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Abstract. We examine the challenges and advantages of using an actor framework
for programming and execution of scientific workflows. The following specific topics
are studied: implementing workflow semantics and typical workflow patterns in the
actor model, parallel and distributed execution of workflow activities using actors,
leveraging event sourcing as a novel approach for workflow state persistence and
recovery, and applying supervision as a fault tolerance model for workflows. In
order to practically validate our research, we have created Scaflow, an Akka-based
programming library and workflow execution engine. We study an example work-
flow implemented in Scaflow, and present experimental measurements of workflow
persistence overhead.
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1 INTRODUCTION

With the growth of cheap computing power available on demand, scientific appli-
cations become increasingly more complex, and their development and execution –
ever more challenging. Scientific workflow management systems [1] have been devel-
oped to help manage this complexity by providing programming environments and
execution services for scientific applications.

The actor model of computation has an established position as a formalism for
modeling concurrent systems [2], and there have been many implementations of ac-
tors in different programming languages [3]. However, only relatively recently actor
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frameworks have became mature enough to be adopted as a mainstream technology
for building complex distributed systems, an example being the Akka framework [4].
Compared to traditional distributed system architectures, actor frameworks present
a considerably different approach to concurrency, state persistence and fault toler-
ance.

In this paper, we investigate the challenges and opportunities of using the actor
model and framework for implementation and execution of scientific workflows. In
particular, we focus on the following topics: implementing the workflow model of
computation using actors, leveraging actors for parallel and distributed processing
of workflow activities, a novel approach to workflow persistence and recovery based
on event sourcing, and a new fault tolerance model for workflows based on the su-
pervision approach. In order to evaluate our research, we have implemented Scaflow,
a workflow management system based on the Akka framework.

This paper is organized as follows. Section 2 contains overview of related work.
Section 3 presents the concept of implementing workflow semantics in the actor
model. Section 4 describes advantages of using an actor-based framework for design
and execution of scientific workflows. In Section 5, a practical evaluation of the
proposed concepts is presented. Section 6 concludes the paper.

2 RELATED WORK

Scientific workflows are essentially distributed applications composed of application
programs, typically executing on distributed nodes, and a workflow engine orches-
trating them. Workflow systems need to provide a complex infrastructure to enable
distributed execution of scientific workflows. Typically, this infrastructure includes
agents that reside on remote nodes and execute the application programs, and a mes-
saging system used for communication between the workflow engine and the remote
agents. Example workflow systems that follow this architecture include Datafluo [5]
and HyperFlow [6]. Some workflow systems rely on complex middleware services
for deployment and execution of workflow tasks on distributed computing nodes.
Examples include WS-PGRADE [7, 8] which utilizes the DCI-Bridge platform [9],
and Pegasus using Condor [10]. The Taverna workflow system [11], in turn, relies
on Web Services as a means of invoking distributed computations. In Kepler [12]
distributed deployment and execution is supported by providing workflow compo-
nents dedicated for particular computing infrastructures, for example Amazon EC2
or Grid middleware [13]. In this approach, business logic is intertwined with “in-
frastructure” logic in the workflow graph, i.e., special workflow activities are used to
interact with a particular distributed computing infrastructure. Consequently, the
workflow is tightly coupled to this infrastructure which is a major disadvantage of
this approach.

In actor frameworks such as Akka, a distributed computing middleware is al-
ready in place. Remote actors are transparent as far as their creation and com-
munication with them is concerned. Of course, the remote actor systems need to
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be deployed on distributed nodes, but once this is done, the communication with
them utilizes the same programming abstractions and does not require a dedicated
infrastructure or middleware.

A failure in the middle of a long-running and resource-intensive workflow would
result in a significant loss of time and money. Consequently, workflow systems
provide the capability to persist the state of the workflow engine so that it can
be recovered in order to resume the workflow execution after a failure. The tech-
nique most widely used for workflow persistence and recovery in existing systems is
checkpointing (e.g. Pegasus [10] and Askalon [14]), i.e. periodic saving of a complete
snapshot of the workflow’s state. A full workflow checkpoint saves the information
about the internal state of the workflow and its activities, as well as intermediate
data required to resume the execution of the workflow.

