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Abstract. We define fuzzy implications in general, then study their families defined
from t-norms, t-conorms and strong negations. Connections between such implica-
tions and negations are established. Some basic results are presented concerning
the contrapositive symmetry property. The study gives birth to a new class of
t-norms. Members of this family, together with the corresponding R-implications,
have attractive properties making them competitive in different applications, espe-
cially in fuzzy inference rules.

Keywords: Fuzzy inference, implications, t-norms and t-conorms, nilpotent mini-
mum

1 INTRODUCTION

Since modeling “if . . . then . . .” rules with fuzzy predicates is based on fuzzy implica-
tions, it is essential to study their mathematical properties. In fuzzy logic, the basic
theory of connectives AND, OR, NOT is well-developed and their functional models
(t-norms, t-conorms and strong negations) are widely accepted (see e.g. [17, 9, 10]).
However, there is no such clear and – in some sense – unique way of defining fuzzy
implications.

The present paper intends to give a general definition first, based on [7] and [6].
The main idea behind is simple. If we have a fuzzy implication then we want to
consider its reciprocal, also a fuzzy implication. Then, we study implications that
are defined by t-norms, t-conorms and strong negations. For such implications,
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we investigate their relationship with negations, and their contrapositive symmetry.
Finally, we recall a family of recently found t-norms, t-conorms and implications.
Their attractive properties can be useful also in applications.

2 FUZZY IMPLICATIONS IN GENERAL

As we said, there exist several approaches to the definition of fuzzy implications.
The following axioms try to catch their most general and characteristic properties.
For justifications and more details we refer to the book by Fodor and Roubens [7].

Definition 1. A fuzzy implication is a function I : [0, 1]2 → [0, 1] satisfying the
following conditions:

I1. If x ≤ z then I(x, y) ≥ I(z, y) for all y ∈ [0, 1] [15].

I2. If y ≤ t then I(x, y) ≤ I(x, t) for all x ∈ [0, 1] [15].

I3. I(0, y) = 1 (falsity implies anything) [15].

I4. I(x, 1) = 1 (anything implies tautology) [7].

I5. I(1, 0) = 0 (Booleanity) [7].

Suppose N is a strong negation (i.e., a strictly decreasing, continuous function
N : [0, 1] → [0, 1] with N(0) = 1, N(1) = 0 and N(N(x)) = x for all x ∈ [0, 1],
see [14]) and I is a fuzzy implication. Then the N -reciprocal of I is defined by

IN(x, y) := I(N(y), N(x)), x, y ∈ [0, 1]. (1)

Clearly, thus defined IN is also a fuzzy implication.
Now we recall further axioms, in terms of function I . These properties are

required in different papers and they could be important also in some applications
(see e.g. [2, 3] and further references there).

I6. I(1, x) = x (tautology cannot justify anything) [15].

I7. I(x, I(y, z)) = I(y, I(x, z)) (exchange principle) [15].

I8. x ≤ y if and only if I(x, y) = 1 (implication defines an ordering) [8].

I9. I(x, 0) = N(x) is a strong negation [7].

I10. I(x, y) ≥ y [19].

I11. I(x, x) = 1 (identity principle) [1].

I12. I(x, y) = I(N(y), N(x)) with a strong negation N [7].

I13. I is a continuous function [7].

It can be proved (see [18, 7]) that if a function I : [0, 1]2 → [0, 1] fulfils con-
ditions I2, I7, I8 then it satisfies also I1, I3, I4, I5, I6, I10 and I11. This result
indicates that properties I9, I12 and I13 are not consequences of the others, and
may be essential in obtaining particular families of implications, as we will see later.
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3 IMPLICATIONS BASED ON T-NORMS, T-CONORMS

AND NEGATIONS

Since t-norms, t-conorms and strong negations are well-accepted models for AND,
OR, NOT, respectively, fuzzy implications cannot be studied independently of these
operations.

The two most important families of such implications are related either to the
formalism of Boolean logic or to a residuation concept from intuitionistic logic. Thus,
we introduce the following definitions:

Definition 2. An S-implication associated with a t-conorm S and a strong nega-
tion N is defined by

IS,N(x, y) = S(N(x), y). (2)

An R-implication associated with a t-norm T is defined by

IT (x, y) = sup{z | T (x, z) ≤ y}. (3)

It is easy to see that both IS,N and IT satisfy conditions I1–I5 for any t-norm T ,
t-conorm S and strong negation N , thus they are fuzzy implications. Note also that
t-norms and their R-implications satisfying the following residuation condition

T (x, z) ≤ y ⇐⇒ IT (x, y) ≥ z, ∀x, y, z ∈ [0, 1] (4)

are especially important (see e.g. [7, 9, 10]). In fact, property (4) is equivalent to
left-continuity of T .

