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Abstract. We study randomly induced subgraphs G of a hypercube. Specifically,
we investigate vertex covering of G by cubes. We instantiate a greedy algorithm
for this problem from general hypergraph covering algorithm [9], and estimate the
length of vertex covering of G. In order to obtain this result, a number of theoretical
parameters of randomly induced subgraph G were estimated.
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1 INTRODUCTION

Randomly induced subgraphs of the cube are related to minimization of Boolean
functions in the class of disjunctive normal forms. A survey of results is presented
in work by Kostochka, Sapozhenko, and Weber [7].

We study randomly induced subgraph of an n-cube. The model of random sub-
graphs is the following one: each edge is present in a subgraph with probability p
(0 < p < 1), independently of the presence of other edges. Burtin [3] studied con-
nectedness of these graphs for p 6= 1

2
. Erdös and Spencer [4] and Toman [10] studied

components of random subgraphs for p = 1
2
. Ajtai, Komlós, and Szemeredi [1] ana-

lyzed components for p = 1+ε
n
. Toman [11] estimated radius of a random subgraph
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of an n-cube for p ≥ 1
2
. Bollobas [2] and Kostochka [8] studied perfect matchings

for p ≥ 1
2
.

We show that random graph does not contain cubes of arbitrary sizes. We es-
timate the number of cubes of given order (we obtain an asymptotically precise
estimates for some cube orders). Further, we estimate the number of cubes contain-
ing fixed vertex, and the relative number of cubes with this property.

These results are used to estimate the size of vertex covering of random graph
by cubes obtained by greedy algorithm. The greedy algorithm was instantiated
from hypergraph covering algorithm proposed by Sapozhenko [9]. As a corollary, we
obtain an upper bound of vertex covering of random graph by cubes.

2 PRELIMINARIES

Let G be a graph. The vertex set of G will be denoted by V (G), and the edge set
by H(G).

Let Qn be an n-cube graph consisting of 2n vertices labelled by binary vectors
of length n, and n2n−1 edges joining vertices differing in exactly one coordinate. We
denote by Gn the set of all subgraphs of Qn with the complete set of vertices. Thus,
every G ∈ Gn has 2n vertices.

A random graph is a graph obtained from Qn by independent removal of edges.
The probability that the edge is not removed is denoted by p, where p is a constant
(0 < p < 1). We shall consider a probabilistic space (model) (Gn, P ), where P :
Gn → 〈0, 1〉 is a probabilistic function defined as follows:

P (G) = p|H(G)|(1− p)|H(Qn)|−|H(G)|.

The probabilistic function P can be naturally extended to arbitrary subset R of
Gn:

P (R) =
∑

G∈R

P (G).

We call a subset R ⊆ Gn a property of graphs. We shall say that random graph
has a property R, if limn→∞ P (R) = 1.

A graph K is a subgraph of G, denoted by K ⊆ G, if V (K) ⊆ V (G) and
H(K) ⊆ H(G). For graphsG ∈ Gn, we shall say thatK is contained in G, ifK ⊆ G.

A real-valued random variable X is a measurable real-valued function on a pro-
bability space, X : (Gn, P ) → R. All random variables in this paper are non-
negative integer random variables. Let X be a random variable. The expectation,
and the variance of the random variable X will be denoted by E(X) and Var(X),
respectively. The variance of a random variable X can be expressed as follows:
Var(X) = E(X2)− E(X)2.

Let X be a non-negative random variable and let t > 0. Then we have (Markov’s
inequality):

Pr[X ≥ t · E(X)] ≤
1

t
.
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Now, let X be a real-valued random variable and let d > 0.Then we have (Cheby-
shev’s inequality):

Pr[|X − E(X)| ≥ d] ≤
Var(X)

d2
.

We say that an is asymptotically equal to bn, notation an ∼ bn, if limn→∞
an
bn

= 1.
The symbol ln x and lg x denotes natural and binary logarithm of x, respectively.
We shall often use the logarithm to the base 1

p
. To simplify the notation, we put

b = 1
p
and write logb x instead of log1/p x.

