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Abstract. The paper studies a distributed iterative algorithm for optimal schedul-
ing in grid computing. Grid user’s requirements are formulated as dimensions in
a quality of service problem expressed as a market game played by grid resource
agents and grid task agents. User benefits resulting from taking decisions regard-
ing each Quality of Service dimension are described by separate utility functions.
The total system quality of service utility is defined as a linear combination of the
discrete form utility functions. The paper presents distributed algorithms to itera-
tively optimize task agents and resource agents functioning as sub-problems of the
grid resource QoS scheduling optimization. Such constructed resource scheduling
algorithm finds a multiple quality of service solution optimal for grid users, which
fulfils some specified user preferences. The proposed pricing based distributed itera-
tive algorithm has been evaluated by studying the effect of QoS factors on benefits
of grid user utility, revenue of grid resource provider and execution success ratio.
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1 INTRODUCTION

Qualities of service (QoS) and resource scheduling are hot issues in grid. QoS is
a key technology that determines whether the grid can provide grid resources on
demand efficiently. Enforcing QoS in the grid is complicated by the unpredictable
grid characteristics and grid resource dynamic consumption. Two types of QoS are
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mainly studied in the grid infrastructure, which reflects quantitative and qualitative
characteristics of the grid environment. Qualitative characteristics refer to elements
such as service reliability and user satisfaction regarding service. Quantitative cha-
racteristics refer to elements such as networks, CPUs, or storage. The specification
of the QoS requirements of grid applications should be described in a high-level
manner. A good mechanism is needed to map the high-level requirements into
low-level QoS parameters. These parameters specify the amount of resources to be
allocated, such as amount of memory, and network bandwidth. Due to the highly
dynamic grid environment, any attempt at QoS provisioning should be adaptive
in nature. It is necessary to consider the changes in resource availability, network
topology, and network bandwidth and latency, so that the grid can provide the best
possible QoS to the application. In the grid environment, grid users may specify
the tasks that should be performed at certain QoS level. When the grid scheduler
receives a request from the user, the resources and QoS requirements are expressed in
the request; through mapping, converting and negotiating the QoS parameters, the
scheduler can implant the user’s requirement about QoS in the process of resource
scheduling. The grid scheduler contacts the grid resource provider to determine
whether or not this request can be satisfied, given the current usage and allocation
of resources.

The paper studies a pricing based distributed iterative algorithm for QoS sche-
duling on the grid. Grid user requirements are formulated as dimensions in a quali-
ty of service problem expressed as a market game played by grid resource agents
and grid task agents. User benefits resulting from taking decisions regarding each
Quality of Service dimension are described by separate utility functions. The total
system quality of service utility is defined as a linear combination of the discrete
form utility functions. Dynamic programming is used to optimize the total system
utility function in terms of an iterative algorithm. The paper presents algorithms
to iteratively optimize task agents and resource agents functioning as sub-problems
of the quality of service grid resource scheduling optimization. Such constructed
resource scheduling algorithm finds a multiple quality of service solution optimal
for grid users, which fulfils some specified user preferences. The proposed pricing
based distributed iterative algorithm has been evaluated by studying the effect of
QoS factors on benefits of grid user utility, revenue of grid resource provider and
execution success ratio.

The rest of the paper is structured as follows. Section 2 describes the related
works. Section 3 presents distributed iterative algorithm for QoS scheduling on the
grid. In Section 4 the experiments are presented and discussed. Section 5 concludes
the paper.

