
Computing and Informatics, Vol. 25, 2006, 353–368

FORMAL VERIFICATION OF SECURITY MODEL
USING SPR TOOL

Il-Gon Kim, Miyoung Kang, Jin-Young Choi∗

Korea University
Seoul, Korea
e-mail: igkim@formal.korea.ac.kr

Peter D. Zegzhda, Maxim O. Kalinin, Dmitry P. Zegzhda

Saint-Petersburg Polytechnical University
Saint-Petersburg, Russia

Inhye Kang

University of Seoul
Seoul, Korea

Manuscript received 3 June 2004; revised 12 June 2006

Communicated by Igor Walukiewicz

Abstract. In this paper, formal verification methodologies and the SPR (Safety
Problem Resolver) model checking tool are used for verifying a security model’s
safety. The SPR tool makes it possible to analyze security issues on security systems
based on the access control model. To illustrate this approach, a case study of the
Simple Access Control Model (SACM) is used and specific safety problems of the
security model are analyzed using the SPR tool.

Keywords: SPR (Safety Problem Resolver), SEW (Security Evaluation Work-
shop), SPSL (Safety Problem Specification Language)

∗ Corresponding author

354 Kim, Kang, Choi, Zegzhda, Kalinin, Zegzhda, Kang

1 INTRODUCTION

The greater the assurance, the greater the confidence that a security system will
protect against threats, with an acceptable level of risk. A contrast is revealed in
supposedly secure commercial operating systems, applications, and network com-
ponents, particularly with respect to security. Commercial offerings have serious
security vulnerabilities. Most existing systems lack adequate ability to securely
interconnect and interoperate. Each vendor has taken a different approach, demon-
strating relative independence from their competitors. The revealing of all vul-
nerabilities comprises the goal of the security evaluation process. There is little
understanding as to the level of security that can be attained by integrating a col-
lection of components, and even less understanding as to what assurance security
may provide.

In the last decade, a number of individual countries developed specific secu-
rity evaluation standards [16]. This initiative opened the path to worldwide mu-
tual recognition of security evaluation results. Following this initiative, a new
Common Criteria (CC) [3] were developed. For example, CC defines seven le-
vels of assurance for security systems, rising from EAL1 to EAL7. In order to
obtain a higher assurance than EAL5, developers require specification of a se-
curity model for security systems and verify security using formal methods ap-
proach.

Vendors are discouraged from offering secure systems because significant re-
sources are required to develop a system capable of meeting the evaluation criteria
and to marshal it through the evaluation process. Moreover, because of evaluation
delays, an evaluated product is typically no longer the current version of the system,
which necessitates repeated reevaluation. For high assurance systems, the difficulty
of using formal methods adds further complexity to both development and evalu-
ation. However, given the lack of suitable mature, industrial-strength tools, and
the cost of formal verification, an informal approach generally presents a suitable
compromise.

This paper proposes a technique for analysis of security policy enforcement,
a framework for formal analysis of security systems, and Safety Problem Resolver
(SPR) [10]. These allow specification of system security-related elements and veri-
fication of system safety.

This paper is structured as follows. Section 2 addresses the classification of
security models and illustrates the background of issues. Section 3 introduces the
overall structure of the Safety Evaluation Workshop (SEW), in analyzing the safety
of a security model. Section 4 presents core specification and verification, illustrates
SPSL, and presents methods for resolving safety problems using the SPR tool. In
Section 5, an example of formal specification and verification for the Simple Access
Control Model (SACM) is presented using the SPR tool. Finally, Section 6 presents
the conclusion and discusses future direction.

Formal Verification of Security Model Using SPR Tool 355

2 SAFETY PROBLEM

In general, security [14] represents the combination of confidentiality, integrity and
availability. The security model term [13] could be interpreted as the formal re-
presentation of a security system’s confidentiality, integrity and availability require-
ments. The more general usage of the term specifies a particular mechanism for
enforcing confidentiality and named access control, which has been adopted for
computer security from the world of documents and safes.

Security concerns arise in many different contexts; thus, many security mo-
dels have been developed. The access control model can be grouped into three
main classes according to security policies [6]: Discretionary Access Control (DAC),
Mandatory Access Control (MAC), and Role Based Access Control (RBAC).