Actor frameworks feature a different approach to persistence, based on event
sourcing. In event sourcing, rather than persisting the most recent state, a complete
history of state changes is saved in an event log. The full state of an actor system can
be subsequently recovered by replaying the event log and applying the state changes
again. Importantly, the actual operations that caused the state changes are not
repeated, so that their side effects are not executed multiple times. Event sourcing
applied to workflow persistence has the following advantages over checkpointing:

• Checkpoints are usually expensive and can only be done every so often. On the
other hand, event sourcing is lightweight so that every state change is implicitly
persisted as it happens. Because of the checkpoint interval, the progress of
execution since the last checkpoint is lost after a failure, which is not the case
with event sourcing.

• The event sourcing mechanism allows the restoration of the workflow state to
any given point of execution, enabling so called “smart re-runs” [12], i.e. par-
tial recovery of a historical workflow, in order to re-execute its remaining part,
possibly with some changes introduced.

• Workflow execution typically needs to be suspended before performing check-
pointing. Event sourcing is performed on the fly, without suspending the actors.

Addressing the disadvantages of checkpointing has been a subject of much re-
search. An improved, decentralized workflow checkpointing approach is proposed
in [15]. The checkpoints are captured independently and saved asynchronously by
each workflow task. Consequently, there is no need to suspend the workflow while
saving the checkpoint. However, the model is very complex and difficult to imple-
ment. For example, since all checkpoints are performed independently, consistent
recovery of the workflow’s global state is challenging. Event sourcing is similar in
that it is decentralized (every actor logs its state changes independently). However,
a consistent recovery of the global state is much easier because a complete history of
state changes is available. In [16], a user-level approach to workflow checkpointing
is presented which is similar to event sourcing in that it records the signature of
a workflow execution. The workflow is recovered by repeating its execution from
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this signature in order to rebuild the internal state of the workflow and workflow ac-
tivities, but skipping the actual execution of activities that have already succeeded.
However, this mechanism, rather than being implicitly implemented by the work-
flow system, relies on workflow-specific checkpointing activities that the workflow
programmer needs to manually add to the workflow graph.

Another approach to workflow persistence, similar to event sourcing, is proposed
by Köhler and others [17]. In this work, provenance records (which resemble event
sourcing logs) are used to replay the workflow, just as in event sourcing. The biggest
difference is that full re-execution of stateful activities is required in order to restore
their state. For long-running computations this can be very expensive, so in such
cases the approach falls back to checkpointing. Event sourcing was specifically
designed to solve this problem by introducing the concept of domain events that
enable restoration of internal state of actors without repeating their side effects.

There are efforts to implement flows on top of actors, notably Akka Streams.1

The investigation of Akka Streams as a possible technology for building a scientific
workflow system has led us to the conclusion that this technology has been cre-
ated with quite different use cases in mind. Akka Streams is designed for real-time
streaming, i.e. real-time processing of unbounded streams of small data elements.
The central problem here is back pressure, i.e. controlling the intensity of the stream
rates in order to avoid fast producers flooding slow consumers with data. Scientific
workflows, on the other hand, are designed for resource-intensive computations,
where the number of the input data sets is bounded, individual input data elements
are often big, and tasks can be long-running. Consequently, the central problems
revolve around persistence and recovery, fault tolerance, parallel processing, and
leveraging distributed resources. In summary, even though Akka Streams has an
elegant graph-oriented API for composing flows, the underlying technology does not
satisfy the requirements of scientific workflows.

3 MAPPING WORKFLOWS TO ACTORS

3.1 Workflow Model

In this paper, we assume a workflow model similar to Process Networks [18] in which
a workflow can be described as a directed multigraph where the nodes represent
workflow activities, while the edges denote dependencies between them, i.e. data
flow or control flow. A single node of a workflow, depicted in Figure 1, represents
workflow activity P with multiple input and output “channels”.

A workflow activity is fired (executed) as soon as its firing conditions are ful-
filled. These conditions will vary depending on the activity type. For example,
a firing condition may require an input element on all input channels (synchroniza-
tion pattern), or on any one of them (merge pattern). Some examples of firing

1 http://doc.akka.io/docs/akka-stream-and-http-experimental/2.0.3/scala.

html
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Figure 1. The adopted workflow model

conditions related to various workflow patterns [19] are shown in Table 1. Upon
firing, the transformation function f is invoked and its outputs are produced to the
output channels. Consequently, an activity can be viewed as a continuous function
transforming input data sequences into output data sequences. More details about
this workflow model can be found in [6].