3 GREEDY COVERING OF THE RANDOM GRAPH BY CUBES

Let V = {v1, . . . , vn} be a finite set. Let H = {H1, . . . , Hm} be a set of subsets of
the set V such that

⋃m
i=1Hi = V . The pair (V,H) is called hypergraph with the set

of vertices V , and the set of edges H. Degree of vertex vi ∈ V (denoted by deg(vi))
is the number of edges containing vi.

Let (V,H) be a hypergraph. Let V ′ ⊆ V and H ′ ⊆ H be such subsets that
V ′ ⊆

⋃

Hi∈H′ Hi. We say that the set H ′ covers the set V ′, and the pair (V ′, H ′) is
subhypergraph of (V,H) (denoted by (V ′, H ′) ⊆ (V,H)). If V ′ = V , the set H ′ is
the covering of hypergraph (V,H), and |H ′| is the length of the covering.

Let ComputeCovering be a straightforward greedy algorithm for computation of
covering, see Figure 1. The input of ComputeCovering is the hypergraph (V,H).
The algorithm chooses one edge from H in every iteration. In the first iteration,
the edge of maximal size is chosen. Let H(k) denote the set of edges chosen in first
k iterations of ComputeCovering. Let V (k) = V \

⋃

Hi∈H(k) Hi. If V (k) = ∅, the

algorithm stops with result H(k). Otherwise, the algorithm selects the edge Hw

from H \H(k) containing largest number of vertices from V (k). The algorithm sets
H(k + 1) = H(k) ∪ {Hw}.

ComputeCovering(V ,H)

k = 0;
H(0) = ∅; V (0) = V ;
while V (k) 6= ∅

find edge Hw ∈ H \H(k), such that |Hw| is maximal;
H(k + 1) = H(K) ∪ {Hw};
V (k + 1) = V \

⋃

Hi∈H
Hi;

k = k + 1;
end

return H(k)

Fig. 1. Algorithm ComputeCovering

It can be seen easily that ComputeCovering terminates with covering of hyper-
graph (V,H). We call this covering simple covering and its length is denoted by
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lA(V,G). The following theorem is proved in [9].

Theorem 1. Let (V,H) be a hypergraph. Let (V ′, H ′) ⊆ (V,H) be a subhyper-
graph satisfying the following conditions:

1. ∀v ∈ V ′ : deg(v) ≥ d, for some integer d,

2. |V ′| ≥ (1− ε)|V |, for some ε ≥ 0.

Then the length of simple covering satisfies the inequality

lA(V,H) ≤ 1 + ε|V | +
|H ′|

d
ln

|V |de

|H ′|
.

We apply the theorem for obtaining upper bound of the length of vertex covering
of random graph with 2n vertices by cubes. For every graph G = (V,H), a subgraph
of an n-cube, a hypergraph (VG, HG) is defined as follows: VG = V , and HG is the
set of all cubes contained in G. Let Hn,k(G) be the set of all k-cubes contained
in G. Let degk(v, G) be the number of k-cubes from Hn,k(G) that contain vertex v.
Further, let VG(k, d) ⊆ V be the subset of those vertices v, such that degk(v, G) ≥ d.
Obviously (VG(k, d), Hn,k(G)) ⊆ (VG, HG). If |VG(k, d)| ≥ (1− ε)2n, for some ε ≥ 0,
then Theorem 1 can be applied to estimate the length of simple covering. We get

lA(VG, HG) ≤ 1 + ε2n +
|Hn,k(G)|

d
ln

2nde

|Hn,k(G)|
.

In the following sections we prove some properties of random graphs to fill gaps
in this upper bound. All properties are studied asymptotically, i.e. with probability
converging to 1 for n → ∞.

4 CUBES

We start with exploration of subcubes in random graph G ∈ Gn.

Definition 1. A subcube of order k, or k-subcube (for 0 ≤ k ≤ n), is a k-cube
subgraph of Qn.

Recall that all random variables in this paper are random variables in pro-
babilistic space (Gn, P ). Let Xn,k be a random variable denoting the number of
k-subcubes contained in G ∈ Gn. Thus, Xn,k = |Hn,k(G)|. In subsequent lemmas
we express the expected value of Xn,k and estimate its variance.

Lemma 1. Let K be a k-subcube. Let G ∈ Gn. Then the probability that K is
contained in G is

Pr[K ⊆ G] = pk2
k−1

.