Obtaining assurance that system behavior will not result in unauthorized access
is called a safety problem [13]. MAC governs access on the basis of classification
of subjects and objects in the system. MAC is safe by definition, and no safety
problem resolving is required for the MAC-based system, because safety for MAC
is proven theoretically and presented in a general case [12]. The verification of the
safety of any kind of MAC policy is obvious; however, unfortunately, the policies for
MAC are not particularly well suited to industry organizations that process sensitive
information.

DAC has the drawback that it does not provide real assurance on the flow of
information in a system. It is easy to bypass stated access restrictions, through
another user’s authorization process. For example, a user permitted to read data
can pass this data to other unauthorized users without the cognizance of usage of
information by a user once the user receives the information.

Since Harrison, Ruzzo, and Ullman demonstrated that the safety problem was
undecidable, in the common case [7], research has focused on determining whether
safety could be decided for access control models with limited, but practical, ex-
pressive power. First, the take-grant model has a linear time safety algorithm;
however, there is still a significant difference in expressive power between take-grant
and HRU [1]. This difference is considerably smaller for the models presented by
Sandhu et al.: SPM, TAM, ESPM, and non-monotonic ESPM [2]. Sandhu et al.
demonstrated that an access control model could be designed for which safety is
efficiently decidable (i.e., in polynomial time), given some restrictions. Ultimately,
despite proven expressive power and safety determination, these access control mo-
dels have not been adopted in practice. In this paper, we give two reasons for this
lack of acceptance:

1. subtlety of the restrictions and complex relationship and

2. difficulty in defining safety requirements and writing practical algorithms to
enforce these requirements.

With RBAC [5], access decisions are based on roles that individual users have
as part of an organization. Users take on assigned roles. In spite of the mentioned

356 Kim, Kang, Choi, Zegzhda, Kalinin, Zegzhda, Kang

lacks, great majority of systems (e.g. operating systems, DBMS, Firewalls) use DAC-
based security models as the basis for access control mechanism. Thus, in a general
situation, safety cannot be verified for the arbitrary DAC access control system.
In security evaluation, safety verification is the central problem, particularly for
distributed computer systems.

In this paper, this safety problem is solved, proposing a universal specification
and model checking tool. This tool permits the analyzer to describe system security
elements and calculate security estimation for any security computer system.

3 SAFETY EVALUATION WORKSHOP

According to principles of computer system modeling, the term security model is
used as the combination of system security states, transitions through access control
rules, and constraints such as the state security criteria.

Figure 1 demonstrates three components of the formal security model. These
mainly present access control models [7, 12, 6]. The access control model was first
formulated by Lampson [11]. The structure of the model is that of a state machine
where each state is (S, O, M), where S is a set of subjects, O is a set of objects,
and M is an access matrix which has one row for each subject, one column for each
object, and is such that cell M [s, o] contains the access rights.

Fig. 1. Security model structure

The type of security system mentioned in this paper, refers to operating systems,
IDSs, Firewalls, and so on. For safety evaluation of security systems, a Safety
Evaluation Workshop (SEW) structure is proposed, consisting of seven components.
Figure 2 presents the evaluation framework in SEW.

The functions of seven components in SEW are as follows:

1. System State Analyzer:

Investigates the system being evaluated and builds the security model state
automatically according to the access control model.

2. Security Criteria Manager:

Evaluator inputs the state security criteria into the Security Criteria Mana-
ger.

Formal Verification of Security Model Using SPR Tool 357

Fig. 2. Safety Evaluation Workshop structure

3. Scopes:

(a) Model-related System Security (M3S) – scope:

Specifies the system security state and behavior in SPSL.

(b) Access Control Rules (ACR) – scope:

Describes access control rules in SPSL.

(c) State Security Criteria (SSC) – scope:

Expresses state security criteria in SPSL.

4. SPR:

Formal verification tool implemented using C and SWI-Prolog [17].

5. Safety Problem Specification Language (SPSL):

Specification language for security model with 3 scopes, based on Prolog
syntax.

6. Security Flow Explorer:

Demonstrates the sequence of the events, leading to the security fault.

7. Evaluation Reporter:

Produces a final report containing the access control model, system, initial
state, access control rules, security criteria, evaluation result, and security
flaw trace.