For the sake of completeness we mention a third type of implications used in
quantum logic and called QL-implication:

IT,S,N(x, y) = S(N(x), T (x, y)).

In general, IT,S,N violates property I1. Conditions under that I1 is satisfied by
a QL-implication can be found in [6].

Now we cite characterization of S-implications (see [15, 7]).

Theorem 1. An implication is an S-implication with an appropriate t-conorm S
and a strong negation N if and only if I satisfies I6,I7 and I12.

Characterization of implications that can be defined as R-implications based on
left-continuous t-norms (see also [11, 4, 5, 7]) is given as follows:

Theorem 2. A function I : [0, 1]2 → [0, 1] is an R-implication based on a left-con-
tinuous t-norm if and only if I satisfies conditions I2, I7, I8 and I(x, .) is right-
continuous for any fixed x ∈ [0, 1].
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4 NEGATIONS DEFINED BY IMPLICATIONS

Property I9 requires that N(x) := I(x, 0), x ∈ [0, 1] should be a strong negation.
This corresponds to a connection between implications and negations in Boolean
logic. It can be proved (see [18, 7]) that if I is a fuzzy implication then the function
I(., 0) is a negation in a broad sense (i.e., it is non-increasing and is a Boolean
negation). However, it is neither strictly decreasing nor continuous in general.

Proposition 1. Suppose that I is a fuzzy implication. If n(x) := I(x, 0), x ∈ [0, 1]
is continuous then it is involutive and I fulfils I12 with N(x) := I(x, 0), x ∈ [0, 1].

Note that continuity of the implication is sufficient but not necessary to obtain
strong negation via residuation. As an example, consider the particular t-norm
(called nilpotent minimum, see [6]):

min
0

(x, y) :=
{

0 if x + y ≤ 1
min(x, y) if x + y > 1.

Then its residuated implication is of the form

Imin0
(x, y) =

{

1 if x ≤ y
max(1 − x, y) otherwise.

Although Imin0
is not continuous, Imin0

(x, 0) = 1−x, x ∈ [0, 1] is the standard strong
negation.

When IT is continuous then we can represent it as a ϕ-transform of the  Luka-
siewicz implication. This was proved in [13]. They required more conditions than
necessary (see [7]).

Theorem 3. A function I : [0, 1]2 → [0, 1] is such that I2, I7, I8 and I13 are satisfied
if and only if there exists an automorphism ϕ of the unit interval such that

I(x, y) = ϕ−1(min{1 − ϕ(x) + ϕ(y), 1}). (5)

For positive t-norms T (i.e., when T (x, y) > 0 for x, y > 0) like min or product,
the negation obtained via R-implication is not continuous at all:

IT (x, 0) =
{

1 if x = 0
0 if x > 0.

5 CONTRAPOSITIVE SYMMETRY OF FUZZY IMPLICATIONS

In the framework of two-valued logic, a proposition “if P then Q” is true if and
only if its contrapositive, “if not-Q then not-P” is true. If I is a fuzzy implication
and N is a strong negation, property I12 expresses contrapositive symmetry of I
with respect to N (CPS(N) for short).
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Considering S- and R-implications, their behaviour from this point of view is
rather different. While any S-implication satisfies CPS(N) for any strong negation N
(see [15]), this is not the case for R-implications in general.

First we formulate CPS(N) in some equivalent ways and state some basic con-
nections between the implication and the negation on one hand, and between the
t-norm and the negation on the other hand.

Theorem 4. Suppose that T is a left-continuous t-norm and N is a strong negation.
Then the following three conditions are equivalent.

(a) IT has contrapositive symmetry with respect to N ;

(b) IT (x, y) = N(T (x,N(y))) for all x, y ∈ [0, 1];

(c) T (x, y) ≤ z if and only if T (x,N(z)) ≤ N(y) for all x, y, z ∈ [0, 1].

If IT has CPS(N) then

(d) N(x) = IT (x, 0), x ∈ [0, 1];

(e) T (x, y) = 0 if and only if x ≤ N(y), for x, y ∈ [0, 1].

By the equivalence of statements (a) and (b), an R-implication can have CPS(N)
if and only if it is at the same time an S-implication. By (e), only those R-im-
plications can satisfy CPS(N) for which the underlying t-norm fulfils the law of
contradiction with respect to N . In the case of continuous t-norms we have the
following unicity result (see also [13]).