Proof.

Pr[K ⊆ G] = p|H(K)| = pk2
k−1

.

�
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Lemma 2.

E(Xn,k) =

(

n

k

)

2n−kpk2
k−1

.

Proof. The expected value can be expressed as a sum of probabilities Pr[K ⊆ G]
over all k-subcubes of Qn:

E(Xn,k) =
∑

K

Pr[K ⊆ G].

Using the previous lemma we obtain

E(Xn,k) =
∑

K

pk2
k−1

=

(

n

k

)

2n−kpk2
k−1

.

�

Lemma 3.

Var(Xn,k) =

(

n

k

)2

2n−kpk2
k−1

.

Proof. We express E(X2
n,k), the expected number of ordered pairs (K,L), such

that K, L are k-subcubes, and K,L ⊆ G:

E(X2
n,k) =

∑

(K,L)

p|H(K)∪H(L)| =
∑

(K,L)

p|H(K)|+|H(L)|−|H(K∩L)| = pk2
k
∑

(K,L)

p−|H(K∩L)|

(1)
where the sum is taken over all k-subcubes ofQn. IfK∩L 6= ∅, thenK∩L a subcube
of order j, for some 0 ≤ j ≤ k. Thus, |H(K ∩L)| = j2j−1. Let Aj count those pairs
(K,L), such that K ∩ L is a j-subcube. Trivially, Aj =

(

n
j

)

2n−j
(

n−j
k−j

)(

n−k
k−j

)

. The

number of pairs (K,L) such that K ∩ L = ∅ is
((

n
k

)

2n−k
)2

−
∑k

j=0Aj . Substitution
in (1) gives

E(X2
n,k) = pk2

k

(

k
∑

j=0

Ajp
−j2j−1

+

(

((

n

k

)

2n−k

)2

−
k
∑

j=0

Aj

)

p0

)

= pk2
k

2n
k
∑

j=0

(

n

j

)(

n− j

k − j

)(

n− k

k − j

)

2−j
(

p−j2j−1

− 1
)

.

We denote aj = 2−j
(

p−j2j−1

− 1
)

, for 0 ≤ j ≤ k. For estimating an upper bound of

Var(Xn,k) we use the inequality ak ≥ aj, and following combinatorial identity, see
[6]:

k
∑

j=0

(

n

j

)(

n− j

k − j

)(

n− k

k − j

)

=

(

n

k

)2

.
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We have

Var(Xn,k) ≤ pk2
k

· 2nak

k
∑

j=0

(

n

j

)(

n− j

k − j

)(

n− k

k − j

)

= pk2
k

· 2nak

(

n

k

)2

= pk2
k

· 2n−k
(

p−k2k−1

− 1
)

(

n

k

)2

≤

(

n

k

)2

2n−kpk2
k

.

�

Theorem 2 (counting cubes of given order). Let ϕ(n) be an arbitrary increasing
function. Then, with probability converging to 1 as n → ∞, the following inequality
holds for any G ∈ Gn:

(

n

k

)

(

2n−kpk2
k−1

− ε
)

< Xn,k <

(

n

k

)

(

2n−kpk2
k−1

+ ε
)

,

where ε = ϕ(n)
√

2n−kpk2k−1.

Proof. We substitute the results of Lemma 2 and Lemma 3 into Chebyshev in-
equality for random variable Xn,k. Moreover, we set ε = ϕ(n)

(

n
k

)

√

2n−kpk2k−1. Since
limn→∞ 1/ϕ(n) = 0 we get

lim
n→∞

Pr[|Xn,k − E(Xn,k)| ≥ ε] ≤ lim
n→∞

Var(Xn,k)

ε2
= 0.

Hence

lim
n→∞

Pr[|Xn,k − E(Xn,k)| < ε] = 1.

�

The maximal order of cubes contained in a random graph is an important quan-
tity needed for the estimate of simple covering length. Let µ be the smallest integer
satisfying the inequality

µ− 1 + lg(µ+ 1) ≥ lg logb 2
n. (2)

We show in Lemma 4 that random graph does not contain k-cubes, for any k > µ.

