
Computing and Informatics, Vol. 25, 2006, 17–42

COMPARING A TRADITIONAL
AND A MULTI-AGENT
LOAD-BALANCING SYSTEM

Andraz Bezek, Matjaz Gams

Department of Intelligent Systems

Jozef Stefan Institute

Jamova 39, 1000, Ljubljana, Slovenia

e-mail: {andraz.bezek, matjaz.gams}@ijs.si

Manuscript received 14 January 2005; revised 9 January 2006

Communicated by Ladislav Hluchý

Abstract. This article presents a comparison between agent and non-agent based
approaches to building network-load-balancing systems. In particular, two large
software systems are compared, one traditional and the other agent-based, both
performing the same load balancing functions. Due to the two different architec-
tures, several differences emerge. The differences are analyzed theoretically and
practically in terms of design, scalability and fault-tolerance. The advantages and
disadvantages of both approaches are presented by combining an analysis of the

system and gathering the experience of designers, developers and users. Traditio-
nally, designers specify rigid software structure, while for multi-agent systems the
emphasis is on specifying the different tasks and roles, as well as the interconnec-
tions between the agents that cooperate autonomously and simultaneously. The
major advantages of the multi-agent approach are the introduced abstract design
layers and, as a consequence, the more comprehendible top-level design, the in-
creased redundancy, and the improved fault tolerance. The major improvement in
performance due to the agent architecture is observed in the case of one or more
failed computers. Although the agent-oriented design might not be a silver bullet
for building large distributed systems, our analysis and application confirm that it
does have a number of advantages over non-agent approaches.
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1 INTRODUCTION

Building reliable, large internet services is a difficult task, made more so by the re-
quirements for a virtually continuous uptime together with a consistent response
time [20]. Stable services must be able to cope with many undesirable factors
such as the explosive growth of traffic over the internet [4] and possible hardware
and software failures. The widely accepted solution for the ever-increasing traffic
is a network-load-balancing system, which balances the incoming network traffic
among a cluster of servers. It is a requirement that such systems are fault-tolerant
as well as scalable, i.e., that they can be resized and reconfigured. Agent-oriented
software engineering (AOSE) [26, 27] has received a lot of attention as a potential
mainstream initiative for distributed software engineering [11, 12, 13, 16, 17], how-
ever it has not been fully introduced as a major commercial software engineering
paradigm.

A multi-agent system (MAS) is a loosely coupled network of software entities
that work together to solve problems that are beyond the individual capabilities
or knowledge of each entity [5]. A MAS is a distributed reactive system [21] that
maintains an ongoing interaction with the environment.

The structure of this paper is as follows: A traditional and a multi-agent appli-
cation of a fault-tolerant network-load-balancing system are described in Section 2,
together with the design and implementation aspects. In Section 3, the fault-tolerant
characteristics of load-balancing systems and the differences between traditional and
agent load-balancing systems are presented. In Section 4, detailed analyses, im-
portant observations, and a comparison with the non-agent version are described.
Related work is presented in Section 5. Finally, the conclusions are presented in
Section 6.

2 THE TRADITIONAL AND AGENT-BASED
LOAD-BALANCING SYSTEMS

The term load balancing (or LB for short) is used to refer to network load balancing
or – more precisely – load balancing of IP packets, also known as IP-level load
balancing.

The term cluster means all the computers within a LB system, i.e., all the
servers, the load balancers and the administration computers. Sometimes we refer
to a cluster of servers and a cluster of load balancers, each describing a set of
computers within the cluster with server/LB functionality.

The purpose of a network-LB system is to evenly distribute the incoming network
traffic among servers in a cluster. The distribution is done according to the desired
LB policy, which often takes into account performance metrics such as the amount
of network traffic or the processor load.

In this section we present a traditional LB system and an agent-based LB system
for balancing IP traffic between servers. The traditional LB system is described in
Section 2.1. In Section 2.2 we describe the agent-based LB system together with
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agent-oriented analysis and design. We do this by adopting the basic concepts of
AOSE. Both systems are fully operational and applied.

2.1 Traditional Commercial Load-Balancing System

The IP-level LB system (LB at network layer 3 in the OSI Model), designed in
a traditional way, consists of a single software program running on all the machines
in the cluster. Its operation mode as a load balancer or server-side software is
defined in a configuration file, which must reside on each computer. All configuration
changes except server addition result in a cluster restart. This time-consuming
operation forces all programs to restart and re-read the configuration. It is the
user’s responsibility to distribute and synchronize the file configuration within the
cluster. Actual load balancing is performed by a loadable Linux kernel module.
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Fig. 1. Architecture of a traditional LB system

Although the nature of IP routing requires only one computer to perform the LB,
it is also possible to employ an active/backup model of redundancy, as presented in
Figure 1. With it the software on the backup LB machines monitors the operation
of the active LB computer, as presented in Figure 4 a). In the case of a failure,
shown in Figure 4 b), the software on the backup computers votes for a new active
LB computer that takes over the complete functionality of the failed one. The
system also periodically checks for server and service availability through hard-coded
checking routines. If a malfunction is detected, the server or service is removed from
the LB process.

