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Abstract. “Echo State” neural networks (ESN), which are a special case of recur-
rent neural networks, are studied with the goal to achieve their greater predictive
ability by the correction of their output signal. In this paper standard ESN was
supplemented by a new correcting neural network which has served as an autore-
gressive predictor. The main task of this special neural network was output signal
correction and therefore also a decrease of the prediction error. The goal of this
paper was to compare the results achieved by this new approach with those achieved
by original one-step learning algorithm. This approach was tested in laser fluctu-
ations and air temperature prediction. Its prediction error decreased substantially
in comparison to the standard approach.
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1 INTRODUCTION

From the point of information transfer during processing, neural networks (NN) can
be divided into two types: feed-forward neural networks and recurrent neural net-
works [1]. Unlike the feed forward NN, recurrent NN contain at least one cyclical
path, where the same input information repeatedly influences the activity of the
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neurons in a cyclical path. The advantage of such networks is their close corres-
pondence to biological NN, but there are many theoretical and practical difficulties
connected with their adaptation and implementation. The common problem of all
such networks is the lack of an effective supervised training algorithm. The prob-
lem was partially overcome with ESN [2]. On one hand their application bypasses
a problem of efficient training, but on the other hand, by imposing an echo-state
property we restrict the ESN recurrent dynamics to contractions, making it less
general (unlike fully trained recurrent neural networks, ESN cannot learn, e.g. the
context-free grammar). A very fast algorithm is used in these networks consisting
of a calculation of one pseudo-inverse matrix, which is a standard numerical task.
But the advantage of “one step” learning turns into a disadvantage when we try to
improve the predictive abilities of the network. The pseudo-inverse matrix approach
does not offer any straightforward solution in this case.

The trouble with this approach is that it offers nearly absolutely perfect learning
of the training set for the given recurrent neural network, but the predictive ability
of such a network is not very good. In this paper we shall concentrate on the
possibility to supplement standard ESN by a new correcting NN which will serve as
an autoregressive predictor. The task of this special NN is output signal correction.
We can find similar approach for different type of neural networks in [7] and analysis
of learning process for noisy time series in [8]. Connection between “liquid state”
computing, related to echo states was mentioned previously in [4, 6]. The predictive
abilities of optimized ESN were tested on laser-fluctuations and air temperature
data. When we apply this new approach, we loose slightly the advantage of fast
computation of the “one-step” learning typical for ESN, but we gain flexibility and
better quality of prediction.

2 ECHO STATE NEURAL NETWORK

Echo State neural networks are atypical in architecture and training of recurrent NN.
This new approach leads to a fast, simple and constructive supervised learning
algorithm for the recurrent NN. The basic idea of ESN is the application of a huge
“reservoir”, as a source of dynamic behavior of a neural network, from which neural
activities are combined into the required output.

The activity of hidden layer neurons in an RNN is further denoted as x(n) =
(x1(n), x2(n), . . . , xN(n)), where xi(n) is the output of the ith hidden neuron in time
n, and N is the number of hidden neurons. Under certain conditions, each xi(n) is
a function of the networks previous inputs u(n),u(n− 1), . . ., previously processed
by the network. The input vector is denoted as u(n) = (u1(n), u2(n), . . . , uK(n)),
where ui(n) is the input of the ith input neuron at time n and K is the number of
input neurons. Therefore, there exists such a function, E, so that:

x(n) = E(u(n),u(n− 1), . . .). (1)
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Fig. 1. The typical architecture of Echo State neural networks

Metaphorically speaking, the state of the neural network x(n) can be considered as
an “echo”, or in other words, a reflection of its previous inputs.

2.1 Description of the Neural Network

Neural network consists of K input, N hidden and L output neurons. The state of
the neurons in the input layer at time n is characterized by the vector

u(n) = (u1(n), u2(n), . . . , uK(n)),

in the output layer by the vector

y(n) = (y1(n), y2(n), . . . , yL(n)),

and in the hidden layer by the vector

x(n) = (x1(n), x2(n), . . . , xN(n)).

The values of all the synaptic weights will be stored in matrices. An input weight
matrix will be created: Win = (win

ij ) of size N ×K, a weight matrix between hidden
neurons: W = (wij) of size N × N , a matrix of output weights: Wout = (wout

ij )
size of L × (K + N + L), and a matrix of weights from the output back to the
reservoir: Wback = (wback

ij ) size of N ×L. It is notable that, in this type of network,
both direct input-output weights, as well as the weights between output neurons are
allowed.