Name Semantics

Synchronization Data elements have arrived on all inputs

Simple merge Data element has arrived on any input

Discriminator Data elements have arrived on any n-out-of-m inputs

Structured join Data elements have arrived on n-out-of-m inputs, where n denotes
the number of outputs activated in an earlier workflow activity.

Table 1. Examples of firing conditions (workflow patterns) and their semantics

3.2 Conceptual Difficulties

The most important characteristics of actors are as follows:

1. actors do not share state – they interact and exchange data only via asyn-
chronous messages;

2. messages arriving at an actor are queued and processed sequentially;

3. actors update their internal state in response to arriving messages.

At a first glance an actor system easily maps to a workflow: workflow activities
are simply actor instances, while data and control flow between activities are rep-
resented by messages exchanged between actors. However, this naive view quickly
runs into serious difficulties, summarized in Table 2.

First, workflow activities have multiple input and output channels whose types
are well-specified. While it does not necessarily imply static type enforcement (un-
common in workflow languages/engines, WOOL [20] being a rare exception), at
a minimum we know well what a given input or output represents (e.g. “a CSV file
with temperature measurements”). Actors, on the other hand, have a single input
mailbox which consumes messages of any type. An actor may define multiple han-
dlers that process messages based on their their structure or content. Second, as far
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Aspect Workflows Actors

Input
data

Activities have multiple (typed) in-
put channels

One input message mail-
box

Output
data

Activities have multiple (typed)
output channels

No output channels, no re-
turned data types

Flow
patterns

Complex patterns, e.g. synchroniza-
tion of inputs from multiple sources

Simple “fire-and-forget”
asynchronous messaging

Table 2. Mapping workflows to actors: conceptual difficulties

as output channels are concerned, actors have no concept of “outgoing messages”
at all.

Finally, the conceptual problems become even more apparent if we consider flow
patterns commonly found in workflows [19, 21]. Plain actors support only a simple
interaction via “fire-and-forget” messaging. However, workflows need to support
various complex patterns, such as synchronization of inputs from multiple sources,
non-deterministic merge of inputs, etc. (compare firing conditions in Table 1).

Despite these conceptual difficulties, we argue that there are significant benefits
to be obtained using actors for implementing and executing scientific workflows. The
following subsection shows how workflow semantics can be implemented with actors,
while Section 4 describes the advantages of using actors for workflow execution.

3.3 Design of Actor-Based Workflow

Figure 2 conceptually shows an implementation of a workflow node using the actor
model.

Workflow Actor

Mailbox
chID = "ch-1"

ch-1

ch-2

Input channel buffers

Firing 
condition

Processing 
logic

chID = "ch-3"

Outgoing 
messages

chID = "ch-4"

Wf 
Actor 1

Wf 
Actor 2

Sink actors

Figure 2. Conceptual implementation of a workflow component

Different communication channels in a workflow are distinguished by attaching
a unique channel identifier to each message exchanged between actors. Workflow
actors, in turn, have internal message queues for the individual input channels.
A message arriving at an actor is first stashed in the proper queue. Next, a firing
condition is checked (e.g. if there are messages on all input queues). In the case
the condition is fulfilled, the appropriate messages are removed from the queues and
passed to a processing logic subroutine which invokes the actual domain-specific
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data processing. The results returned by the processing logic subroutine are im-
mediately packed as messages and sent to the connected workflow nodes (“sink
actors”). To this end, the workflow actor needs to have the following mapping:
(out i 7→ (actorRef , channelId)), where out i is the ith output of the processing logic
subroutine, while (actorRef , channelId) identify the target sink actor and the input
channel of this actor, to which out i should be sent. Effectively, outgoing channels
are implemented in this way.

4 USING ACTORS FOR WORKFLOW EXECUTION

This chapter presents the advantages of using an actor framework for execution of
scientific workflows. The results of our research concern three areas: parallel and
distributed processing in workflows, workflow persistence and recovery, and workflow
fault tolerance.

4.1 Parallel and Distributed Processing

In large-scale scientific workflows, applications invoked from workflow activities are
routinely mapped onto resources of distributed computing infrastructures. An actor-
based workflow engine can facilitate parallelization of computations within one node,
and their distribution across many nodes. Table 3 highlights this advantage of actors
by comparing three platforms used for building production-quality distributed sys-
tems. Without going into details of each platform, let us note that actors are a single
abstraction used for implementing three crucial aspects in a complex distributed sys-
tem: system structure, managing concurrency, and managing distribution. Actor-
based APIs by default use solutions characteristic for distributed systems, such as
location-transparent references (actors can be referred to by names) and interaction
by message passing.