2.2 Agent Load-Balancing System

The AOSE approach we used is based on the MASSIVE process model presented
by Lind [15]. It is a pragmatic process model for the development of multi-agent
systems based on a combination of standard software-engineering techniques. The
terminological framework is based on the so-called views. A view represents a set
of conceptually linked features that can be regarded as an abstraction of the model
with respect to a specific point of view. Usually, several abstractions from the same
reality exist, and a collection of views achieves a logical decomposition of the target
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system. This section describes only two of them: the role view and the interaction

view. The former determines the functional aggregation of the basic problem-solving
capabilities and is sufficient to present the basic properties of the system; the latter
defines interaction as the fundamental concept within a system that is comprised of
multiple independent entities that must coordinate themselves in order to achieve
their individual as well as joint goals.

The abstract system specification is the same for the non-agent and the multi-
agent versions of a LB system. Its abstract goals follow the system specification and
functional requirements, i.e., efficient LB, scalability, fault-tolerance, and manage-
ability. Consequently, high-level tasks are somewhat similar to tasks in a non-agent
system, i.e., the tasks of LB, serving and administration. We can thus define role

view by defining specific roles. Conceptually, a computer in a cluster can take part
in a server-, LB- or management-related role. By analyzing distinct computer roles,
we can decompose abstract tasks into more detailed ones that can be represented
as distinct agent roles.

Since the primary purpose of a server is to run services, agent roles can be
defined as server-centric, i.e., performing computer administration and reporting of
server-related statistics, and as service-centric, i.e., performing service management,
service startup/shutdown, reporting of service-related statistics, and synchronization
of service-related data. The roles hosted on LB computers are LB-centric, which
involves control of the LB software and enforcement of the desired LB policy, and
cluster-centric, which includes cluster-wide control by checking services, servers, and
other load balancers for their correct operation. The computers with management
status handle configuration-related issues such as handling the global configuration
and providing some kind of user interface. In addition, agents on management
computers perform an agent supervision role, which includes support for installation,
health checking, and the termination of agents, and a reporting role, which includes
reporting and gathering errors and other messages.

Altogether, 12 classes of agents (all with different roles) were designed. Table 1
presents all of them, together with their names, optional acronyms (in parentheses)
and locations, on the first line, with a short description below. The design antici-
pated automatic installation of agents according to the current role of the computer
(i.e. they are static in terms of computer role). However, computer roles can be
dynamically changed, and the agents are thus correspondingly installed/uninstalled
on each computer in the cluster by the Computer Management Agent.

Having defined all the agent classes we need to define the agent instances as
well. Each agent class can have several agent instances, while we defined separate
agent instances for Service Agent, Service Check Agent, Server Check Agent, and
LB Policy Agent classes. The MASSIVE model handles interaction issues through
interaction view, where several generic forms of interaction suitable for a wide variety
of contexts are defined. We analyzed all types of agent interactions: agent-to-agent,
agent-to-client, and agent-to-environment. Designers must consider all the layers of
design and construct a coherent and global agent architecture. An example design
of a MAS architecture with inter-agent connections and agent locations is presented
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Class Location Description

Advanced
Traffic
Manager
(ATM)

LB based A central cluster-management agent. It handles the whole cluster
organization and actively checks other ATMs for proper operation.
It controls the LB software according to the configuration, assigns
servers and services to LB software, and periodically checks their
operation. In the case of a detected failure, the faulty server or
service is immediately marked as inactive.

Service
Management
Agent (SMA)

server based A service-specific agent that performs all service-dependent admi-
nistration. Its primary task is to manage, start, and stop specific
services. It can also retrieve service-specific metrics (e.g., statistics
of http accesses).

Synchroniza-
tion Agent

server based Takes care of the synchronization of service-based data. Its imple-
mentation is service specific.

LB Policy
Agent

LB based Assigns weights in LB software according to the desired LB policy.
It must monitor server-based metrics (such as CPU load and the
number of network connections on servers) and compute weights
according to the implemented LB policy to appropriately distribute
network traffic.

LB Control
Agent (LBA)

LB based Acts as a translator to LB software by translating agent com-
mands to the specific commands of LB software and reporting status
changes of the LB software.

Computer
Management
Agent

cluster based Controls various computer-related tasks. It can setup network in-
terfaces and report various metrics, such as CPU load, number of
network connections, memory consumption and the amount of free
disk space.

Server Check
Agent

LB based Periodically checks if a server is working properly. It is possible to
implement several different server checks.

Service Check
Agent

LB based Periodically checks if a service is working properly. Each service
demands a different instance of service check agent.

Configuration
Agent

management
based

Maintains the configuration and controls simultaneous access to it.
It also broadcasts all recent configuration changes to the agent sys-
tem.

GUI Agent management
based

Acts as a http server for users and an intermediate agent to the
agent system. Its task is to provide a web-based user interface for
cluster management, including access to configuration, messages,
errors, and up-to-date information about servers, services, and LB
software.

Supervisory
Agent

cluster based Starts, checks and terminates agents within one computer. Accord-
ing to the role defined in the configuration it must start or stop the
agent operation of each computer in a cluster. In order to deal with
unexpected software errors, a special agent was assigned to periodi-
cally check the health of running agents. In the case of no response,
the failed agent is forcefully terminated and restarted.

Reporting
Agent (RA)

cluster based Reports various messages and errors to the user (via the GUI agent).

Table 1. Descriptions of agents in a multi-agent load-balancing system

in Figure 2, where solid lines represent communication between agents, and dashed
lines represent service-specific communication with the protocol names beside.