2 RELATED WORKS

Recently, QoS provisioning for computational grid and its applications has received
considerable attention. R. Buyya et al. [1] propose a deadline and budget constrained
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(DBC) scheduling algorithm, which uses economy driven method for allocating re-
sources to application jobs in such a way that the grid users’ requirements are met.
Chen Lee et al. [2, 3] use resource-utility functions in a QoS management framework
with the goal to maximize the total utility of the system. They propose two approxi-
mation algorithms, and compare the run-times and solution quality with an optimal
solution. In [4], Atakan Dogan et al. consider the problem of scheduling a set of
independent tasks with multiple QoS requirements, which may include timeliness,
reliability, security, version, and priority, in a grid computing system in which re-
source prices can vary with time during scheduling time intervals. Dong Su Nam
et al. [5] propose a quorum based resource management scheme; the resource quo-
rum includes middleware entity and network entity, both can satisfy requirements
of application QoS. They suggest a heuristic configuration algorithm in order to
optimize performance and usage cost of the resource quorum. R. Al-Ali et al. [6–8]
extend the service abstraction in the OGSA for Quality of Service (QoS) properties.
The realization of QoS often requires mechanisms such as advance or on-demand
reservation of resources, varying in type and implementation, and independently
controlled and monitored. Yutu Liu et al. [10] presented an open, fair and dynamic
QoS computation model for web services selection through implementation of and
experimentation with a QoS registry in a hypothetical phone service provisioning
market place application. Kavitha S. Golconda et al. [11] compare five QoS-based
scheduling heuristics from the literature, in terms of three performance parameters,
namely the number of satisfied users, makespan and total utility of the meta-task.
Tarek F. Abdelzaher et al. [12] propose, implement, and evaluate a novel commu-
nication server architecture that maximizes the aggregate utility of QoS-sensitive
connections for a community of clients even in the case of overload. Liangzhao Zeng
et al. [13] presents a middleware platform that addresses the issue of selecting web
services for the purpose of their composition in a way that maximizes user satisfac-
tion expressed as utility functions over QoS attributes. In [14], the paper presents
economic agent based grid resource management. A system model is described that
allows agents representing various grid resources and grid users to interact without
assuming a priori cooperation. In [15], the paper presents an Agent-based Grid Ser-
vice Management, which applies the concept of agents to computational grid. In [16],
the paper designed and implemented a mobile agent platform based on tuple space
coordination. In [17], the paper provides a price-directed proportional resource allo-
cation algorithm for solving the grid task agent resource allocation problem. In [18],
a distributed utility-based two level market solution for optimal resource schedul-
ing in computational grid is presented. In [19], the paper is to implement a uniform
higher-level management of the computing resources and services on the Grid, and to
provide users with a consistent and transparent interface for accessing such services.
In [22], the paper integrates software agents and CORBA to allocate resource in
computational grid. Li Layuan et al. [20, 21] discuss the multicast routing problem
with QoS constraints such as delay, delay jitter, bandwidth and packet loss metrics,
and describe a network model that is suitable to search such routing problem, and
presents a QoS-guaranteed multicast routing protocol (QGMRP). The research ob-
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jective of this paper is to study multiple QoS constrained grid resource scheduling,
which is not the same as in the above works [14–22, 26].

3 OPTIMAL SCHEDULING ON THE GRID:

MATHEMATICAL MODEL AND ALGORITHMS

3.1 Mathematical Model

The dynamics, autonomy and heterogeneity of grid system are considered and solved
in our proposed QoS scheduling optimization model. Since the dynamics of a grid
computing system are difficult to model, the grid system is modeled as a market
economy and hence the past research in the field of economics can be put to good
use here. The various resources in the grid system (e.g. CPU, bandwidth etc.) are
modeled as hypothetical resource producers, who sell their resources to hypothetical
resource consumers. The incoming job requests of the user come with a budget,
which is a measure of the grid user perceived value of the job. They may have to
wait longer, or are starved if prices of resources are too high for their budget. Grid
schedulers base their decisions on the state of economy as suggested by the price
of different resources. The state of equilibrium in economy is when the demand for
the resource is the same as the supply of it. The price of a resource, as in a real
market, reflects its relative worth only if the economy is in a state of equilibrium.
Therefore if the market cannot be brought to equilibrium, decisions will be poor. The
proposed grid can be modeled as multi economic agents. Both users and resources
can be viewed as autonomous agents, having control of their own behavior. This
autonomy gives rise to inherent uncertainty, since an individual cannot predict how
another one will respond to changing situations. Whenever a new grid task agent
is created, it is first given an endowment of electronic cash to spend to complete
its task. Before a job can be executed on the computational grid, some attributes
have to be set properly. A job can be characterized by time limit, budget, and
data size and runtime requirements. We assume that when a task agent purchases
a portion of resources owned by the resource agents, it is guaranteed that the task
agent continues to receive resource without interruption from the resource agent
until its task is completed.