Java Node.js Akka

Unit of program structure Object Function Actor

Unit of concurrency Thread Async call Actor

Unit of distribution Process Process Actor

Table 3. Parallel and distributed programming: comparison of platforms

An architecture of a workflow activity supporting parallel and distributed pro-
cessing is proposed in Figure 3 a). This architecture follows a widely used Master-
Worker pattern. The Activity Master plays the role of message recipient, while the
Workers perform the actual message processing. Such an architecture accomplishes
several purposes: first, it isolates failure-prone tasks in separate actors (Workers),
enabling effective fault-tolerance strategies (see Section 4.3); second, it allows par-
allel processing of multiple activity firings in separate Worker instances; finally, it
enables distribution of work via remotely deployed Worker actors.
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Activity 
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Master
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WorkDone(Result1)

WorkIsReady
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Figure 3. Workflow activity architecture and interaction variants between Activity Master
and Workers: a) Workflow activity architecture, b) Master-Worker interaction:
“push” model, c) Master-Worker interaction: “pull” model
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In typical actor systems where message processing is relatively lightweight, it is
common and safe to create one actor per one request (message) to be processed. The
underlying dispatchers will take care of scheduling message processing onto thread
pools. However, workflow activities can be resource-intensive (in terms of CPU,
memory, I/O bandwidth usage, etc.), so job scheduling and load balancing should
be done by the workflow engine itself, rather than via standard mechanisms of an
actor framework.

The first step towards this is to maintain a controlled pool of Workers. The
Master can distribute work to them according to either of two strategies: “push”
(Figure 3 b)) or “pull” (Figure 3 c)). In the “push” model, the Master decides which
Worker should process the next job, while in the “pull” model Workers themselves
ask the Master for jobs to be processed. The “pull” model naturally balances load
among Workers and simplifies worker management. The “push” model, on the other
hand, gives the Master more control over how jobs are assigned to workers which is
important in the case where sophisticated job scheduling algorithms are used.

4.2 Workflow Persistence and Recovery

We propose a novel approach to workflow persistence and recovery based on event
sourcing. The event sourcing model for workflow persistence boils down to defining
the events that need to be logged in order to enable the full restoration of the
workflow state. The following information should be persisted during workflow
execution:

1. A workflow activity has sent/received a message.

2. A workflow activity has received message acknowledgment.

3. Results of performing data transformations.

4. Several additional events needed to save the state of Activity Master and Work-
ers.

While the logging of these events ensures that the state of the workflow engine
can be correctly restored, it will not reconstruct the internal state of stateful work-
flow activities (e.g. values accumulated across multiple firings). This can also be
accomplished by adapting standard mechanisms of an actor framework. The devel-
oper needs to do the following in order to enable state recovery of a stateful workflow
activity:

1. define domain-specific events and explicitly invoke a persist interface in the
processing logic subroutine of that activity;

2. implement a recovery procedure that transforms domain events into updates of
the activity’s internal state.
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4.3 Fault Tolerance

Actor frameworks typically adopt the supervision approach to fault tolerance, in
which parent actors are the supervisors of their child actors. When an exception is
thrown, the actor in which it occurred is suspended, while the exception is reported
to its supervisor. The supervisor defines fault tolerance strategies that specify what
actions should be taken for a given exception type. These actions are typically
as follows: Resume the actor (preserving its state), Restart the actor (resetting
its state), Stop the actor permanently, and Escalate the error to another (parent)
supervisor.

This model of fault tolerance fits workflows very well, in particular scientific
workflows which perform “dangerous” tasks that are prone to failure, such as re-
source-intensive processing, or invocations of external services. Figure 4 presents
the supervision hierarchy proposed for a scientific workflow system. Every work-
flow activity has an Activity Master that is responsible for receiving messages and
invoking the processing logic. However, the actual processing is performed not by
the Activity Master, but it is delegated to a new Worker actor. Consequently, in
the case of an error during processing only the Worker is affected. Multiple work-
ers can be started at the same time, enabling parallel processing of input messages
(see Section 4.1), or replication of tasks as an additional means of fault tolerance.
Finally, all Workflow Activities are supervised by a Workflow Master actor.

Workflow 
Master

Activity 
Master

WorkerWorker

Workflow activity

Workflow activity

...