Since the fault-tolerant computing paradigm expects failures as a rule and not as
an exception, the system must be able to cope reasonably well with agent failures. In
order to systematize fault-related activities we introduced different importance levels
together with fault-tolerant design principles. Consequently, our design considers
the following four levels of agent importance:
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Fig. 2. A schematic diagram of the major agent connections in a multi-agent LB system

Core agents perform tasks essential to the proper functioning of the system, which
either stops or operates erroneously without them. An example of this would be
the Advanced Traffic Manager, which controls vital cluster-management activi-
ties. The core agents are the ATM, the LB Control Agent, and the Configuration
Agent.

Support agents carry out tasks related to the management of services, servers
and agents. They are only needed for startup and shutdown activities or for the
reconfiguration of a cluster. For example, the lack of the Service Management
Agent would prevent the cluster from starting or stopping a certain service,
but the system would remain stable. The support agents are the Computer
Management Agent, the Service Management Agent, the Supervisory Agent,
and the Synchronization Agent.

Regulative agents perform partial cluster optimization, and are not vital to the
running of the system. For example, all checking agents are optional; the system
works without them. However, such a system would be unable to detect the
failures of servers and services. The regulative agents are the LB Policy Agent,
the Server Check Agent, and the Service Check Agent.

User agents are needed when users require access to the cluster management.
Their absence does not impact on the operation of the system. The user agents
are the GUI Agent and the Reporting Agent.
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Accordingly, special care was taken to develop fault-tolerant operation for core
agents. The main principle used in designing these agents was to utilize redundancy.
The most important agent within our system, the ATM, was designed with a special
protocol to enable mutual checking of ATMs. With this protocol, backup ATMs
can periodically check other active ATMs. When an active ATM fails, all backup
ATMs take part in elections for a new active ATM. A newly elected ATM starts
advertising the virtual IP of a running cluster. This makes it possible to introduce
a virtual IP number, associated with an active LB. The traffic destined for the virtual
IP number is redirected to the active ATM that hosts the operating LB software.
Our design anticipates a set of virtual IP numbers for each active ATM, as presented
in Figure 3 a). In the case of an ATM’s failure, unused virtual IP numbers can be
evenly distributed between other active LBs (illustrated in Figure 3 b)). This ensures
the smooth distribution of input traffic that is taken over from a failed LB.
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Fig. 3. Failure response of the multi-agent LB system: a) All load balancers are active at
a certain time; b) In the case of failure other active load balancers share the traffic of
the failed one

vIP LB1 

failed active 

LAN 

LB2 vIP LB1 

active backup 
(idle) 

LB2 

LAN 

a) b)

Fig. 4. Failure response of the traditional LB system: a) Only one load balancer is active
at a certain time; b) Failure of the active load balancer activates the backup one

To allow redundancy, Configuration Agents must be able to operate simulta-
neously, thus the task of designing a Configuration Agent is similar to designing
a distributed database. Having studied the problem, we concluded that simulta-
neous configuration commitment is unpractical and extremely rare. Consequently,
the final design utilized an active/backup model of redundancy, thus allowing only
one active Configuration Agent, with others running in a backup mode. All con-
figuration changes can only be committed to the active instance. The remaining
backup instances synchronize its configuration with the active one. In case that the
active agent fails, the configuration can still be retrieved from the backup ones. The
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design of the agent system architecture is sufficient to provide all the information
for the implementation stage. But before MAS implementation can take place, an
appropriate agent platform must be selected. The platform defines the basic agent
environment together with the agent operation and communication. The design of
a particular agent platform enforces a specific multi-agent approach, which guides
subsequent implementation processes. Altogether, the agent environment with its
implementation and approach limits the possible implementations of a MAS, de-
fined by the design of the agent system architecture. Although the choice of agent
platform has a strong impact on the actual implementation of a MAS, its details are
beyond the scope of this paper. Some agent platforms and frameworks are described
in [19, 6].

Fig. 5. Web interface for managing a MAS
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The separated design of agent classes and the subsequent separated implemen-
tation of agent instances introduce an important improvement over traditional pro-
gramming [10]. With the latter, developers typically develop one big and complex
program. Although its design can be modular and the developers develop distinct
modules, it poses several implementation- and validation-related problems. During
our development of a MAS we observed that developers cooperate within smaller
groups. As fewer developers develop each agent, they tend to cooperate more effec-
tively than those in bigger groups. This is a direct result of a smaller interaction
overhead, which inherently adds up in the total development time. In the case of
software failures, it is usually easier to test and debug smaller programs. In addition,
detected software lock-ups and crashes are easier to locate in the smaller source-code
footprint than those in bigger programs. Consequently, the development process is
more straightforward, and thus a little faster and less prone to errors.

3 AGENT VS. NON-AGENT LOAD BALANCING

In this section we compare the agent and non-agent based system in terms of archi-
tecture and functional properties.

3.1 Architecture

The architecture of our traditional system is presented in Figure 6 b), and that of
our agent system in Figure 6 d). Other architectures are presented to give a broader
overview and provide future designers more options.

