, Czech Republic, and a research fellow of the
IT company Gratex International. His professional interests include some branches of
theoretical computer science, artificial intelligence, artificial life, and cognitive science. He
is a member of editorial boards of the journals Computing and Informatics, Experimen-
tal and Theoretical Artificial Intelligence, Grammars, and Neural Network World, and of
several international program committees of symposia and conferences, a member of the
American Association for Artificial Intelligence (AAAI), and the honorary member of the
Hungarian Fuzzy Association.