...

FT Strategy: 
- Resume 
 - Restart

- Stop 
- Escalate

FT Strategy: 
Shutdown 
workflow

Figure 4. Supervision hierarchy for workflows

We propose the following semantics of fault tolerance strategies for scientific
workflow activities:
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Resume: continue execution of the worker, ignoring the error.

Restart: restart the worker and retry the operation, processing the same input
messages again.

Stop: discard the messages that triggered the firing, restart the worker.

Escalate: report the error to the Workflow Master.

Table 4 presents examples of different failure categories and their respective
fault tolerance strategies. Which strategy is the best will depend on the particular
case and the nature of the failure. If the failure is transient and non-critical, the
proper strategy might be simply to resume the worker. For example, a non-essential
service might be temporarily unavailable, but the fundamental computations can
still be performed without it, so there is no need to delay the processing. However,
if the temporarily unavailable service is critical, the best strategy is to restart the
worker in hope that the lost connection will be restored and the operation can be
successfully completed.

Permanent failures, in contrast to transient ones, cannot usually be fixed sim-
ply by retrying the processing. Consequently, they require different fault tolerance
strategies. If the failure is permanent but non-critical, we may decide to stop the
worker and simply drop the messages that caused the error. For example, if the
workflow processes a large collection of files and one of them is corrupt, we may
decide to ignore it rather than fail the entire workflow because of one file. In the
case of a critical permanent failure, on the other hand, the best strategy to follow
might be to stop the workflow, fix the fault that caused the failure (e.g. free some
disk space), and start the workflow again, recovering its state from before the failure.

Supervisor Failure Fault Tolerance Strategy

Activity
Master

Transient non-critical failure
(e.g. unavailability of a non-
essential service)

Resume worker (ignore the error)

Transient critical failure (e.g.
lost connection)

Restart worker (retry the computation)

Permanent non-critical fail-
ure (e.g. corrupt file)

Stop worker, drop input messages that
caused the error

Permanent critical failure
(e.g. no disk space)

Escalate to Workflow Master

Workflow
Master

Any Shutdown workflow (perhaps for a later
recovery after the failure has been fixed)

Table 4. Fault tolerance strategies for workflows

One of the biggest advantages of the presented approach is that fault tolerance
strategies are user-defined, giving the workflow programmer unprecedented con-
trol over how failures are handled. Strategies can be specified not only for each
workflow activity, but also for specific exceptions that may occur in that activity.
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The workflow developer can decide which exceptions are critical, and which are not,
and apply the appropriate strategy accordingly.

5 PRACTICAL EVALUATION: THE SCAFLOW SYSTEM

In this chapter, we demonstrate practical evaluation of the presented concepts using
our prototype implementation of an actor-based workflow programming library and
engine – Scaflow. The system was implemented in the Akka framework.2 Scaflow
implements the actor-based workflow model (Section 3.3), parallel processing archi-
tecture (Section 4.1) workflow persistence and recovery mechanism (Section 4.2),
and the fault tolerance model (Section 4.3). In addition, Scaflow provides a library
with high-level API for programming workflows.

5.1 Programming Interface

Intuitive application programming interface for workflows is arguably as important
as the internal implementation of the workflow engine. One of the conclusions drawn
from the analysis presented in Section 3.2 is that standard actor APIs, such as the
one found in Akka, are not appropriate programmatic abstractions for this purpose.
We should therefore seek a more proper API that would enable the developer to
compose workflows in a convenient way.

Source

Map(data, f)

External 
Producer

data data

data f(data)

Filter
(predicate, 

data)
data

filtered
data

Group(n)
... d3 d2 d1 ... (d1,d2,   dn)

Broadcastdata data

data

data

Merge

... d3 d2 d1

... q3 q2 q1

  d3 q3 d2 q2 q1 d1

Synchronize

... d3 d2 d1

... q3 q2 q1

  (d3,q3)  (d2,q2)  (d1,q1)

Sinkdata
External 

Consumer
data

Figure 5. Workflow components in the Scaflow workflow API (visualization)

2 http://akka.io
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A comprehensive design of a workflow API or, better, a workflow DSL (domain-
specific language), deserves a separate research and is out of scope of this work.
However, we have designed a simple API that resembles the programming interface
of Scala collections. The API features several basic workflow components that can
be used to compose workflows. They are visualized in Figure 5.