Assume each qli is a finite set of quality choices for the ith task agent’s lth

QoS dimension; let M denote the number of QoS requirements of task agent i.
q1i , q

2
i , . . . , q

M
i is the QoS dimensions associated with task agent i. qi = [q1i , . . . , q

M
i ]

defines an M -dimensional space of the QoS choices of task agent i. Associated with
each QoS dimension is a utility function, which defines user’s benefit in choosing
certain value of QoS choices in that dimension. Formally, the utility function asso-
ciated with the lth QoS dimension of task agent i is U l

i (q
l
i). One dimension utility

function can express task agent’ benefits in individual QoS dimensions, but grid
resource scheduling system needs multi-dimensional QoS requirements to evaluate
overall benefits of the task agents. Multi-dimensional QoS requirements can be for-
mulated as a utility function for each task as a weighted sum of its each dimensional
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QoS utility functions. The utility function associated with task agent i is denoted
by Ui(qi), the function Ui(qi) can be defined as a weighted sum of U l

i (q
l
i). We have

constructed a QoS model that includes system and process categories. Our model
is composed of three dimensions: cost, deadline, and reliability. Cost (C) repre-
sents the cost associated with the execution of grid tasks. Task cost is the cost
incurred when a task t is executed; it can be broken down into two parts, which
include computation resource cost and bandwidth resource cost. Deadline (D) is
a common and universal measure of performance. Task deadline corresponds to the
overall time a task is processed in the grid. The task deadline can be broken down
into two parts that include process time and delay time. The task reliability (R)
is defined to be the probability that the task can be completed successfully. Each
user may specify a degree of reliability that is acceptable for its task, in order to
minimize the adverse effects of failures. Cost (C), Deadline (D), Reliability (R)are
considered as the QoS dimensions of a task. As a result, the QoS model of task
agent i can be formulated as qi = [C,D,R]. We assume task agent i can buy
bandwidth yki from network agent k, and buy computation resources xj

i from com-
putation resource agent j. If the network resource agent has a total bandwidth sk
available to task agents, then the bandwidth allocations must obey sk ≥

∑

i y
k
i . cj is

the capacity of computation resource represented by computation resource agent j,
the corresponding resource allocation constraint is therefore cj ≥

∑

i x
j
i . The com-

pletion time for grid task agent i to complete its nth job is tni = f(xj
i , y

k
i , bin, din)

where bin is the size of computation data of the ith grid task agent’s nth job, din
is the amount of transferring data of the ith grid task agent’s nth job. We as-
sume that each grid user i can place an upper bound on the total completion time
by Ti ≥

∑N
n tni where N is the number of user’s jobs. Grid task agents compete

for computation resources and network resource with finite capacity. The resource
is allocated through resource market, where the partitions depend on the relative
payments sent by the task agents. We assume that each task agent i submits pay-
ment vki to the network resource agent k and u

j
i to computation agent j. Then,

vk = [vk1 , . . . , v
k
N ] represents all payments of task agents for the kth network resource

agent.
Let us consider the utility function associated with three dimensions QoS of the

task agent. The utility function associated with first dimension QoS is U1
i (q

1
i ), which

is related with the cost. In U 1
i (q

1
i ),

∑

j u
j
i is the total payment of the ith task agent

paid to computation resources,
∑

k v
k
i is the total payment of the ith task agent paid

to network resources. w1
i denotes the weight assigned to the first QoS dimension of

task agent i. The utility function associated with second dimension QoS is U2
i (q

2
i ),

which is related with the completion time. In U2
i (q

2
i ), the completion time for grid

task agent i includes two parts: computation time and transmission time. Ti is an
upper bound on the total completion time of each grid task agent i. D denotes the
delay time. w2

i denotes the weight assigned to the second QoS dimension of task
agent i. The utility function associated with third dimension QoS is U3

i (q
3
i ), which is

related with the completion reliability. In U3
i (q

3
i ), g is the number of times that the

task has been successfully completed within the deadline, and f is the total number
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of invocations. w3
i denotes the weight assigned to the third QoS dimension of task

agent i.