In a single-server system, shown in Figure 6 a), the server is constantly receiving
input traffic. The queries presented as input traffic are processed and the results are
replied to as output traffic. In the real world, the amount of output traffic is much
greater than the amount of input traffic. This means that the performance of the
server is limited by transportation and computation overload. The former results
in saturation of the server output traffic and the latter in a high server load. To
improve the performance and to increase the saturation limit, LB systems distribute
requests among a cluster of servers. A traditional load-balancing system, presented
in Figure 6 b), consists of a single load balancer and a set of servers. Accordingly,
the input flow is balanced among the servers and the resulting output traffic is
redirected directly to the users. Besides the obvious performance benefits, a design
like this also increases the level of fault-tolerance. Furthermore, any failed server
can easily be replaced by redirecting its traffic to the other active servers.

To overcome the restrictions of a single load balancer, distributed load-balancing

systems, shown in Figure 6 c), were introduced. They require a preceding load
balancer, which distributes the input traffic among the distributed LB systems.
Typically, a round-robin DNS solution is used to ensure a geographical distribu-
tion of the traffic. Load balancing at this level can employ a coarser distribution
policy without any impact on the underlying systems. It is clear that the level
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Fig. 6. Network data flow for various server systems. The light-colored computers repre-
sent the load balancers while the grey computers represent the servers: a) Single server
system; b) Traditional load-balancing system; c) Distributed load-balancing system;
d) Multi-agent load-balancing system; e) Adaptive multi-agent load-balancing system

of fault-tolerance is increased. Although a failed load balancer renders the whole
LB sub-system unavailable, its input traffic can be balanced among other working
sub-systems by updating the preceding load balancers. Unfortunately, even though
distributed LB systems employ a number of distributed sub-systems, their number
is still fixed, which results in the limited scalability of the system. Multi-agent load-

balancing systems, presented in Figure 6 d), enhance scalability by employing an
arbitrary number of load balancers. A preceding load balancer, as in the previous
approach, is still needed, but the main benefit is the possibility to change the size
of the LB cluster. Agents can be positioned at any location, thus load balancers
and servers can be distributed across the internet. This design makes fast fault
detection and recovery possible by enabling LB agents to constantly monitor cluster
activities. The main benefit compared to the previous approach is that the servers
behind the failed load balancer can still be used by other balancers; as opposed to
the distributed approach where the failure of a load balancer renders all the servers
behind workless. While the multi-agent approach can utilize an arbitrary number
of load balancers and servers, it is still unable to dynamically and autonomously
change its configuration. An adaptive multi-agent load-balancing system, shown in
Figure 6 e), is a society of agents where an agent can play the role of a load balancer
or a server. Because these roles can be dynamically changed, the system can modify
itself efficiently to optimize some performance criteria. In addition, failure detection
and recovery can be generalized and thus simplified, while the homogeneous and
adaptive structure greatly simplifies the management of the cluster. However, an
adaptive multi-agent LB system is more complex to implement and might introduce
additional computation- and communication-related overheads.

It is important to note that the architectures presented in Figure 6 d) and e)
can be implemented by non-agent approaches and that the agent approach per se

does not enforce a specific LB architecture. However, here we are concerned only
with architectures presented in Figure 6 d) and e) with internal agent structure.
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3.2 Fault-Tolerant Characteristics

In theory, fault-tolerant systems (chapter 7 in [24]) should not have a single point
of failure and should be resistant to any failure, including hardware and software
failures. According to [25], fault-tolerant services must be designed to achieve high
availability, safety, maintainability, and reliability. Availability is defined as the
percentage of time that a system is operating correctly and is available to perform
its functions. Safety refers to the situation where a system temporarily fails to
operate correctly, but nothing catastrophic happens. Maintainability refers to how
easily a failed system can be repaired. A highly maintainable system may also
show a high degree of availability, especially if failures can be detected and repaired
automatically. Finally, reliability refers to the ability of a system to run continuously
and without failure.

First, we compare LB architectures in terms of reliability. If p denotes the

reliability of a single computer over a given time, 1 − p is the expected single-
computer error probability,M is the number of load balancers, and N is the number
of servers within the system, then we can estimate the overall reliability of different
LB systems. If we assume an instantaneous error detection and an appropriate
response, then the reliability of each LB system, presented in Figure 6, is as follows:

1. Single server:
p

2. Traditional load-balancing system with N servers:

p(1− (1− p)N)

3. Distributed load-balancing system with M equal-sized sub-systems:

1− (1− p(1− (1− p)N/M))M

4. Multi-agent load-balancing system:

(1− (1− p)N)(1− (1− p)M)

5. Adaptive multi-agent load-balancing system:

(1− (1− p)N)(1− (1− p)M)

The results in Figure 7 show that the traditional LB system, Figure 6 b), is
substantially less reliable than the distributed and multi-agent versions for M = 2
and N = 10. Furthermore, the multi-agent LB systems perform a little better than
the distributed LB systems. This means that for a small error probability, i.e., high
reliability p, and large values for N and M , distributed, multi-agent and adaptive
MASs become highly reliable. One of the assumptions made in the previous analysis
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is that a failed computer is never repaired. This is a reasonable assumption when we
analyze error probability over short intervals of time, e.g., one hour. For longer time
periods, however, computers would be repaired. In practice it is a common scenario
that either the system is fully operational or that one computer is not working. We
therefore analyze the ratio of the average performance between a system with one
failed computer and a fully operational system. It is assumed that all the computers
have the same failure probability and that the system performance is proportional to
the number of working servers. The performance ratios for various LB architectures
are as follows:

1. Single server:

0

2. Traditional LB system with N servers:

N − 1

N + 1

3. Distributed LB system with M equal-sized sub-systems:

M − 1

N +M
+

N − 1

N +M

4. Multi-agent LB system:
M

N +M
+

N − 1

N +M

5. Adaptive multi-agent LB system:

M

N +M
+

N − 1

N +M

The relations for various values of N are presented in Figure 8. The multi-agent
LB systems, Figure 6 d) and e), perform substantially better with one computer
down than the distributed version. The distributed version is still better than the
traditional LB system.