Source component represents the starting point of a workflow. It receives data
from an external source and feeds it to a workflow.

Map component is the main data transformation activity where processing logic
is implemented.

Filter component filters the input data sequence according to a predicate.

Group component consumes a sequence of input data elements and produces
n-element collections thereof.

Broadcast component replicates the input data sequence into all its output chan-
nels.

Merge component consumes data elements from multiple inputs and produces
them as a single output sequence in the order of arrival, effectively implementing
a non-deterministic merge semantics.

Synchronize component with n inputs waits for a data element on each of them
and produces an n-element collection of these elements.

Sink component represents the final activity of a workflow which can pass the
results to an external consumer.

5.2 Workflow Programming Example

In this section, we present a simple workflow example in order to illustrate the
Scaflow API for composing workflows, customization of the fault tolerance strategy,
and using remote workers. The workflow, shown visually in Figure 6 a), produces
information about biological pathways related to specific genes. To this end, work-
flow activities invoke external REST services of the KEGG database.3 The input
to the workflow is a sequence of gene identifiers. For each of them, all related bio-
logical pathways are retrieved from the KEGG database (GetPathwaysIds activity).
The result is split into a sequence of pathway identifiers which are fed in parallel
to the next two activities of the workflow (GetPathwayImage, and GetPathway-
Description). These activities retrieve visual and textual descriptions of a pathway,
respectively, and save them as files.

The implementation of the workflow is shown in Listing 1 and visually in Fig-
ure 6 b). The first part defines the fault tolerance strategy. The main problem
that may occur is the loss of a connection to the REST services of the KEGG

3 Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/kegg1.
html
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file

pathway{$id}
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Save image. 
file

pathway{$id}
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b)

Figure 6. Biological pathways workflow (visualization): a) Conceptual flow, b) Scaflow
implementation

database. Consequently, the strategy specifies that in the case of a Connection-
ProblemException, the worker actor should be restarted (with a limit of 10 retries
within 1 minute, otherwise the exception is escalated to the Workflow Master su-
pervisor) in order to retry to establish the connection to the remote server. Another
commonly occurring problem is an input error, such as an incorrect gene identifier.
In this case, we do not want one bad input to cause a failure of the entire workflow,
so we simply apply the Stop strategy in order to drop the message and restart the
worker, thereby discarding the input that caused the error.

The remaining part of the file composes the workflow. The two parallel branches
with activities GetPathwayImage and GetPathwayDescription are created first. The
actual processing logic of these activities is implemented in functions getPathway-
MapPng and getPathwayDetails (not shown). The final section of the code creates
the first activity and connects the two others via the broadcast construct, so that
they are executed in parallel. Note the “connector” API which simply allows the
developer to create individual subflows separately and subsequently compose them
into a bigger workflow.

All workflow components are instantiated via the PersistentWorkflow interface
which implicitly enables logging of the workflow state changes. The extra argument
passed to the persistent workflow API functions is a unique persistence identifier.
The example also shows how to setup a distributed workflow with workers on remote
nodes. We assume that remote actor systems are already deployed and running on
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Listing 1. Implementation of the biological pathways workflow.
1 val HTTPSupervisorStrategy = AllForOneStrategy (
2 maxNrOfRetries = 10 ,
3 withinTimeRange = 1 . minute ) {
4 case : BadInputException => Stop
5 case : ConnectionProblemException => Restart
6 case => Esca la t e
7 }
8
9 val remoteAddress = Seq ( AddressFromURIString

10 ( ”akka . tcp :// remoteActorSystem@l o c a l h o s t :5150 ” ) )
11
12 implicit val actorSystem = ActorSystem ( ”kegg” )
13 val getPathwayImage =
14 Pers i s tentWorkf low . connector [ S t r ing ] ( ”pngConnector” )
15 .map(
16 ”getPng” ,
17 getPathwayMapPng ,
18 Some( HTTPSupervisorStrategy ) ,
19 workersNumber = 4 , addre s s e s = remoteAddress
20 )
21 . s ink (
22 ” sinkPng” ,
23 id => p r i n t l n ( s ”PNG map downloaded f o r $ id ” )
24 )
25
26 val getPathwayDescr ipt ion =
27 Pers i s tentWorkf low . connector [ S t r ing ] ( ” textConnector ” )
28 .map(
29 ”getTxt” ,
30 getPathwayDetai ls ,
31 Some( HTTPSupervisorStrategy )
32 )
33 . s ink (
34 ” sinkTxt ” ,
35 id => p r i n t l n ( s ”TXT d e t a i l s download f o r pathway $id ” )
36 )
37
38 Pers i s tentWorkf low
39 . source ( ” source ” , L i s t ( ”hsa” ) )
40 .map( ”getPathways” ,
41 getPathwayIds ,
42 Some( HTTPSupervisorStrategy )
43 ) . s p l i t [ S t r ing ] ( ” s p l i t ” )
44 . broadcast ( ” broadcast ” , getPathwayImage ,
45 getPathwayDescr ipt ion )
46 . run