The structure and topology of ESN can be adjusted according to their current
task. It is not necessary, for example, to use sigmoid output neurons, back weights
from the output layer to the reservoir may or may not exist, and even the input
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neurons may not be used. In this application, sigmoid output neurons were not
used (linear activation function was used), however back weights from the output
layer to the reservoir were used. No loops were used for output neurons. We can
find detailed description of the learning algorithm in [2, 3]. We will just introduce
computation of activities of the internal and output neurons. The states of hidden
neurons in “dynamical reservoir” are calculated from the formula

x(n+ 1) = f(Winu(n) +Wx(n) +Wbackd(n)), (2)

where f is the activation function of hidden neurons. The states of output neurons
are calculated from the formula

y(n+ 1) = f out(Wout(u(n+ 1),x(n+ 1),y(n)), (3)

where f out is the activation function of output neurons.

3 TESTING DATA

Most publications about prediction strive to achieve the best prediction, which is
then compared with results of other prediction systems on selected data. This paper
is different in this aim; its goal was to compare results by original “one-step” learning
algorithm, with our new approach. We have used two data sets.

The first testing set was composed of a time sequence of 1000 samples of laser
fluctuations data, and the quality of prediction was measured by an error of predic-
tion in the next 100 steps.

The second testing set was composed of a time sequence of 1096 samples of
average air temperature in Slovakia in years 1999–2002. The quality of prediction
was measured by an error of prediction in the next 31 steps – that means January
of the year 2002.

A mean absolute percentage error (MAPE)1 was used to measure the quality of
prediction on these testing sets, where test values P real

i and predicted values P calc
i

are used, and N is the number of couples of values (the length of the predicted time
series):

MAPE =

∑N
i=1

∣∣∣∣
P real

i
−P calc

i

P real

i

∣∣∣∣

N
× 100. (4)

A mean squared error (MSE) and standard deviation (SD) were also used for the
final evaluation of results:

MSE =

∑N
i=1

(P real
i − P calc

i )2

N
. (5)

1 The MAPE error was used in order to allow a comparison with results of prediction
on the predicted data achieved by other methods [10, 11], which also used MAPE error.
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SD =

√√√√ 1

N − 1

N∑

i=1

(P calc
i − y′)2, (6)

where y′ is the mean (average) of predicted values.

4 AUTOREGRESSIVE PREDICTOR

The main task connected with a design of a predictor based on NN is to find such
a configuration of synaptic weights, which represents functional dependency between
ideal output of the NN and input signal. So we want a prediction system with good
approximation properties on testing sets ([5]).

The process of adaptation of the chosen topology for the training set may not
be optimal and the performed prediction may not be complete. But we can obtain
an error signal from such an inaccurate prediction and this signal can be used for
model correction. We can improve the prediction ability of the whole system with
such modification.

One of the possibilities how to solve this problem is to create a specific model
(Figure 2). With this model, we are trying to extrapolate error in the next step
based upon knowledge of the error in the past steps. We basically assume that the
series of errors produced in time series prediction is a predictable time series by
itself.
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Fig. 2. Autoregressive error model

The symbol z−1 in Figure 2 means the time-delay element. The ability of error
prediction is also based on the level of noise, which is undoubtedly also a part of
testing sets. In a case when the error signal still carries some information, but the
noise part is dominant, it is very difficult to predict such a kind of error.

As we can see from Figure 2, the next step is the processing of error e(n − 1),
which is then used as the input of the next neural network. This correcting NN
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serves as an error predictor, which is estimating the error ê(n). This estimated error
is then added to output y1(n) in the next time step. The prediction error efinal(n)
of the final system should be lower than the error of uncorrected system:

E[efinal] < E[e], (7)

where E is statistical average operator. Based on the facts mentioned above, we can
divide this method into two phases:

• In the first phase, the maximum of the information is extracted and coded into
the synaptic weights of the first NN, which is then used as a time series predictor
for the next time steps.

• In the second phase, a secondary neural network is trained to predict the error
of the first neural network, provided that the error is still predictable.

This procedure is usable in NN which are using iterative learning algorithms. As the
ESN are using one-step learning algorithm, this procedure must be slightly modified.
This varied procedure is described in details in the next section.