Since µ is the smallest integer satisfying (2), we get

µ− 2 + lgµ < lg logb 2
n. (3)
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Inequalities (2) and (3) yield the following upper and lower bounds:

(

1

p

)(µ+1)2n−1

≥ 2n (4)

(

1

p

)µ2µ−2

< 2n (5)

For sufficiently large n we use the following estimates of µ:

µ ≤ ⌈lg logb 2
n − lg lg logb 2

n + 2⌉ (6)

µ ∼ lg logb 2
n = lgn− lg lg

1

p
. (7)

Lemma 4. The following statements hold for any G ∈ Gn, with probability con-
verging to 1 as n → ∞:

1. G does not contain cube of order greater than µ;

2. Xn,k ∼
(

n
k

)

2n−kpk2
k−1

, for k ≤ µ− 2.

Proof. In order to prove the first part, we show that limn→∞Xn,k = 0, for any k > µ.

According to Theorem 2, it suffices to show that limn→∞

(

n
k

)

ϕ(n)2n−kpk2
k−1

= 0. Let

mk =
(

n
k

)

ϕ(n)2n−kpk2
k−1

. The inequality
(

n
k

)

≥ nk yields mk ≤ ϕ(n)2k lgn+n−kpk2
k−1

.
We can write µ = k + r, for r ≥ 1. Then

mk ≤ ϕ(n)2(µ+r) lg n2np(µ+r)2µ+r−1

.

Since r ≥ 1 we get

mk ≤ ϕ(n)2(µ+r) lg n2n
(

p(µ+r)2µ−1
)2r

.

Using inequality (4) gives

mk ≤ ϕ(n)2(µ+r) lgn2n(2−n)2
r

= ϕ(n)
2(µ+r) lg n

2(2r−1)n
.

Asymptotical estimate (7) implies limn→∞mk = 0.
The proof of the second statement follows from 2, if we show that

(

n
k

)

ϕ(n)
√

2n−kpk2k−1 = o(
(

n
k

)

2n−kpk2
k−1

) for k ≤ µ− 2, i.e.

lim
n→∞

ϕ(n)
√

2n−kpk2k−1
= 0.

Since ϕ(n) is arbitrary increasing function, it is sufficient to show limn→∞ 2n−kpk2
k−1

= ∞, for k ≤ µ− 2. Let mk = 2n−kpk2
k−1

. Then, for k ≤ µ− 2:

mk ≥ 2n−µ+2p(µ−2)2µ−3

.
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Applying (5) we get

mk > 2nµ+2(2−n)
µ−2

2µ

mk > 2
n
2
−µ+2.

Asymptotical estimate (7) implies limn→∞mk = ∞. �

Theorem 3 easily follows from upper bound (6) and Lemma 4:

Theorem 3 (nonexistence of big cubes). Any graph G ∈ Gn does not contain cu-
bes of order k ≥ lg n− lg logb 2

n − lg lg logb 2
n + 3, with probability converging to 1

as n → ∞.

The number of edges of random graph G ∈ Gn is another quantity we needed
to estimate. We denote by hn a random variable counting edges of G. Trivially
hn = Xn,1 (each edge is a 1-cube). Thus, the results for cubes in random graph can
be used for estimating hn.

Theorem 4. The following statements hold for any G ∈ Gn, with probability con-
verging to 1 as n → ∞:

n2n−1p− n2
√

2n−1p <hn < n2n−1p+ n2
√

2n−1p (8)

hn ∼ n2n−1. (9)

Proof. Inequalities (8) follow from Theorem 2, for ϕ(n) = n and k = 1. Estimate (9)
is a corollary of Lemma 4. �

5 CUBES CONTAINING A FIXED VERTEX

Recall that degk(v, G) denotes the number of k-cubes in G containing vertex v.

Lemma 5. Let 0 ≤ k ≤ k0, where k0 = ⌈lg logb n+2⌉. Let Pn,k(v) be a probability
that for random graph G the following inequality holds:

∣

∣

∣

∣

degk(v, G)−

(

n

k

)

pk2
k−1

∣

∣

∣

∣

≥
1

k0

(

n

k

)

pk2
k−1

.

Then

Pn,k(v) ≤
ck5

0

n
.