distributed nodes (the way this is achieved is an important technical issue, however,
it is out of scope of this paper). Once this is done, the programmer only needs
to specify the remote address of an actor system (line 10), and pass it to a “map”
activity (line 20). As a result, the worker actor will be created in the remote actor
system and all communication with it will be redirected there. Remote workers have
some limitations, namely the operation invoked by the “map” activity needs to be
serializable, and its code must be available both on the master node and the remote
node.
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5.3 Persistence Overhead

Scaflow allows one to create workflows with either enabled or disabled persistence.
In this section, we investigate the overhead due to enabled persistence and saving all
state changes to external storage. We measure this overhead by building and running
the same workflow in two versions: with and without persistence. For conducting
the performance test, we have created a simple test workflow (Listing 2), composed
of three components: source, filter and sink. Total execution time was measured
for both configurations. We have tested three different storage alternatives: the
default LevelDB4 key-value database, the Kafka5 distributed messaging system, and
the Cassandra database.6

Listing 2. Test workflow implementation
val standardWorflow = StandardWorkflow . source (1 to N)

. f i l t e r ( < Int . MaxValue )

. s ink ( timeMeasureActor )

val pers i s tentWorkf low = Pers i s tentWorkf low . source ( ” source ” , 1 to N)
. f i l t e r ( ” f i l t e r ” , < Int . MaxValue )
. s ink ( ” s ink ” , timeMeasureActor )

Results are presented in Table 5 and in Figure 7. As we can see, the total
execution time increases at least two to three times when the persistence is enabled.
The default storage system LevelDB induces a huge overhead and is even 80 times
slower than the Cassandra database system. However, we should note that the test
workflow did not contain any CPU-bound processing. In reality, such processing
dominates in scientific workflows, so in the case of the most efficient backend tested,
Cassandra, even the highest persistence overhead measured for 50 000 messages (3s)
will be negligible in comparison to the total workflow execution time.

Execution Time (ms)

Message Count No persistence Kafka Cassandra LevelDB

1 000 43± 11 317± 28 125± 25 1 176± 165

10 000 337± 8 1 334± 248 816± 150 11 218± 434

50 000 1 739± 30 5 423± 685 2 989± 406 243 320± 29 946

Table 5. Total workflow execution time in different persistence configurations

6 CONCLUSIONS

Actor-based frameworks can improve the design and execution of scientific workflows
in several aspects:

4 https://github.com/google/leveldb
5 http://kafka.apache.org/
6 http://cassandra.apache.org/
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Figure 7. Workflow persistence overhead evaluation in different configurations: a) Work-
flow execution time, b) Message throughput



Using an Actor Framework for Scientific Computing: Opportunities and Challenges 887

1. Paralel and distributed computing : workflow systems need to rely on a complex
infrastructure/middleware to enable distributed execution in scientific work-
flows. An actor framework already provides an infrastructure for transparent
distributed execution, so that only deployment of actor systems on distributed
nodes needs to be addressed.

2. Persistence and recovery : scientific workflows benefit from event sourcing, the
persistence and recovery approach used in actor systems. Compared to check-
pointing, event sourcing is

(a) faster: we have measured the persistence overhead and it proved that, unlike
in checkpointing, every state change in workflow activities can be persisted
in real time without substantially affecting the workflow orchestration per-
formance;

(b) more powerful: workflow state can be restored even for stateful activities,
without the need of their re-execution; no existing workflow system known
to us achieves that.

3. Fault tolerance: the supervision fault tolerance model typical for actor frame-
works enables workflow developers to customize fault tolerance strategies for
individual workflow activities and specific faults that may occur in a particular
case.

Future work involves further research and experiments in such topics as smart
re-runs of a workflow, as well as development of the Scaflow system, in particular
improvements in the workflow API.
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