Theorem 5. Suppose that T is a continuous t-norm. Then IT has contrapositive
symmetry with respect to a strong negation N if and only if there exists an auto-
morphism ϕ of the unit interval such that

T (x, y) = ϕ−1(max{ϕ(x) + ϕ(y) − 1, 0}), (6)

N(x) = ϕ−1(1 − ϕ(x)). (7)

In this case IT is given by

IT (x, y) = ϕ−1(min{1 − ϕ(x) + ϕ(y), 1}). (8)

5.1 Contrapositive Symmetrization of R-Implications

Suppose that T is a left-continuous t-norm and N is a strong negation. Define a new
implication associated with IT as follows:

x →T y := max{IT (x, y), IT(N(y), N(x))}, x, y ∈ [0, 1]. (9)

If IT has contrapositive symmetry then x →T y = IT (x, y) = IT (N(y), N(x)).
Define also a binary operation ∗T by

x ∗T y := min{T (x, y), N [IT(y, N(x))]}, x, y ∈ [0, 1]. (10)
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Obviously, ∗T = T if CPS(N) is satisfied by IT . Even in the opposite case, this
operation ∗T is a fuzzy conjunction in a broad sense and has several nice properties
as we state in the next theorem.

Theorem 6. Suppose that T is a left-continuous t-norm and N is a strong negation
such that N(x) ≥ IT (x, 0) for all x ∈ [0, 1] and operations →T and ∗T are defined
by (9) and (10), respectively. Then the following conditions are satisfied:

(a) 1 ∗T y = y;

(b) x ∗T 1 = x;

(c) ∗T is nondecreasing in both arguments;

(d) x →T y ≥ z if and only if x ∗T z ≤ y.

It is interesting to know whether ∗T is also a t-norm for some T . A sufficient
condition to assure this case is given in the next theorem.

Theorem 7. If T (x, y) ≤ N(IT (y, N(x))) holds for y > N(x), where T is a t-norm
and N is a strong negation, then ∗T is also a t-norm.

As a consequence of this theorem, we have the following result.

Corollary 1. Let N be a strong negation and T be a t-norm such that T (x, y) > 0
when y > N(x). Then the operation defined by

T0(x, y) =
{

T (x, y) if y > N(x)
0 otherwise

is a t-norm if and only if T (x, y) ≤ N [IT (y, N(x))] for y > N(x).

5.2 Nilpotent Minimum

If T (x, y) = min{x, y} then x ∗min y, denoted as min0(x, y), is defined by

min
0

(x, y) =
{

min(x, y) if y > N(x)
0 otherwise

is a t-norm for any strong negation N since

min(x, y) ≤ n(Imin(y, N(x))) = x

holds for y > N(x). This t-norm is called nilpotent minimum with respect to the
strong negation N (see [12, 6]).

Suppose that ϕ is an automorphism of the unit interval, and define a binary
operation on [0, 1] by

min
ϕ

(x, y) =
{

min(x, y) if ϕ(x) + ϕ(y) > 1
0 if ϕ(x) + ϕ(y) ≤ 1

.
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Clearly, the following equivalent form of minϕ can be obtained by using the
strong negation Nϕ generated by ϕ:

min
ϕ

(x, y) =
{

min(x, y) if y > Nϕ(x)
0 otherwise.

In the next theorem we list the most important properties of minϕ and maxϕ.
These are easy to prove.

Theorem 8. Suppose that ϕ is an automorphism of the unit interval. The t-norm
minϕ and the t-conorm maxϕ have the following properties:

(a) The law of contradiction holds for minϕ as follows:

min
ϕ

(x,Nϕ(x)) = 0 ∀x ∈ [0, 1].

(b) The law of excluded middle holds for maxϕ:

max
ϕ

(x,Nϕ(x)) = 1 ∀x ∈ [0, 1].

(c) There exists a number α0 depending on ϕ such that 0 < α0 < 1 and minϕ is
idempotent on the interval (α0, 1]:

min
ϕ

(x, x) = x ∀x ∈ (α0, 1].

(d) With the previously obtained α0, maxϕ is idempotent on the interval [0, α0):

max
ϕ

(x, x) = x ∀x ∈ [0, α0).

(e) There exists a subset Xϕ of the unit square such that (x, y) ∈ Xϕ if and only if
(y, x) ∈ Xϕ and the law of absorption holds on Xϕ as follows:

max
ϕ

(x,min
ϕ

(x, y)) = x ∀(x, y) ∈ Xϕ.

(f) There exists a subset Yϕ of the unit square such that (x, y) ∈ Yϕ if and only if
(y, x) ∈ Yϕ and the law of absorption holds on Yϕ as follows:

min
ϕ

(x,max
ϕ

(x, y)) = x ∀(x, y) ∈ Yϕ.

(g) If A, B are fuzzy subsets of the universe of discourse U and the α-cuts are
denoted by Aα, Bα, respectively (α ∈ [0, 1]), then we have

Aα ∩ Bα = [min
ϕ

(A,B)]α ∀α ∈ (α0, 1]
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and
Aα ∪ Bα = [max

ϕ
(A,B)]α ∀α ∈ [0, α0),

where α0 is given in (c).

(h) minϕ is a left-continuous t-norm and maxϕ is a right-continuous t-conorm.