U1
i

(

q1i

)

= w1
i



Ei −
∑

j

u
j
i −

∑

k

vki





U2
i

(

q2i

)

= w2
i

(

Ti −

N
∑

n=1

bin

x
j
i

−

N
∑

n=1

din

yki
−D

)

U3
i

(

q3i

)

= w3
i

g

f

To provide the grid resource scheduler with a unique utility function, which
maps the multi-dimensional QoS needs of the task to a benefit value, we can define
the utility function of task agent as a weighted sum of single-dimensional QoS utility
function:

Ui (qi) = w1
i



Ei −
∑

j

u
j
i −

∑

k

vki



+ w2
i

(

Ti −

n
∑

n=1

bin

x
j
i

−

N
∑

n=1

din

yki
−D

)

+ w3
i

g

f
.

Each task agent has a utility function that measures the value it puts on quality
assignments. The overall system’s QoS utility is a linear combination of Ui(qi). We
will use these utility functions to define an overall system utility function, which is
as a weighted sum of each task agent’s QoS utility function:

Usystem =
N
∑

i=1

ωiUi(qi).

Grid resource scheduler’ objective is to assign qualities and allocate resources to
task agents, such that the system utility Usystem is maximized.

We now formulate the problem of grid scheduling optimization in computational
grid as the following constrained non-linear optimization problem. In Usystem, ωi

is the priority weight assigned to task agent i by the Grid. Grid resource sche-
duler finds a possible task assignment that maximizes Usystem subject to users’ QoS
constraints. Computation resource units are allocated to task agent i by x

j
i that

computation resource agent j allocates, and yki is the network resource obtained by
grid task agent i from network resource agent k. The QoS constraint implies that
the aggregate network resource units do not exceed the total capacity of resource sk,
aggregate computation resource units do not exceed the total resource cj , and grid
task agent should complete all its jobs under time limits. Grid task agent needs
to complete a sequence of jobs in a specified amount of time, Ti, while the cost
overhead accrued cannot exceed the budget Ei.

Max
N
∑

i=1

ωiUi(qi)
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cj ≥
∑

i

x
j
i , Sk ≥

∑

i

yki

Subject to:
Ti ≥

∑

i

tni , Ei ≥
∑

j

u
j
i +

∑

k

vki

x
j
i > 0, yki > 0

We can apply Lagrangian method to solve such a problem [23–25]. Let us
consider the Lagrangian form of this optimization problem:

L (λi, βi, ϕi, γi) =
∑

i

U − λi

(

∑

i

yki − Sk

)

− βi

(

∑

i

x
j
i − cj

)

− ϕi





∑

j

u
j
i +

∑

k

vki − Ei



− γi

(

∑

i

tni − Ti

)

where λi, βi, γi is the Lagrangian multiplier of grid task agent i. Thus, given that the
grid knows the utility functions U of all the grid task agents, this optimization prob-
lem can be mathematically tractable. However, in practice, it is not likely to know
all the U , and it is also infeasible for computational grid to compute and allocate
resources in a centralized fashion. Solving the objective function Max

∑N
i=1 ωiUi(qi)

requires global coordination of all grid users, which is impractical in distributed en-
vironment such as the computational grid. In order to achieve a distributed solution,
we decompose the problem into the following two sub-problems; seek a distributed
solution where the grid provider does not need to know the utility functions of
individual grid user. For a completed time, the task agent optimization problem
MaxUi(qi) can be written as follows:

Maxw1
i



Ei −
∑

j

u
j
i −

∑

k

vki



+ w2
i

(

Ti −

N
∑

n=1

bin

x
j
i

−

N
∑

n=1

din

yki
−D

)

+ w3
i

g

f
.