All distributed systems, including MASs, are prone to failures. Agents and
resources can become unavailable due to machine crashes, communication break-
downs, and numerous other hardware and software failures. Most of the work done
in fault handling for MASs deals with communication failures, while the detection
and recovery from faults typically rely on the traditional techniques for failure re-
covery. However, the traditional fault-tolerance techniques are designed for specific
situations and the introduction of a MAS requires special infrastructural support,
such as support for continuous and fault-tolerant agent communication.
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4 EVALUATION AND OBSERVATIONS

Fault-tolerance-related observations and measurements of our multi-agent LB sys-
tem are presented in Section 4.1; scalability-related observations and measurements
are presented in Section 4.2; observed advantages and disadvantages are presented
in Section 4.3.

4.1 Fault-Tolerance

The availability of the entire MAS can be increased by increasing the availabi-
lity of each single agent and/or by defining the strategy for detecting and han-
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dling agent failures. Our fault-tolerant strategy was twofold: first, we set up the
system-wide monitoring of all agents, and second, we introduced redundancy for all
critical-importance agents. While the ATM and the LB Control Agent also utilize
redundancy for parallel operation, the Configuration Agent benefits from the ac-
tive/backup model of operation. Both methods increase the level of fault-tolerance:
parallel operation increases the performance while the active/backup model enables
the replacement of failed agents.

While periodic checking detects faults in a timely fashion, it does not increase the
reliability of a single agent. However, it does increase the reliability and availability
of the MAS. Our agent-level fault-recovery policy promptly restarts all the defective
agents; the reliability and availability of the MAS is thus increased because not all
the agents are active all the time. If a fault is detected when an agent function is
not needed, the agent restart does not impact on the operation of the MAS. This
kind of error recovery cannot be achieved with traditional programming, where the
restart of the main program renders all functionality unavailable.

When increasing the availability of a software system by periodically checking
its components, one must find an appropriate trade-off between the check frequen-
cies and the amount of check-imposed load. Higher checking frequencies generate
a higher computational load and more network traffic, but they also produce faster
failure responses. Additionally, checking frequencies are often restricted by the pro-
perties of the checked entities. In our system the different services, agents and servers
have different response times. For example, the operating system does not allow the
transferring of a virtual IP to another computer in less than approximately 10 s. Con-
sequently, the process of migration of the active ATM lasts approximately 10 s. It is
therefore not reasonable to force the ATM check period to be in the sub-second level.

We have compared the presented agent and non-agent versions of a LB system.
To test availability of the agent system, we repeatedly terminated various cluster
components to test failure response. In the first test we simulated failures by re-
peatedly terminating ATMs and measured cluster availability. Within one time unit,
active ATM was terminated at random time. The test was repeated 100 times for
minute, 10 times for hour and one time for day and week period. We used cluster
configuration with 2 servers each serving one service and 2 LB computers. Averaged
results are presented in Figure 9.

For the second test, we periodically rebooted servers to simulate fatal server
errors. Random server was rebooted at random time in each time period. Avail-
ability of cluster was measured by connecting every second and counting number of
failed requests. LB policy was set to round-robin. The test was run continuously
for 100 minutes, 10 hours, one day and one week for each time period respectively.
We used cluster configuration with 10 servers each serving one service and 2 LB
computers. Averaged results are presented in Figure 10. Note that server boot-
up process lasted roughly 2 minutes. With one reboot per minute, servers were
constantly rebooting, which explains very low cluster availability.

To test the fault-tolerance of both systems we have simulated fatal software
errors by randomly terminating software entities and continuously measuring clus-
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Fig. 9. Availability of the cluster on ATM failure
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Fig. 10. Availability of the cluster on server failure

ter availability. On each simulated software failure one or more randomly chosen
running programs/agents were terminated. The cluster was periodically monitored
by issuing a service request every second and counting the number of failed requests.
Each test started with a simulated failure and lasted 60 seconds to allow the clus-
ter to finish all its activities. Then another software failure was introduced and so
forth, thus simulating continuous failures. Each test was repeated 100 times and
the averaged results are presented in Figure 11 and Figure 12.

Both test systems consisted of 2 load balancers and 10 servers, with each serving
only an HTTP service. The non-agent version of the LB system utilized 12 software
instances, while the agent version utilized 56 agents. As there was a difference
between the number of agents and software instances, we tested the robustness of
the agent approach by varying the number of simultaneously terminated agents.
Since the agents are smaller functional units than the non-agent units, they are
consequently smaller and have fewer faults. For non-agent versions each failure was
encountered as one software entity while for agent version the error was multiplied
(1×, 2×, . . . , 5×) to compensate for larger number of entities in agent version. It
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should be noted that agents can be restarted without impacting the whole MAS,
whereas programs in non-agent systems cannot.