358 Kim, Kang, Choi, Zegzhda, Kalinin, Zegzhda, Kang

4 SAFETY PROBLEM RESOLVING AND SPSL

4.1 General System

A general system Σ could be represented as a state machine: Σ = {SΣ, T, sΣ
init

, Q},
where SΣ is a set of system state; Q is the set of the queries executed by the
system, such as create file, read file or execute file; T is the state transition function,
T : Q×SΣ −→ SΣ moves the system from one state to another: a request q is issued
in the state sΣ

i
and moves the system to the next state sΣ

i+1 = T (q, sΣ); sΣ
init

is the
initial system state.

4.2 General Security Model

A general security model M presents an ensemble of sets, M = {S,R, C}, where
S is the set of system security states defined by the model; R is the set of the
access control rules; C is the set of the state security criteria in the form of logical
predicates c(s) defined on S and checking security of the state s. A state s ∈ S is
secure if and only if every security criterion c from C the predicate c(S) is true.

4.3 Safety Property

The term of safety means that “something bad never happens”. If a security system
has safety problem in security, it represents that sensitive information is leaked
by unauthorized access. The assurance that system behavior will not result in
unauthorized access is fundamental to ensuring that the enforcing of the access
control model will guarantee system security.

The system safety property can be formalized as Λ = {M,Σ, D}, where M is
the access control model, M = {S,R, C}; Σ is the system, Σ = {SΣ, T, sΣ

init
, Q};

D is the mapping function, D : SΣ −→ S, which is the relationship between the
system states and system security states.

4.4 SPSL

In order to specify the system security-related elements, in this paper the Safety
Problem Specification Language (SPSL) is presented. The majority of other work
relating to security specification is not intuitive and does not easily map onto tasks.

The ASL [9] represents an example technique based on the formal logic language
for security specification. Although support is provided for role-based access con-
trol, the language does not scale well in real systems because there is no method
of modeling real access control rules. There is no specification of delegation and no
method of modeling rules for groups of different identities. LaSCO [8] is a graphical
approach for evaluating security constraints on objects, in which the policy consists
of two components: domain (the system abstraction) and requirements (authoriza-
tion rules). The scope of this approach is excellent for plain demonstration, but too

Formal Verification of Security Model Using SPR Tool 359

complex for actual implementation. The Ponder [4] language is an object-oriented
specification language. This language is most effective for safety specification and
evaluation purposes. This language is developed using JAVA implementation, but is
not well prepared for automated evaluation of real-world systems. The Ponder-based
system does not support system security state modifications and state transitions.

Therefore, this general evaluation problem for security policy enforcement, in-
cluding system weakness detection, has never been addressed by any security spec-
ification tools. SPSL represents a logical specification language to express a Model-
related System Security Scope (security states), Access Control Rules Scope (access
control rules), and Security Criteria Scope (security criteria) based on the Prolog-
style syntax (SWI-Prolog usage). SPSL is designed to specify the protection me-
chanisms of common-used operating systems such as Windows 2000 and Linux. For
example, consider the Windows 2000 operating system. In this system, system se-
curity is configured by subject (e.g., users, user groups), objects (e.g., files, registry
keys), and access control rights. The access control rights are composed in a list,
called the Access Control List (ACL). There is a map between subjects, objects,
and access modes in the ACL.

4.5 Safety Problem Resolving in SPR

In this paper, the Safety Problem Resolver (SPR) tool [10] is proposed, which helps
analyze and process SPSL-based specifications regarding the system security, veri-
fying whether a system security policy has a safety problem. The SPR verifies an
initial system security state using a given security criteria; first all reachable states
are generated, then they are verified using the criteria. The SPR tool is a logi-
cal machine based on the Prolog kernel, supplied with an API implemented in the
C++ programming language. The SPR can be applied to safety problem resolving
as described below.

For analyzing safety problems using SPR, it is necessary to execute three stages.

1. Evaluate whether the given initial system sΣ
init

∈ sΣ state conforms to the secu-
rity criteria C:

∀c ∈ C : c(D(sΣ
init

)) = true.

2. Analyze the system access control mechanism that realizes the access control
rules R:

∀sΣ
i
, sΣ

i+1 ∈ SΣ : sΣ
i+1 = T (q, sΣ

i
)

∃si = D(sΣ
i
), sΣ

i+1 = D(sΣ
i+1) and ∀r ∈ R : r(si, si+1) = true.

3. Generate the states sΣ
i
∈ sΣ reachable from the given initial state sΣ

init
∈ sΣ and

analyze their safety by the security criteria C:

∀sΣ
i
∈ SΣ : sΣ

i
is reachable from sΣ

init
, sΣ

i
= D(sΣ

i
) : ∀c ∈ C : c(si) = true.