In resource market, computation resource agent and network resource agent
acted as suppliers to maximize their benefits. The grid resource agent, given the
amounts that the grid task agents are willing to pay, attempts to maximize the func-
tion

∑

(

u
j
i log x

j
i + vki log y

j
i

)

. So the grid resource provider’s optimization problem

can be formulated as follows. yki is the network resource sold to the task agent i

by network resource agent k, xj
i is the computation resource sold to task agent i

by computation resource agent j.
∑

(

u
j
i log x

j
i + vki log y

j
i

)

presents the revenue ob-
tained by computation resource agent j and network resource agent k from the
task agents. Computation agent or network agent cannot sell the resources to task
agent more than cj or sk, which is the upper limit of resource presented by resource
agents.

Max
∑

(

u
j
i log x

j
i + vki log y

j
i

)
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s. t. ci ≥
∑

j

x
j
i , sk ≥

∑

k

yki

QoS constraint resource scheduling optimization in computational grid is dis-
tributed to two subproblems: optimization of task agent and resource agent in
resource market.

Firstly, consider task agent’s optimization.

Maxw1
i



Ei −
∑

j

u
j
i −

∑

k

vki



+ w2
i

(

Ti −

N
∑

n=1

bin

x
j
i

−

N
∑

n=1

din

yki
−D

)

+ w3
i

g

f

s. t. Ti ≥
∑

i

tni

We assume that each task agent submits uj
i to the computational resource agent

and vki to network resource agent. Then, ui = [u1
i , . . . , u

j
i ] represents all payments of

grid task agents for the jth computation resource agent, vi = [v1i , . . . , v
k
i ] represents

all payments of grid task agents for the kth network resource agent. Let mi =
∑

j u
j
i +

∑

k v
k
i , mi be the total payment of the ith task agent. N grid task agents

compete for grid resources with finite capacity. The resource is allocated using a
market mechanism, where the partitions depend on the relative payments sent by the
grid task agents. Let pcj, pnk denote the price of the resource unit of computation
resource agent j and network resource agent k, respectively. Let the pricing policy,
pc = (pc1, pc2, . . . , pcn), denote the set of computational resource unit prices of
all the computation resource agents in the grid, pn = (pn1, pn2, . . . , pnk) is set of
network resource unit prices. The ith task agent receives resources proportional to
its payment relative to the sum of the resource agent’s revenue. Let xj

i , y
k
i be the

fraction of resource units allocated to task agent i by computation resource agent j
and network resource agent k.

The task agent’s sub-problem can be reformulated as

MaxUtask = w1
i



Ei −
∑

j

u
j
i −

∑

k

vki





+ w2
i

(

Ti −

N
∑

n=1

binpcj

cju
j
i

−

N
∑

n=1

dinpnk

skv
k
i

−D

)

+ w3
i

g

f
.

The Lagrangian for the task agent’s utility is L(u, v).

L
(

u
j
i , v

k
i

)

= w1
i



Ei −
∑

j

u
j
i −

∑

k

vki





+ w2
i

(

Ti −

N
∑

n=1

binpcj

cju
j
i

−

N
∑

n=1

dinpnk

skv
k
i

−D

)

+ w3
i

g

f
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+ λ

(

Ti −

N
∑

i=1

tni

)

where λ is the Lagrangian constant. From Karush-Kuhn-Tucker Theorem [9] we

know that the optimal solution is given ∂L(u,v)
∂u

= 0 for λ > 0.

∂L(uj
i , v

k
i )

∂u
j
i

= −w1
i + w2

i

binpcj

cj(u
j
i )

2
+ λ

binpcj

cj(u
j
i )

2

Let
∂L(uj

i
,vk

i )
∂uj

i

= 0 to obtain

u
j
i =

(

(w2
i + λ) binpcj

w1
i cj

)1/2

.

Using this result in the constraint equation, we can determine θ =
w2

i
+λ

w1
i

as

(θ)−1/2 =
Ti

∑N
m=1

(

mpcbim
cm

)1/2
.

We substitute θ to obtain u
j∗

i

u
j∗

i =

(

binpcj

cj

)1/2 ∑N
m=1

(

bimpcm
cm

)1/2

Ti
.

u
j∗

i is the unique optimal solution to the optimization problem task agent. It
means that grid task agent wants to pay u

j∗

i to computation resource agent j for
needed resource under completion time constraint.