The results presented in Figure 11 and Figure 12 demonstrate both the advan-
tages of the MASs. If an agent-level fault-recovery policy is enabled (Figure 11),
which is usually the case, the availability of the MAS with just five terminated
agents per test significantly outperforms the traditional version. If the agent-level
fault-recovery policy is disabled (Figure 12), then even with three terminated agents
per test, the availability of the MAS system is substantially higher than that of the
non-agent version. Note that in this case, after ten consecutive tests there were
30 inactive agents, as a result of 30 errors, whereas in the traditional version there
were 10 terminated software instances as a result of 10 errors.
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Fig. 11. Availability of the system on software failure with enabled agent fault recovery
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Whereas the schematic LB architecture presented in Figure 6 d) could be im-
plemented by non-agent approaches, the internal agent software architecture could
not; and although the theoretical analyses presented in Figure 7 and Figure 8 might
be attained by advanced, traditional distributed approaches, the practical measure-
ments in Figure 11 and Figure 12 indicate the real advantages of the multi-agent
approach over the traditional approach as a result of its internal agent structure.

The multi-agent approach by itself does not necessary increase the level of fault-
tolerance or any other property of LB systems. It does, however, enable designers
to develop monitoring and error-recovery strategies that can significantly increase
availability and reliability, thus increasing the fault-tolerance of the whole LB sys-
tem.

4.2 Scalability

When designing scalable systems, the most important property of scalable entities
is that the computation and communication loads do not scale with the number of
entities in the system. One of the major concerns when designing our multi-agent
LB system was scalability. As a result, it is scalable in terms of agent infrastructure,
agent checking, ATM checking, and agent communication.

However, there are some non-scalable operations regarding servers and services
which require agent activities on all servers. It is essential to limit the frequency
of these events as network traffic scales linearly with the number of servers and
services. These operations are performed only on configuration changes and when
checking services and servers. While configuration changes occur only seldom and
are expected to last for a longer period of time, all checking activities are performed
periodically and must not impact on the system performance. It is therefore neces-
sary to assess the implications of cluster-wide checking.

Check An approximate amount Default checking Amount of data
type of data for one check period per 60 s

agent 0.5Kb 60 s 0.5Kb

service* 0.2Kb 30 s 0.4Kb

server** 0.11Kb 15 s 0.44Kb

ATM*** 0.5Kb 1 s 30Kb

* Check is service dependent. The presented numbers hold for a default HTTP check.
** Check is implementation dependent. The presented numbers hold for default ICMP check.

*** This check is actually a network broadcast of one UDP ”heartbeat” packet.

Table 2. Different check types

Although the computational load and the amount of data transferred during each
check is reasonably low, one must consider the cumulative effect – a great number
of checked entities can significantly increase the network traffic and can thus limit
MAS scalability. The check sizes and the default checking periods of the multi-
agent LB system are presented in Table 2. Note that the server and service checks
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Fig. 13. Cumulative check-related network traffic generated on a LB computer with an ac-
tive ATM

are performed by corresponding Server/Service Check Agents. We measured the
cumulative check-related traffic generated on a LB computer with an active ATM.
The cluster configuration was set to 2 LB computers and 2, 10 and 100 servers
hosting 1, 5, and 10 services. The results are presented in Figure 13. Our analysis
shows that the network traffic is linearly correlated with the number of servers and
cannot be easily regarded as insignificant. However, the cumulative values are low
and so cluster sizes up to 100 servers are achievable.

Evidently, a MAS is as prone to scalability issues as other distributed approaches.
Designers must carefully study possible agent interactions and assess the implica-
tions of big agent societies. Normally, scalability issues can be determined at the
design phase, and can then be at least reduced, if not completely suppressed.

4.3 Advantages/Disadvantages

It is often hard to estimate the benefits of an agent approach compared to a non-
agent approach. New agent systems typically do not have a similar functionality to
non-agent systems. This is especially true for large systems, because it is not rea-
sonable to design two systems, one agent-oriented and the other non-agent-oriented.
In our case we first designed and implemented the traditional system. The system
is in commercial use since 1999 and received several prestigious awards (Corporate
IT Best Product winner for enterprise-class customers and Finalist Best Product
honor at the Linux Open Source Expo&Conference, and Top Web Solution award
at Linux Business Expo held at Comdex Fall ’99). Later we designed and imple-
mented functionally similar, but independent agent system having in mind certain
experiences with the first system. When comparing both systems, the similarity is
sufficient to allow the differences to be overlooked and focus on the key advantages
and disadvantages of the agent approach. The comparison between the two systems,
i.e., the two approaches, is analyzed through the eyes of designers, developers and
users. All three views are summarized in the following subsections.
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4.3.1 Designer’s View

Comparing the processes of designing a MAS and traditional distributed systems,
one can identify many similarities and differences. Apart from using different
software-engineering methods, the agent approach incorporates the process of de-
signing distinct roles and agent interactions. This adds an additional layer of ab-
straction and introduces a more hierarchical and advanced structural design, thereby
improving the comprehensibility of the design. One of the biggest advantages was
observed in terms of abstraction: agent roles provide new abstract design layers,
and agent interaction protocols introduce new abstract-level interfaces. This addi-
tional layer greatly improves the overall comprehensibility of the design of a big and
complex system.

During the design, we identified the following advantages:

New design abstraction layers. The introduction of agents adds new abstract
design layers, which results in a more hierarchical and structural design that is
easier to comprehend. This is especially true for large and complex systems,
where sheer size prevents a detailed understanding of the design. Numerous
smaller and simpler agent designs, defined with agent roles and abstract-level
interactions, are easier to comprehend than the design of traditional programs
with complex and sometimes hidden connections between the modules. Con-
sequently, the design of single agents can be efficiently shared and split among
many designers. This hierarchical structure is also natural for social organiza-
tional structures, showing the similarity between people and agent coordination.