5 EXPERIMENTS

Experiments were divided into three parts. The task of the first part was to find
parameters of ESN, which would be optimal for the quality of prediction on the laser
fluctuations and air temperature testing sets. The autoregressive predictor was not
used in this part. The achieved results should also serve for comparison with results
achieved in the third part.

In the second part, ESN was used for the prediction of time series values of the
past (of the training set). Parameters of the main NN and initial synaptic weights of
dynamic reservoir were chosen in accordance with the results of experiments in the
first part. Following the differences between original and predicted values, the so
called “error time series” was created. This error time series was used in this part as
a training set for the correcting NN, which then served as output signal corrector of
the main NN. The task of this second part was also to find parameters of correcting
neural network, which would be optimal for the quality of prediction of the training
“error time series” set.

The third part of experiments was focused on the evaluation of prediction results,
where the above mentioned correcting NN was used as an autoregressive predictor.
Parameters of this correcting NN and initial synaptic weights of dynamic reservoir
were chosen in accordance with the results of experiments in the second part.

5.1 The First Part of Experiments

As mentioned in Section 5, the first part involves two tasks: Finding best parameters
of the main ESN and obtaining prediction results. These results will be used later
for comparison with those achieved in the third part.
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The prediction task is based on an implicit model of the dynamic of the predicted
process, which is combined from the ESN dynamic reservoir. During the “training”
phase, the ESN feeds ideal output to the dynamic reservoir through its output
neuron. During the prediction, no input is needed; the output neuron feeds its
predictions back into the reservoir. The past values, which would be fed into the
input neuron in a typical one-step ahead prediction, are unnecessary in the ESN
prediction phase. The ESN in the presented problem therefore does not need any
input neuron.

So the NN consists only of dynamic reservoir and one output neuron, which has
also the input function in the final consequence. The weight matrix between hidden
neurons (W) should be sparse, to encourage rich variety of dynamics in dynamical
reservoir. For that reason, only 2% of all connections in dynamical reservoir were
created. The network’s hidden units are standard sigmoid units, with a transfer
function f = tanh (hyperbolic tangent) and the synaptic weights were initialized
from the interval [−1, 1] with uniform distribution (the same holds for the weight
matrix Wback).

A considerable number of experiments was carried out, the representative results
of which are presented in Table 1 for laser data and in Table 2 for air temperature
data.

Index Size of DR Alpha Average MAPE Best MAPE

1 200 0.7 38.27% 34.23%

2 250 0.7 36.29% 31.34%

3 250 0.8 34.24% 29.42%

4 300 0.7 35.94% 32.86%

Table 1. Results of representative experiments in the first part: laser time series

Index Size of DR Alpha Average MAPE Best MAPE

1 200 0.8 31.72% 26.67%

2 250 0.7 29.27% 25.16%

3 250 0.8 26.52% 23.28%

4 300 0.8 35.51% 27.54%

Table 2. Results of representative experiments in the first part: air temperature time series

In these tables, DR represents the dynamic reservoir; Alpha is the spectral radius
of the weight matrix W , which is influencing the ability of the neural network to
exhibit echo states. These DR and Alpha values were chosen in accordance with
the proposal used by Jaeger (see [2]). Experiments were carried out in the following
way. For each value of DR and the parameter Alpha, the values of synaptic weights
in DR were randomly generated 1000 times. This number was estimated to be large
enough for statistical evaluation of prediction error on a testing set, and for each
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initialization of weights the error for the testing set was calculated. Further, an
average error of all 1000 trials is presented in the columns Average MAPE (Tables 1
and 2). Also, the smallest achieved error was recorded in the Best MAPE in the
same tables.

A clear correlation between Best and Average value columns is apparent from
Tables 1 and 2. When a better Average MAPE was achieved, there is also a better
Best MAPE. The best results for both prediction sets were achieved with a DR

consisting of 250 neurons and for the parameter Alpha 0.8. We can see graphical re-
presentation of the best error for laser testing set in Figure 3 and for air temperature
set in Figure 4.
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Fig. 3. Testing data: 100 records of laser fluctuations and 100 values predicted by the
original Echo State neural network. MAPE 29.42%, graph corresponds to experiment
No. 3 from Table 1

5.2 The Second Part of the Experiments

In this part of experiments we have optimal parameters of the main ESN, in regard
to used laser fluctuations and air temperature sets. These NN are already trained
and ready to use in this second part.