Using the similar method, let
∂L(uj

i
,vk

i )
∂vk

i

= 0

∂L
(

u
j
i , v

k
i

)

∂vki
= −w1

i + w2
i

dinpnk

sk(ikv)2
+ λ

dinpnk

sk(ikv)2
= 0.

We can get

vki =

(

(w2
i + λ)dinpnk

w1
i sk

)1/2

.

Using this result in the constraint equation, we can determine θ =
w2

i
+λ

w1
i

as

(θ)−1/2 =
Ti

∑N
m=1

(

mpndim
sm

)1/2
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We obtain vk
∗

i

vk
∗

i =

(

dinpnk

sk

)1/2 ∑N
m=1

(

dimpnm

sm

)1/2

Ti
.

It means that grid task agent wants to pay vk
∗

i to network resource agent k for
needed resource under completion time constraint.

Resource agent’s optimization is solved as follows:

Max
∑

(

u
j
i log x

j
i + vki log y

j
i

)

s. t. ci ≥
∑

j

x
j
i , sk ≥

∑

k

yki

Uresource

(

x
j
i , y

k
i

)

=
∑

(

u
j
i log x

j
i + vki log y

j
i

)

.

The Lagrangian for resource agent subproblem is L(x, y)

L
(

x
j
i , y

k
i

)

=
∑

(

u
j
i log x

j
i + vki log y

k
i

)

+ λ

(

cj −
∑

i

x
j
i

)

+ β

(

sk −
∑

i

yki

)

=
∑

(

u
j
i log x

j
i + vki log y

k
i − λx

j
i − βyki

)

+ λcj + βsk

where λ, β is the Lagrangian constant. From Karush-Kuhn-Tucker Theorem we
know that the optimal solution is given ∂L(x,y)

∂x
= 0 for λ > 0.

∂L
(

x
j
i , y

k
i

)

∂x
j
i

=
u
j
i

x
j
i

− λ

Let ∂L(x,y)
∂x

= 0 to obtain

x
j
i =

u
j
i

λ
.

Using this result in the constraint equation cj ≥
∑

j x
j
i , we can determine λ as

λ =

∑n
m=1 u

j
m

cj
.

We substitute λ to obtain x
j∗

i

x
j∗

i =
u
j
i cj

∑n
k=1 u

i
k

;

x
j∗

i is the unique optimal solution to the optimization problem of computation re-
source agent.
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Let us consider network resource agent’s optimization problem, using the similar
method.

Let ∂L(x,y)
∂y

= 0

∂L
(

x
j
i , y

k
i

)

∂yki
=

vki
yki

− β = 0.

We can get

iky =
vki
β
.

Using this result in the constraint equation sk ≥
∑

k y
k
i , we can determine β as

β =

∑n
m=1 v

k
m

sk
.

We obtain yk
∗

i

yk
∗

i =
vki sk

∑n
m=1 v

k
m

;

yk
∗

i is the unique optimal solution to the optimization problem of network resource
agent. It means that network resource agent acting as provider wants to allocate yk

∗

i

to grid task agent to maximize its revenue.

3.2 Distributed Iterative Algorithm for Optimal Scheduling

Optimal scheduling algorithm uses dynamic programming to optimize the total sys-
tem utility function in terms of an iterative algorithm. The paper presents algo-
rithms to iteratively optimize task agents and resource agents utility functions as
sub-problems of the quality of service for grid resource scheduling optimization.
Such constructed grid QoS scheduling algorithm finds a multiple quality of service
solution optimal for grid users, which fulfils some specified user preferences. In
each iteration, the task agent individually computes its optimal payment for grid
resource agents, adjusts its computation resource demand and network resources
demand and notifies the grid about this change. After the new computation re-
source and network resource demand are observed by the computation resource
agent and network resource agent respectively, they update their prices accordingly
and communicate the new prices to the grid task agent, and the cycle repeats. The
distributed iterative algorithm that implements QoS scheduling is then given as
follows.
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Grid task agent

Receives the price pcj from the computation resource agent j;

u
j∗

i = MaxU
(

u
j∗

i

)

; // calculates uj∗

i to maximize U(uj
i )