It is possible to introduce agents that were not predicted. This is espe-
cially important when upgrading the MAS. New requirements are often hard to
predict and are commonly based on costumers’ feedback. New agents can help
improve system performance and introduce new features. Due to the dynamic
nature of agent interaction, such new agents seamlessly upgrade the existing
MAS to an advanced version.

Decentralization reduces complexity of single software instance. Since
there is no central entity, the whole control process is delegated among many
agents. Although the interaction between agents increases the complexity, it
can be efficiently viewed as an abstract interface to agent functionality. Due to
the natural decomposition of tasks and entities, the design of an agent system
is thus easier to comprehend. Each agent per se is therefore easier to develop
than one big program with the functionality of all the agents.

The observed disadvantages are as follows:

It is impossible to predict exactly the system interaction and execution.
The complexity of an agent society and unpredictability of system resources
makes it impossible to predict exactly the agent interaction and activity over
time. In addition, there is no guarantee of system correctness. As both these
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facts hold true for other distributed approaches as well, they should not be re-
garded as a strong disadvantage but rather as an inherent property of distributed
systems.

4.3.2 Developer’s View

The developer’s work is often seen as a straightforward process, but the reality is
very different. The ingenuity of a developer can significantly speed up the imple-
mentation cycle, thus saving time and money; and the appropriate tools make it
possible for developers to meet ever tighter deadlines. We argue that the agent-
oriented approach is a step in the right direction, as the observed advantages tend
to outperform the observed disadvantages.

The advantages are as follows:

The agent environment standardizes the interaction between agents. It
helps developers if they can define standard abstract-level interfaces and use
standard programming models. With the introduction of agents, an additional
conceptual layer increases the comprehensibility of the design. Faster develop-
ment is a result of an enhanced focus on functionality, and not on the protocols
for information/knowledge exchange.

It is possible to increase the fault-tolerance of a MAS. Our measurements
confirm that even simple agent-level checking and error-recovery methods im-
prove the fault-tolerance. Due to the inherent property of a MAS that func-
tionality is split among many agents, agents can be efficiently restarted without
impacting on the operation of the system. Although the restarting of failed
software instances is also possible with the traditional approach, the size of the
failed functionality is usually smaller with the agent approach.

The developer must satisfy smaller goals based on local knowledge. Agents
are smaller functional units than the non-agent software, and their functionality
is strictly limited. Goals are therefore easier to achieve and are always based
on local knowledge. Smaller goals also result in reduced local synchronization
activities. In general, when comparing only the size of programs and not the
complexity of the programs, smaller programs are easier to comprehend than
the larger ones. Consequently, if given the same debugging options, they are
thus easier to validate and debug.

A MAS forces developers to exploit concurrency. A MAS, as an inherently
distributed system, can greatly benefit from exploiting concurrency. The nature
of the agent approach forces developers to exploit concurrency. As an example,
in our case an agent approach allowed the easy introduction of simultaneous LB,
thus improving performance and increasing fault-tolerance.

There may be different solutions to the same problems. With the antici-
pation of communication-related problems, such as multiple or failed responses,
programmers are forced to find different solutions to the same problems. This
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approach adds robustness to agent systems and helps developers achieve different
thinking, which often results in better solutions.

Agents can be reused. If agents are designed in an independent way, they can be
reused in other, possibly different agent systems. Clean and independent agent
design will improve an agent’s reusability, much as good software libraries can
be used in many applications.

Developers cooperate on an agent-to-agent interaction basis. Cooperation
between developers is not based on a rigid organizational structure. Rather,
it is a consequence of the interactions between agents. Developer-to-developer
cooperation is a kind of abstraction of agent-to-agent interaction. Such teams
are more productive and easier to manage since cooperation is limited to smaller
groups, where developers tend to exchange ideas more efficiently.

The disadvantages observed during the development process are as follows:

Developers must predict failed or multiple responses. In the agent environ-
ment there is no guarantee about the response to agent queries; there may be
one, many or even no response at all. Developers must implement additional
safety mechanisms to prevent misinterpretations of an unwanted response, which
is often a daunting task.

A MAS introduces new synchronization problems. This is one of the hardest
problems when developing distributed systems. The synchronization of multiple
activities with multiple requests, where activities and requests can exclude each
other, is difficult. In our approach, each agent prevents concurrent access by
locking access to its internal state and by serializing mutually exclusive tasks.

4.3.3 User’s View

The typical user of a LB system is a system administrator. Although system admi-
nistrators are technically oriented and above average in terms of accepting technical
improvements, this does not automatically mean that they gladly accept any new
approach. Novelties are often seen as dangerous, especially in distributed environ-
ments. On the other hand, successful new approaches tend to be well accepted,
given time.

The most important advantages are as follows:

Robustness of an agent system. The distribution of vital components is an
essential factor contributing to greater robustness. A MAS is one of the best
representatives of robust distributed systems. Multiple instances of agents can
remove single points of failure and so improve performance.

Easier and non-interruptive upgrades. An important property of agent sys-
tems is the possibility to shut down agents and restart them. Additionally,
agent systems can even operate without some less-important agents. Conse-
quently, one can upgrade or change a system’s functionality by changing or
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adding agents without seriously interrupting the system. For example, in our
system, additional LB policies can be easily added with the introduction of new
LB Policy Agents.