Proof. (a) and (b) are obviously true.
Concerning (c) and (d), define α0 = ϕ−1(1/2).
In case (e) define Xϕ by

Xϕ = {(x, y) ∈ [0, 1] | ϕ(x) + ϕ(y) ≤ 1}.

Similarly, in case (f) Yϕ can be defined as

Yϕ = {(x, y) ∈ [0, 1] | ϕ(x) + ϕ(y) ≥ 1}.

Case (g) follows from parts (c) and (d).
Finally, (h) is implied by the definition of minϕ and maxϕ, respectively. 2

6 IMPLICATIONS DEFINED BY NILPOTENT MINIMUM

AND NILPOTENT MAXIMUM

Consider the De Morgan triple (minϕ,maxϕ, N
ϕ) with an automorphism ϕ of the

unit interval and define the corresponding S-implication:

I(x, y) = max
ϕ

(Nϕ(x), y)

=
{

1 x ≤ y
max(Nϕ(x), y) x > y.

Since the R-implication defined by minϕ coincides with this S-implication, Iminϕ

always has contrapositive symmetry with respect to Nϕ.
Now we list the most important and attractive properties of Iminϕ

. Their richness
is due to the fact that R- and S-implications coincide and thus advantageous features
of both classes are combined.

1. Iminϕ
(x, .) is non-decreasing

2. Iminϕ
(., y) is non-increasing

3. Iminϕ
(1, y) = y

4. Iminϕ
(0, y) = 1

5. Iminϕ
(x, 1) = 1

6. Iminϕ
(x, y) = 1 if and only if x ≤ y

7. Iminϕ
(x, y) = Iminϕ

(Nϕ(y), Nϕ(x))

8. Iminϕ
(x, 0) = Nϕ(x)
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9. Iminϕ
(x, Iminϕ

(y, x)) = 1

10. Iminϕ
(x, .) is right-continuous

11. Iminϕ
(x, x) = 1

12. Iminϕ
(x, Iminϕ(y, z)) = Iminϕ

(y, Iminϕ(x, z)) = Iminϕ
(minϕ(x, y), z)

13. minϕ(x, Iminϕ(x, y)) ≤ min(x, y)

14. Iminϕ
(x, y) ≥ min(x, y).

Notice that Iminϕ
can also be viewed as a QL-implication defined by

S(x, y) = max
ϕ

(x, y),

N(x) = Nϕ(x)

T (x, y) = min(x, y)

as one can check easily by simple calculus.
Therefore, this QL-implication (which is, in fact, an S-implication and an R-im-

plication at the same time) also has contrapositive symmetry with respect to Nϕ.
Concerning this case, the following unicity result was proved in [6].

Theorem 9. Consider a QL-implication defined by maxϕ(Nϕ(x), T (x, y)), with
a t-norm T . This implication has contrapositive symmetry with respect to Nϕ

if and only if T = min.

7 FUZZY INFERENCE SYSTEMS AND FUZZY IMPLICATIONS

Fuzzy inference systems generate inference results based on fuzzy if-then rules. Fuzzy
implications are mostly used as a way of interpretation of the if-then rules with fuzzy
antecedent and/or fuzzy consequent.

Fuzzy if-then rules may be interpreted in two ways: as a conjunction of the an-
tecedent and the consequent (Mamdani combination) or in the spirit of the classical
logical implication, i.e. as a fuzzy implication.

Approximate reasoning is usually executed in a fuzzy inference system which
performs a mapping from an input fuzzy set to a fuzzy set via a fuzzy rule base. Two
methods of approximate reasoning are mostly used: composition based inference
(first aggregate then inference (FATI)) and individual-rule based inference (first
inference then aggregate (FITA)).

In composition-based inference, a finite number of rules is aggregated via appro-
priate aggregation operations (like intersections or means).

Taking into account an arbitrary input fuzzy set and using the generalized
modus ponens we obtain the output of fuzzy inference (FATI) in a closed form.
In individual-rule-based inference (FITA) each rule in the fuzzy rule base deter-
mines an output fuzzy set and after that an aggregation via intersection or average
operation is performed.
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An output fuzzy set obtained from inference system based on fuzzy implication
interpretation of if-then rules is different from the resulting fuzzy set obtained from
inference system based on conjunctive interpretation of fuzzy if-then rules.

8 CONCLUSION

The nilpotent minimum and the corresponding implication combine advantageous
properties of  Lukasiewicz-like t-norms (e.g. the law of contradiction holds, the cor-
responding R- and S-implications coincide) and those of the minimum itself (e.g.
easy usage of α-cuts in practice). By these propitious characteristics, we hope that
the results of the present paper will urge practical users of fuzzy logic to apply new
operations (especially nilpotent minimum and its associated implication) for mo-
deling problems in important fields such as fuzzy control, engineering and hardware
implementations.
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