If Ei ≥
∑

j u
j
i +

∑

k v
k
i

Then x
j
i (n+1) =

(n)u
j∗

i

pc
(n)
j

; // Calculates its optimal computation resource demand

x
j
i (n+ 1)

Return x
j(n+1)
i to computation resource agents;

Else Return Null;
Receives the price pnk from the network resource agent k;
vk

∗

i = MaxU(vk
∗

i ); // Calculates vk
∗

i to maximize U(vki )
If Ei ≥

∑

j u
j
i +

∑

k v
k
i

Then yki (n + 1) =
(n)vk

∗

i

pn
(n)
k

; // Calculates its optimal network resource demand

yki (n+ 1)

Return y
k(n+1)
i to network resource agents;

Else Return Null;

Grid resource agent

Receives grid computation demand x
j
i , y

k
i from grid task agents;

If ci ≥
∑

j x
j
i

Then
pc

(n+1)
j = max ǫ, pc

(n)
j + η(xjpc

(n)
j − cj); // Computes a new price

// xj =
∑

i x
j
i , η > 0 is a small step size parameter, n is iteration number.

Return new price pc
(n+1)
j to all grid task agents;

Else Return Null;
If sk ≥

∑

i y
k
i

Then
pn

(n+1)
k = max ǫ, pn

(n)
k + η(ykpn

(n)
k − sk); // Computes a new price

// yk =
∑

i y
k
i , η > 0 is a small step size parameter, n is iteration number.

Return new price pn
(n+1)
k to all grid task agents;

Else Return Null;

4 SIMULATION STUDY

To evaluate the performance of distributed iterative QoS scheduling algorithm, a se-
ries of experiments are conducted to study the effect of QoS factors such as task
deadline, price, reliability, budget and payment on benefits of grid user utility, re-
venue of grid resource provider and execution success ratio. The overview of the
system environment is given in Table 1. The descriptions of grid users and grid
resource providers are listed in Tables 2 and 3. Network generator BRITE generates
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the computer network topology. In order to simulate the dynamics and heterogene-
ity of the grid, all values of networks can be changed after topology generation. The
simulated grid was defined to simulate a WAN consisting of 10 LANs. Nodes of
each LAN range from 10 to 50. Therefore, there are a total of 500 nodes in the
simulation. The bandwidth between WAN nodes was defined to be 1Gbps, and the
bandwidth between LAN nodes was set to be 100Mbps to 1Gbps. All tasks had
different execution times. In the simulation setup, the task execution time ranged
from 50ms to 2 000ms. Task arrival for scheduling followed an exponential distribu-
tion. As the number of submitted tasks increased, the computing load on the entire
network increased as well. In the simulation, different numbers of tasks were tested
in order to observe the impact on the grid scheduling performance; totally, there
were 500 tasks. The resource cost can be expressed in grid dollars that can be de-
fined as processing cost per MIPS. Processor capacity varies from 220 to 580MIPS.
Initial price of computing power is from 10 to 500 grid dollars.

Parameter Value

Reschedule Interval 600
Number of tasks 500
Arrival time (ms) 200
System load 0.3
Request interval 100
Task agent number 300

Table 1. Simulation parameters

Grid users 1 2 3 4 5 6 7 8

Deadline (ms) 100 200 300 400 100 300 200 300
Budget 1000 1 500 2 000 500 1 500 1 000 500 1 500

Table 2. Description of the grid users

Grid resource provider 1 2 3 4

Processor Capability (MIPS) 370 370–380 220 510–580
Unit Price (grid dollar) 300∼500 200∼500 10∼100 100∼500

Grid resource provider 5 6 7 8

Processor Capability (MIPS) 340–390 370 510 220
Unit Price (grid dollar) 20∼200 200 300 100