360 Kim, Kang, Choi, Zegzhda, Kalinin, Zegzhda, Kang

If the above conditions are met, the system in the given system state is safe
according to the access control model. The process of producing sets of reachable
states and evaluating the criteria is called safety problem resolving.

The SPR tool searches all reachable states in systems and verifies whether they
represent an unsafe security state. A more detailed description of the SPR is pre-
sented in [15].

5 SECURITY EVALUATION EXAMPLE

For easy understanding of security specification and SPR’s functionality, a very
Simple Access Control Model (SACM) example is presented in Figure 3.

Subject1

Subject2

Object1

Object2

Subject3

Object3

no read up

no write down

High Group Low Group

Fig. 3. Simple Access Control Model example

The access control model presented in Figure 3 has High and Low groups. Sub-
ject1, Subject2, Object1 and Object2 are in the High group. Subject3 and Object3
are involved in the Low group. In this example, a Subject refers to a user, and
an Object points to a file. This example access control model should satisfy the
following safety properties.

1. No Read Up: A subject is allowed read access to an object only if the access
class of the object dominates the access class of the subject.

2. No Write Down: A subject is allowed write access to an object only if the access
class of the subject is dominated by the access class of the object.

The satisfaction of these principles prevents information in high level objects to
flow to objects at lower levels.

5.1 Security States

The security states are a collection of all entities of the system (subjects, objects)
and their security attributes (access rights, ACLs, and etc.), similar to well-known
operating system. In this example model, it is assumed that a subject has each

Formal Verification of Security Model Using SPR Tool 361

X
X
X

X
X
X
X
X
X

X
X

Subjects
Objects

Object1 Object2 Object3

High Group read,write read,write read,write

Low Group read,write

Subject1 read,write read,write read,write

Subject2 read,write read,write read

Subject3 read,write

Table 1. Simple Access Control Model’s ACLs

object in its directory. The SACM includes user groups and files. User groups
are divided into High and Low ones and are noted as security subjects. Subject1,
Subject2 and Subject3 represent three users. File system elements(files and direc-
tories) are regarded as security objects. Object1, Object2 and Object3 are noted as
3-scope files in each user’s directory. The object access by subject depends on the
ACLs shown in Table 1. The system security states may be presented in terms of
Model-related System Security Scope (M3S)-scope; Subjects + Objects + Security
Attributes.

Example 1. M3S-scope of SACM

subjectAttr(subjectGroups).

subject(s1,[subjectGroups(high)]).

subject(s2,[subjectGroups(high)]).

subject(s3,[subjectGroups(low)]).

objectAttr(objectType).

objectAttr(high).

objectAttr(low).

objectAttr(s1).

objectAttr(s2).

objectAttr(s3).

object(o1,[objectType(file), objectOwner(s1), high(rd,rp,wd,wp),

low, s1(rd,rp,wd,wp), s2(rp,rd,wd,wp), s3]).

Example 1 presents some components of M3S-scope in SPSL. According to the
form of M3S-scope mentioned above, SACM’s initial security state using SPSL is
specified based on Figure 3 and Table 1. This consists of three elements;

• Subjects and their membership in the group (e.g., subjectGroups).

• Objects and their hierarchy (e.g., objectType and objectOwner).

• Initial values of the subjects’ and objects’ security attributes (e.g., subjectAttr,
subject, objectAttr and object).

Predicate subjectAttr represents a subject’s security attribute. Attribute sub-
jectGroups depicts user membership in the groups. Thus, the statement ‘subject-
Attr(subjectGroups)’ in the first line means to create a new type of subjectGroups.

362 Kim, Kang, Choi, Zegzhda, Kalinin, Zegzhda, Kang

With a predicate subject declared as an initial set of the subjects in the SACM.
The predicate subject represents two parameters, the name of the subject and its
attribute values. For example, the statement ‘subject(s1,[subjectGroups(high)])’ in
the second line means that “s1 is a subject in a high group”. With predicate object-
Attr, a set of the objects security attributes is declared. The objectType attribute
in the Prolog list of predicates depicts the type of objects and is generally used to
distinguish whether the object is a file or directory. Attribute objectOwner describes
the owner of object.