The training of ESN is based on linear regression and one-step learning algo-
rithm. Therefore, we have no possibility to catch the error signal during this learning
process. So the main NN was used for self prediction of the whole laser fluctuations
and air temperature sets and the time series obtained in that way reflects the quality
of adaptation on this training set.
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Fig. 4. Testing data: 31 records of air temperature and 31 values predicted by the original
Echo State neural network. MAPE 23.28%, graph corresponds to experiment No. 3
from Table 2

Then we have obtained the new “error time series” as the difference between real
and predicted values. This error time series has served in this part as the training
set for the correcting NN.

Subsequently, we have tried to find optimal parameters of these correcting NN,
in regard to quality of prediction on the newly created error time series.

A considerable number of experiments was carried out, the representative results
are in the following Table 3 for laser and in the Table 4 for air temperature time
series.

Index Size of DR Alpha Average MAPE Best MAPE

1 100 0.7 24.29% 21.56%

2 150 0.7 20.34% 18.46%

3 200 0.8 21.90% 19.31%

Table 3. Results of representative experiments in the second part: laser error time series

Experiments in this part and description of attributes from Tables 3 and 4 are
identical to experiments and description of attributes from the first part. For that
reason these descriptions will not be repeated again.
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Index Size of DR Alpha Average MAPE Best MAPE

1 100 0.7 19.24% 18.55%

2 150 0.7 23.22% 20.22%

3 200 0.7 18.74% 16.45%

Table 4. Results of representative experiments in the second part: air temperature error
time series

5.3 The Third Part of the Experiments

We are now ready to move on to the last part of experiments. In this part we
have already prepared and trained the main NN and also the correcting NN. The
experiments proceeded in the following way. First we have predicted the values of
the testing set (the main neural network). Subsequently we have predicted the error
values (correcting neural network), which represent in each step the estimated error
of the main NN. The final time series was formed by superposition of these two
predicted time series.

We can see the results of experiments in Table 5, with graphical representation
for laser testing set in Figure 5 and for air temperature testing set in Figure 6.

Testing data Original Approach Use of autoregressive predictor

MAPE / MSE / SD MAPE / MSE / SD

Laser fluctuations 29.42% / 1.2e−3 / 0.221 22.36% / 0.8e−3 / 0.220

Air temperature 23.28% / 1.7e−2 / 0.264 20.13% / 1.2e−2 / 0.260

Table 5. Results of experiments in the third part

It is clear from the results shown in Table 5 and figures that this approach
can increase the quality of prediction of ESN. The laser data are a good sample
of accurate laboratory measurements (we can consider them noiseless). For that
reason, the improvement of achieved results with this new approach is much better
in the case of easer time series than for air temperature time series.

6 CONCLUSIONS

Echo State neural networks are relatively new in the domain of NN. Their advantage
is a closer connection with biological models inherent to recurrent NN and in their
usage of the reservoir of dynamic behavior without adjusting the weights within
the hidden layer. ESN have a substantial advantage over other types of recurrent
networks in their “one-step” learning ability, even though this approach may not
be very biologically plausible. As a disadvantage, they can be considered to have
a relatively low ability to generalize. However, the existence of this disadvantage is
not theoretically founded, it is based only on extensive experimental observations. In
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Fig. 5. Testing data: 100 records of laser fluctuations and 100 values predicted by using
autoregressive predictor in Echo State neural network. MAPE 22.36%
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Fig. 6. Testing data: 31 records of air temperature and 31 values predicted by using
autoregressive predictor in Echo State neural network. MAPE 20.13%
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some cases, ESN was shown to have better generalization capacity than supervised
Elman net (see e.g. [9]).

We have tried to improve predictive performance of ESN in this work, where the
standard ESN was supplemented with a new correcting NN, which has served as an
autoregressive predictor. The main task of this special NN was the output signal
correction.

We have chosen laser fluctuations and air temperature time series as a testing
data. Our aim was to find out if this combination of neural networks is able to
increase predictive quality of ESN. It is clear from the results shown in the paper that
this aim has been accomplished. Supplementation of standard Echo State neural
network with error correction network can increase the quality of the prediction.
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