Proof. Let Yn,k be a random variable denoting the number of k-cubes in G contain-

ing vertex v. It can be easily seen that E(Yn,k) =
(

n
k

)

pk2
k−1

.
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Let ηK be a 0/1 random variable (indicator) attaining value 1, if and only if
cube K ⊆ G contains v. Let us express E(Y 2

n,k):

E(Y 2
n,k) = E(

∑

(K,L)

ηKηL) =
∑

(K,L)

Pr[ηKηL = 1]

=
∑

K∩L={v}

Pr[ηKηL = 1] +
∑

K∩L 6={v}

Pr[ηKηL = 1],

where the sum is taken over all order pairs (K,L), such that K, L are k-cubes
containing v. If K ∩ L = {v}, then Pr[ηKηL = 1] = pk2

k

. Therefore

∑

K∩L={v}

Pr[ηKηL = 1] =

(

n

k

)(

n− k

k

)

pk2
k

≤

(

n

k

)2

pk2
k

= E2(Yn,k).

If K ∩ L 6= {v}, we get (j denotes order of cube K ∩ L)

∑

K∩L 6={v}

Pr[ηKηL = 1] =

n
∑

j=1

(

n

j

)(

n− k

k − j

)(

n− j

k − j

)

pk2
k−j2j−1

.

The largest summand is the first one (j = 1), for k ≤ k0. Hence, the sum can be
estimated

∑

K∩L 6={v}

Pr[ηKηL = 1] ≤ k0n

(

n− 1

k − 1

)2

pk2
k−1 ≤

ck3
0

n
E2(Yn,k).

Putting all these estimates together, the variance of Yn,k can be expressed:

Var(Yn,k) = E(Y 2
n,k)− E2(Yn,k)

≤ E2(Yn,k) +
ck3

0

n
E2(Yn,k)− E2(Yn,k)

=
ck3

0

n
E2(Yn,k).

The Lemma follows from Chebyshev inequality for random variable Yn,k by setting
ε = 1

k0
E(Yn,k). �

Remark 1. In an unpublished manuscript we have shown that the orders of maxi-
mal cubes that cover asymptotically all vertices of a random graph lie in interval

(lg logb n− lg lg logb n, lg logb n+ 2).

Let bk(G) be the number of vertices from G such that | degk(v, G)− E(Yn,k)| ≥
1
k0
E(Yn,k). The expected value of bk can be upper-bounded by help of Lemma 5:

E(bk(G)) =
∑

v∈G

Pn,k(v) ≤
ck5

0

n
· 2n.
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Applying Markov inequality to bk(G) yields

Pr[bk(G) ≥ k0 E(bk(G))] ≤
1

k0
.

Since k0 → ∞ for n → ∞ we get

lim
n→∞

Pr[bk(G) ≤
ck6

0

n
· 2n] = 1. (10)

This estimate holds for any k ≤ k0. Let εG(k0) be a relative number of those vertices,
such that degk0(v, G) <

(

m
k0

)

pk02
k0−1

(1− 1
k0
). Applying (10) we get

lim
n→∞

Pr[εG(k0) ≤
ck6

0

n
] = 1.

We restate this result as lemma.

Lemma 6. Let εG(k0) be a relative number of those vertices, such that degk0(v, G)

<
(

m
k0

)

pk02
k0−1

(1 − 1
k0
). Then with probability converging to 1 as n → ∞, the

following inequality holds:

εG(k0) ≤
ck6

0

n
.

Let us summarize the obtained results – for random graph G with probability
converging to 1 as n → ∞:

1. G does not contain cubes of order greater than µ ∼ lg n− lg lg 1
p
,

2.

Xn,k ∼

(

n

k

)

2n−kpk2
k−1

, for k ≤ µ− 2,

3.

εG(k0) ≤
ck6

0

n
, for some constant c.

It follows from our discussion that the length of greedy covering of the random
graph by cubes can be estimated by Theorem 1 for the parameters

d =

(

n

k0

)

pk02
k0−1

(

1−
1

k0

)

, ε = εG(k0), k = k0

|V | = 2n, |H ′| =

(

n

k0

)

2n−k0pk02
k0−1

.

Simplification leads to the following theorem:

Theorem 5. The length of greedy covering of the random graph by cubes is, with
probability converging to 1 as n → ∞, at most

2n

logb n
(1− o(1)).
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