Then, there are five attributes with names of users and groups. In a predicate
object, an initial set of objects are declared in SACM. The predicate object has two
parameters, name of the object and its attribute values. Therefore, the 12th line in
Example 1 can be interpreted as follows: “The object of o1 is a file. The owner
of object o1 is s1. The high group has an access permission right of rp, rd, wd,
wp to o1. The low group possesses no access rights to o1. The subject of s1 pos-
sesses access rights of rd, rp, wd, wp to o1. The subject of s2 possesses access
rights of rd, rp, wd, wp to o1. The subject of s3 has no access rights to o1.”
The privilege rd allows reading directory entries such as listing files and subdirec-
tories. The function of rd, rp, wd, and wp privileges is presented in Section 5.2.
The object states of o2 and o3 are not described because it is trivial to obtain
the associated SPSL code from Table 1, Figure 3, and the example of the o1 ob-
ject.

Using a similar structure, any real system securable object can be specified.
In order to automate this approach a special tool has been developed, e.g., State
Analyzer for Windows, that investigates the system and creates the system security
state.

5.2 Access Control Rules

Access control rules express the restrictions on system behavior. System state trans-
formation is possible after access is authorized by the system reference monitor
(access control mechanism). Authorization is checked against the security policy
requirements represented using access control rules. In the SACM example, a sub-
ject can have actions rd, rp, wd or wp. The rd command allows reading directory
entries, i.e., listing of files and reading data stored in file. The rp command al-
lows reading a files privileges. The wd command allows file creation in a directory.
The wp command allows modification of a files privileges of the file. Such speci-
fication can be called Access Control Rules (ACR)-scope. Example 2 shows some
components ACR-scope of SACM. Due to space and coverage limitations in this
paper, full ACR related information is not described in SPSL. In fact, it is ne-
cessary to investigate a number of manuals, specifications, APIs, and vulnerability
exploits to obtain ACR-scope for analyzing real operating systems such as Windows
2000.

Formal Verification of Security Model Using SPR Tool 363

Example 2. ACR-scope of SACM

validPermission(R):-

(R=rd;R=wd;R=rp;R=wp).

isGroupMember(S,G):-

validSubject(S),

validGroupName(G),

checkAttr(S,subjectGroups,G).

isFile(O):-

validObject(O),

checkAttr(O,objectType,file).

canReadFile(S,O):-

validSubject(S),

isFile(O),

pReadData(S,O),

canReadPermissions(S,O).

canWriteFile(S,O):-

validSubject(S),

isFile(O),

canReadFile(S,O),

pWriteData(S,O).

..........[abbreviation]..........

testState1(S,O):-

validSubject(S),

isFile(O),

canReadFile(S,O),

not(isGroupMember(S,high)),

O=o1,

O=o2.

testState2(S,O):-

validSubject(S),

isFile(O),

canWriteFile(S,o3),

not(isGroupMember(S,low)).

The SPSL source code shown above can be divided into two categories: The first
is for security policy requirements, and the second defines predicate prototypes for
checking security criteria. With the predicate validPermission, access permission R

defined in ACLs can be expressed. Predicate isGroupMember which verifies S (sub-
ject) is a member of G (group). The isFile predicate tests whether O (object) is

364 Kim, Kang, Choi, Zegzhda, Kalinin, Zegzhda, Kang

a file. The predicate canReadFile verifies that S (subject) can read from file O.
Similarly, canWriteFile verifies that S (subject) can write to file O. Predicates
TestState1 and TestState2 predicates represent security criteria clauses for secu-
rity policy requirement. TestState1 depicts “No Read Up” policy and TestState2
denotes “No Write Down” policy.

5.3 Security Criteria

The security criteria allows a customer or evaluator to verify the secure and insecure
states in a security model. The security criteria have a form of constraints which
state the necessary conditions of the secure system. The system is safe if

⋂
i∈N cri =

true, where cri is an undesirable state criterion. The notation of cri is the negation
of cri. In other words, cri which means an unsafe state should not be found in a
security model. The SPR tool’s security criteria can be represented as State Security
Criteria (SSC)-scope. Example 3 demonstrates SSC-scope of the SACM written in
SPSL.

Example 3. SSC-scope of SACM

testState1(_,_). testState2(_,_).

Two predicates, testState1(,) and testState2(,) call the criterion predicate
shown in Example 2. In Prolog language, ‘ ’ means the sign of an anonymous
variable.