Table 3. Description of the grid resource provider

First, the experiments aimed at evaluating the effect of the QoS metrics such
as reliability, price, task deadline, and budget on the revenue of resource provider.
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In Figure 1, when reliability of the grid resource is high, the revenue of the grid
resource provider is also high, because grid user tends to choose the service with
high reliability, and pay more for resource provider with high reliability. Figure 2
represents the effect of the price on the revenue. The maximum of the curve is the
optimal revenue point for the resource provider. The highest value of the revenue is
determined by both acceptable price and suitable grid resource allocation. Figure 3
represents the effect of task budget on the revenue of the resource provider earned
from the grid users. When task budget is high, the revenue of the resource provider
is also high, because grid user tends to choose expensive resource, and pay more for
resource provider with high performance; then grid resource providers can achieve
high revenue from grid users. Figure 4 shows the effect of task deadline on the
revenue. The revenue increases first, then decreases as deadline increases. When
grid users have high deadline, they can choose cheaper grid resources to complete
tasks, so the resource providers will get less revenue from grid users. Figure 5 shows
that increasing the payment leads to higher revenue for grid resource providers.
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Fig. 6. User utility vs. task deadline

Second, the experiments aimed at evaluating the effect of the QoS metrics such
as task deadline, payment, price, reliability, and budget on the grid user utility. From
the results in Figure 6, when the deadline is low, there is intensive demand for the
resources in a short time, so grid user chooses more expensive resources to process the
tasks. However, when the deadline changes to higher one, it is likely that tasks can
be completed before deadline, so grid user considers using the cheaper resources to
complete tasks to maximize the utility. Figure 7 shows that increasing the payment
leads to lower user utility. Figure 8 shows that when reliability increases, the user
utility increases quickly. In Figure 9, the X-axis shows changes in resource price
values, price value varies from 50 to 500 grid dollars. From the result of Figure 9,
the utility of grid users becomes lower as the price values increase. Because the
price increases, users will pay more to get grid resources, and some user with low
budget cannot afford payment to get the needed grid resource. Figure 10 represents
the impact of different budget constraint on the user utility. When the budget is
small, user utility is low, because user cannot buy expensive and efficient resources to
complete task. When the budget increases, user utility grows quickly, because users
can afford more expensive resources. So most users like to choose proper resources
to achieve their goals. Larger budgets enable grid users to afford more expensive
resource to maximize the user utility.

Third, the experiments aimed at evaluating the effect of task deadline, reliability,
number of task and budget on the execution success ratio. In Figure 11, The X-axis
shows changes in task number values, task number value varies from 10 to 300. It
can be observed from Figure 11, as the number of tasks increased, the grid scheduling
performance worsened. This is easily understood. As more tasks were submitted,
less computational resources were available for the tasks to share. This was reflected
by a decrease in the percentage of tasks that met their deadlines. Figure 12 shows
the effect of task deadline on execution success ratio. When the task deadline is
low, execution success ratio is low. When increasing deadline, execution success
ratio becomes higher. Figure 13 shows the effect of budget on execution success
ratio. When increasing budget values, the execution success ratio becomes higher.
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A larger budget enables grid user to afford more expensive resources to complete
the task before its deadline. From the results in Figure 14 when the reliability of
grid resource is high, execution success ratio is also high. Since the reliability of grid
resource is high, the resources selected can guarantee being available when the grid
task needs to be executed, user will complete all tasks before its deadline.

5 CONCLUSIONS

The paper presents grid QoS scheduling, based on a mathematical QoS model and
a distributed iterative algorithm. Grid user requirements are formulated as dimen-
sions in a quality of service problem expressed as a market game played by grid
resource agents and grid task agents. User benefits resulting from taking decisions
regarding each Quality of Service dimension are described by separate utility func-
tions. The total system quality of service utility is defined as a linear combination
of the discrete form utility functions. Dynamic programming is used to optimize the
total system utility function in terms of an iterative algorithm. The paper presents
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algorithms to iteratively optimize task agents and resource agents functioning as
sub-problems of the quality of service grid resource scheduling optimization. Such
constructed resource scheduling algorithm finds a multiple quality of service solution
optimal for grid users, which fulfils some specified user preferences. The proposed
pricing based distributed iterative algorithm has been evaluated by studying the ef-
fect of QoS factors on benefits of grid user utility, revenue of grid resource provider
and execution success ratio. In the future, we will consider more QoS metrics such
as availability that is defined as the fraction of time that resource is available for use,
and achieve QoS global optimization. More experiments are conducted to compare
the performance of the proposed distributed algorithms with more related works.
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