Users also observed some disadvantages:

Bigger consumption of resources. An increased number of agents and network
interactions consumes additional system resources. This is often regarded as
a waste of resources. However, it is fair to say that a similar phenomenon was
observed with all advanced techniques, e.g., going from go-to to modular and
to object-oriented programming. All new techniques demand more and more
resources, but enable faster and more straightforward software engineering.

The large number of programs/agents is confusing. Users can get confused
by large numbers of agents executing on one or more computers. A typical
response is that it should be done in a simpler way. If users are not properly
acquainted with agent approaches and agent mentality, or they do not accept
it, agent systems can be accompanied with certain resistance.

Agent systems must earn trust. Agents represent a fairly new research field,
introducing several new concepts. It is therefore important to present scientific
and practical reports on various aspects of agent systems. This paper tries to
clarify the advantages and disadvantages of agent approach.

5 RELATED WORK

Most LB- and agent-related papers deal with optimizing LB efficiency using agents.
In contrast, we compare the architecture- and design-specific issues of an agent
and non-agent version of a LB system. As Chow and Kwok [3] point out, very
little published research has been done on the load-balancing aspect to capture the
essence of agent systems in such a distributed environment.

Cao et al. [2] analyze a mobile-agent approach to load balancing. They pro-
pose a framework that uses mobile agents to implement scalable load balancing
on distributed web servers. Their comparison with the traditional message-passing
LB methods shows that the mobile-agent-based approaches exhibit the merits of
high flexibility, low network traffic and high asynchrony. Schaerf et al. [22] study
the process of multi-agent reinforcement learning in the context of load balancing
in a distributed system. They define a precise framework, called a multi-agent
multi-resource stochastic system, which involves a set of agents, a set of resources,
probabilistically changing resource capabilities, the probabilistic assignment of new
jobs to agents, and probabilistic job sizes. Their analysis of adaptive load ba-
lancing demonstrates that adaptive behavior is useful for efficient load balancing.
They define a pair of parameters that affect that efficiency in a non-trivial fa-
shion and show that the naive use of communication might not improve and could
even deteriorate the system efficiency. Their research focuses primarily on effi-
cient LB, whereas we analyze different LB architectures. The paper of Givas and
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Turner [7] surveys LB using agents. Although their analysis of centralized and
distributed approaches to agent-oriented LB is rather basic, they conclude that
agents offer a novel, dynamic and unlimited approach. Chow and Kwok [3] out-
line the space of LB design choices in the arena of multi-agent computing. They
also propose a novel communication-based LB algorithm together with its evalu-
ation. The proposed algorithm assigns a credit value to each agent, depending
on its affinity to a machine, its current workload, its communication behavior, its
mobility, etc. The paper focuses on optimizing the LB algorithm using agents,
whereas our paper tries to address other essential agent-related issues, such as
agent-oriented design, scalability, and the fault-tolerance of agent-based LB sys-
tems.

A large number of techniques for fault-tolerance can be found in the literature
relating to traditional databases and distributed systems. Most of these recovery
methods [1] focus on replication techniques that permit critical system data and
services to be duplicated as a way of increasing reliability. There also exist fault-
tolerant middleware frameworks providing transparent fault-tolerance for enterprise
applications. One such, designed for CORBA applications, is described in [18]. How-
ever, our paper focuses on agent-oriented approaches. Hägg [8] uses external sentinel
agents that listen to all broadcast communication, interact with other agents and
use timers to detect agent crashes and communication-link failures. The sentinels
in Hgg’s approach analyze all the communication going on in the MAS to detect
state inconsistencies. However, this approach is not realistic for systems with a high
volume and message frequency. Klein [14] proposes the use of an exception-handling
service to monitor the overall progress of a MAS. Here, agents register a model of
their normative behavior with the exceptional-handling service that generates sen-
tinels to guard the possible error modes. Such an exception-handling service is also
a centralized approach, which is not suitable for scalable distributed systems.

It is important to note that no related work is known to the authors showing
principal advantages of the multi-agent approach for LB, and no known publica-
tion comparing a large implemented traditional LB systems and an agent-based
one performing the same task thus enabling a thorough practical and theoretical
comparison.

6 CONCLUSION

We have analyzed a non-agent and an agent-based LB approach and the correspond-
ing fully implemented systems, each consisting of several 100.000 lines of source code.
The two systems perform the same LB functions and basically differ only in their
architecture. This gives us a unique opportunity to practically and theoretically
compare the two different approaches. The multi-agent architecture of LB systems
in theory introduces important improvements, such as better average performance
when one computer is not working and a lower system-error probability. In terms of
the development process, fault-tolerance, and scalability, the agent approach offered
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the expected improvements, both in objective real-world measurements and in the
subjective observations of designers, developers and users.

On the other hand, we could not overcome several well-known problems when
designing distributed systems. For example, handling failed entities, synchronization
problems, and query-response-related issues turned out to be the same as in any
distributed programming.

It is important to be aware of the advantages and disadvantages of the agent
and non-agent approaches, but the most important point is whether the advantages
prevail. For LB systems, our theoretical analysis and practical experiences both in-
dicate that the advantages of multi-agent LB systems clearly outweigh the observed
disadvantages.
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