5.4 Safety Evaluation Results Processing

SPR input with triple scopes(M3S-scope, ACR-scope, and SSC-scope) are written in
SPSL. The executable program for SACM is then executed. During execution, two
files are created: the security logical deduction trace (SRP.TRC) and the evaluation
report (SPR.REP). Example 4 presents the SPR.TRC file for SACM. With regard
to space considerations, only the shorter traces are shown. This raw format content
represents Prolog backtracking traces.

Example 4. SPR.TRC of SACM

3 call system:not(testState1(_G7, _G8))

4 call testState1(_G7,_G8)

5 call isFile(_G8) 8 call system:

(objectType(file)= ..[objectType|_G136])

...............[abbreviation]...............

1 fail spr

2 call system:retractall(spr)

2 exit system:retractall(spr)(objectType(file)

= ..[objectType|_G136])

Formal Verification of Security Model Using SPR Tool 365

Example 5. SPR.REP of SACM

/*

* SPR report file

* File contains its results about safety

*/

testState1(_,_) succeeded

testState2(_,_) failed

Example 5 presents the output of file SPR.REP. The result for checking the
testState1 criteria is “succeeded”. This means there is no subject in the low group,
which can read objects in the high group. The evaluation verdict for testState2 is
“failed”, i.e. the SACM initial state is unsafe. After analyzing this unsafe state, s1
in High group can be found to have an access right permission of wd, wp to o1 in
a low group. The incorrect setting of ACLs for subjects and objects permits the
SACM to violate associated security requirements. For the safety of the SACM,
Subject1 is set to only have read permission for Object3. The modified predicate
can be written as follows:

object(o3,[objectType(file),objectOwner(s3),high(rd,rp),

low(rd,rp), s1(rd,rp),s2(rd,rp), s3(rd,rp,wd,wp)]).

6 CONCLUSION

In this paper, we addressed formal specification and verification approach for a se-
curity model. The SPR model checking tool and its associated method for safety
problem reasoning have been presented. The tool permits verification of safety pro-
perties in terms of the security model, based on the security scope. After conducting
the case study of analyzing safety problems in the SACM, the SPR tool is confirmed
to be useful for security system customers and evaluators, because these kinds of
tools are rare in the security field. The targets of this application include computer
systems based on state machine presentation: operating systems, DBMSs and Fire-
walls. The current versions of these tools are aimed at well-known systems such
as Microsoft Windows NT series and UNIX based systems. For future work, the
SEW components including System State Analyzer, Security Criteria Manager, and
Security State Explorer will be developed to support straightforward modeling and
analysis for system security and safety problems.

REFERENCES

[1] Bishop, M.—Snyder, L.: The Transfer of Information and Authority in a Pro-
tection System. In Proceedings of the 7th ACM Symposium on Operating Systems
Principles, 1979, pp. 45–54.

[2] Castano, S.—Fugini, M.G.—Martella, G.— Samarati, P.: Database Secu-
rity. Addison-Wesley, 1995.

366 Kim, Kang, Choi, Zegzhda, Kalinin, Zegzhda, Kang

[3] National Institute of Standards and Technology, Common Criteria for Information

Technology Security Evaluation, Part 1: Introduction and General Model, Ver-
sion 2.1. CCIMB-99, August 1999.

[4] Damianou, N.—Dulay, N.—Lupu, E.—Sloman, M.: The Ponder Policy Speci-

fication Language. Proc. Policy 2001: Workshop on Policies for Distributed Systems
and Networks, Bristol, UK, 2001.

[5] Ferraiolo, D.—Kuhn, R.: Role-Based Access Controls. In Proc. of the 15th NIST-

NCSC National Computer Security Conference, Baltimore, 1992, pp. 554–563.

[6] Goguen, J.—Meseguer, J.: Security Policies and Security Models. In Proceedings
of the 1982 IEEE Symposium on Research in Security and Privacy, 1982.

[7] Harrison, M.H.—Ruzzo, W.L.—Ullman, J.D.: Protection in Operating Sys-
tems. Communications of the ACM, 1976, pp. 461–471.

[8] Hoagland, J.A.—Panday, R.—Levitt, K.N.: Security Policy Specification Us-
ing a Graphical Approach. Tech. report CSE-98-3, UC Davis Computer Science Dept.,
1998.

[9] Jajodia, S.—Samarati, P.—Subrahmanian, V. S.: A Logical Language for Ex-
pressing Authorizations. Proc. of the IEEE Symposium on Security and Privacy,
Oakland, CA, 1997, pp. 94–107.

[10] Il-Gon, K.—Jin-Young, C.—Zegzhda, P. D.—Kalinin, M.O.—Zegzhda,

D.P.—Inhye, K.—Pi-Yong, K.—Wan, S. Yi.: Analyzing the Safety Problem
in Security Systems Using SPR Tool. PARA’04 Workshop, June 2004.

[11] Lampson, B.W.: In 5th Princeton Symposium on Information Science and Systems.
pp. 437–443, Reprinted in ACM Operating Systems Review, 1974, pp. 18–24.

[12] LaPadula, L. J.—Bell, D. E.: Secure Computer Systems: A Mathematical Model.
Technical Report ESD-TR-278. Vol. 2, The Mitre Corp., Bedford, MA, 1973.

[13] McLean, J.: Security Model. In Encyclopedia of Software Engineering, Wiley Press,
1994.

[14] Shirey, R.: RFC 2828. Internet Security Glossary, Networking Working Group,
2000.

[15] White Paper,
Available on: http://www.ssl.stu.neva.ru/spr/eng/whitepaper.htm.

[16] Department of Defense, Trusted Computer System Evaluation Criteria, DOD
5200.28-STD, Dec 1985.

[17] Wielemaker, J.: SWI-Prolog 5.2 Reference Manual.
Available on: http://swi-prolog.org, July 2003.

Formal Verification of Security Model Using SPR Tool 367

Il-Gon Kim is a postdoc researcher in IRISA/INRIA. He re-

ceived M. Sc. and Ph.D. degrees in the Department of Computer
Science&Engineering from Korea University. His research inte-
rests are formal methods, process algebras, security systems, and
web services.

Miyoung Kang is a Ph.D. student in the Department of Com-
puter Science and Engineering in Korea University. She received
M. Sc. degree in computer science and engineering in Dongguk
University. Her research interests are formal methods, static
analysis, security and software engineering.

Jin-Young Choi is a professor in the Department of Computer
Science and Engineering in Korea University. He received B. Sc.
degree in computer engineering, Seoul National University in
1982. He received M. Sc. degree in computer science, Drexel Uni-
versity in 1986 and acquired Ph.D. degree in computer science
from the University of Pennsylvania in 1993. His research in-
terests are real-time computing, formal methods (formal speci-
fication, formal verification, model checking), process algebras,
security and software engineering.

Peter D. Zegzhda is a professor and a chief of the Chair of
Information Security in Computer Systems in Saint-Petersburg
Polytechnical University, Russia. He was graduated as the D. Sc.
at the Saint-Petersburg Polytechnical University in 1996. He is a
Director of the Software Security Laboratory in Saint-Petersburg
since 1992. His research fields are security modeling, secure ope-
rating systems, security standards, code analysis, security archi-
tectures, network security.

368 Kim, Kang, Choi, Zegzhda, Kalinin, Zegzhda, Kang

Dmitry P. Zegzhda is a professor at the Chair of Informa-

tion Security in Computer Systems, Saint-Petersburg Polytech-
nical University, Russia. He received the DSc degree in Saint-
Petersburg Polytechnical University in 2003. Since 2004, he is
the director of LG-Polytechnic Research and Educational Cen-
tre, a joint Korean-Russian company. He is a direction manager
in the Security Laboratory in Saint-Petersburg. His research in-
terests are secure operating systems, computer viruses, vulner-
abilities analysis, network security, intrusion detection systems,
code analysis, databases security.

Maxim O. Kalinin is an associate professor at the Chair of In-
formation Security in Computer Systems, Saint-Petersburg Poly-
technical University, Russia. He was graduated as Ph.D. at the
Saint-Petersburg Polytechnical University in 2003. He started as
a worker from the R&D Engineer to the Project Manager in the
Software Security Laboratory, Saint-Petersburg. His research in-
terests are formal methods, AI, security modeling, safety evalu-
ation, secure operating systems, vulnerabilities detection, code
analysis, mobile security, and multimedia security.

Inhye Kang is an assistant professor at the University of Seoul.
She received the Ph.D. from the University of Pennsylvania. Be-
fore joining the University of Seoul, she was a visiting professor
at Soongsil University from 1998 to 2000, and a chief engineer
at Samsung SECUi.com from 2000 to 2002. Her research inte-
rests include software engineering, formal methods, and internet
security.

