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Abstract. Software systems usually include a limited number of important classes
that a large number of other classes depend upon. These files comprise the techni-
cal core of a software system. Evolving this core is naturally difficult and requires
caution, since inappropriate changes may induce side and ripple effects. Indeed,
despite the rhetoric about openness in free/libre open source software, modifica-
tions to the technical core are usually accomplished by a small set of contributors
known as key developers. Automatically identifying key developers is relevant for
a number of reasons, such as supporting the recruitment of specialists, assigning
tutors to newcomers, and estimating the longevity likelihood of projects. More-
over, little is known about how key developers evolve and about the social skills
that support them in their technical tasks. In this paper, we describe a case study
involving the Apache Ant project. Our goal was to identify key developers and
characterize them in terms of their social activity and contributions. We conceived,
implemented, and applied a method to identify key developers. Such method iden-
tified four individuals, who were the main target of our investigation. We built
communication networks from mailing list data and a coordination requirements
network from their development traces. The analysis of these two networks indi-
cated that three key developers socialized more than the others. They acted as
bridges connecting other developers and communicated with almost everyone they
were supposed to. The other key developer showed a very distinct behavior, as
he participated very rarely in the mailing list. We also analyzed key developers’
contributions and found some patterns. Core commits and non-core commits were
often interleaved and key developers also contributed to peripheral portions of the
system. Finally, we observed that the set of key developers was indistinguishable
from the set of top committers. We expect this characterization to foster the def-
inition of key developers’ profiles that take into account their social activities and
contribution characteristics.

Keywords: Key developers, core developers, free/libre open source software, socio-
technical analysis, mining software repositories, case study, apache ant
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1 INTRODUCTION

The volatility of requirements and technologies impose a constant pressure for
changes in software systems. The Lehman’s Laws of Software Evolution [29] and
agile methods [6] account for changes as something intrinsic to the nature of a useful
software [8]. It is not hard to notice that changes are actually intrinsic to a lot of
things. Indeed, the pre-Socratic Greek philosopher Heraclitus once said that one
cannot step into the same river twice [45].

However, changing and evolving software systems is far from being a trivial
task. In the particular context of object-oriented programming (OOP), software
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structure is implemented as a set of classes that depend on one another. The
resulting dependency graph is known as the technical network of a software sys-
tem. As software evolves, a specific subset of classes begins to assume a very im-
portant role by having many other classes depending on them (either directly or
indirectly). We say that such important classes form the core of the technical net-
work of a software system. Changing this core is often difficult and risky, since
inappropriate modifications may induce side and ripple effects [44, 2, 20]. Accu-
mulating bad modifications to the core ends up violating architectural rules and
breaking encapsulation, which might ultimately lead to software design degrada-
tion [21, 32, 39, 42].

Despite the challenges of changing the technical core, software projects fre-
quently have a small subset of developers who actually overcome such challenges.
In fact, even in free/libre open source software (FLOSS) projects with a regular
influx of participants, this same phenomenon occurs [34]. These special developers
are known as key developers (a.k.a. core developers). Achieving the status of key
developer also grants one with social standing and identity in the community [28].
They also tend to have a crucial role in conflict resolution and leadership estab-
lishment processes [15]. However, even though both academia and practitioners
recognize their importance, the literature lacks a proper definition of their profile.
There is a variety of questions to be answered. How are key developers different
from the others? How can they be automatically identified in the dynamic con-
text of FLOSS development? Do key developers contribute to the core only? How
to know whether a key developer grew his expertise from the project (over time)
or brought it from past experiences? What are the social skills that support key
developers doing their technical work? Do they socialize more than others? Do
they act as brokers? After all, what it takes to become a key developer? We be-
lieve that identifying and characterizing the many profiles of FLOSS contributors
is an essential step towards a better understanding of how FLOSS communities
operate and maintain vibrancy. For instance, merely knowing the number of key
developers might indicate the longevity likelihood of software systems. As an il-
lustrative example, the development of the popular Linux image processing soft-
ware GIMP halted for about 20 months right after its two creators graduated from
Berkeley, started full-time employment, and no longer had time to be involved in
the project [57].

In this paper, we are interested in identifying key developers and character-
izing them from a socio-technical perspective, focusing on the investigation of how
these developers communicate, coordinate their tasks, and contribute to the project.
More specifically, we conducted a descriptive case study involving the Apache Ant1

project. Firstly, we applied an approach to identify the set of key developers based
on the kinds of artifacts that developers modified over time. Afterwards, using Social
Network Analysis (SNA) techniques [56, 36], we investigated how the key developers
communicated by building and analyzing a social network from mailing list data and

1 http://ant.apache.org
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investigating whether they were central in such network. In a software development
context, task dependencies drive the need to coordinate work activities [13]. Hence,
we built a coordination requirements network and analyzed whether key developers
were central in such network. Furthermore, we investigated whether key developers
had a high socio-technical congruence [12] by evaluating the social activities that
actually occurred (given by the mailing list network) and those that should have
occurred (given by the coordination requirements network). Finally, we character-
ized key developers in terms of their contribution to the project. In particular, we
analyzed not only their contribution volume, but also the kinds of artifacts they
modified.

This paper extends our previous study [40] by:

1. providing a deeper investigation of how key developers contribute (e.g., how core
commits are distributed over time and the kinds of artifacts that key developers
work on),

2. considering different techniques to build the mailing list communication network,
and

3. further investigating the role of key developers in the communication network
(e.g., by employing other SNA metrics).

The motivation and supporting concepts of this study are also presented in more
details.

The rest of this paper is organized as follows. In Section 2, we present the fun-
damental concepts and theory supporting this study. In Section 3, we motivate the
identification and characterization of key developers and state our research ques-
tions. In Section 4, we describe the research design, including details about the case
study and the supporting tools we developed. In Section 5, we present the results we
obtained from the case study. In Section 6, we discuss the aforementioned results.
In Section 7, we present and discuss related work. Finally, in Section 8, we state
our conclusions and plans for future work.

2 BACKGROUND

2.1 Key Developers

Despite the lack of a precise definition, it is a consensus that key developers are the
ones responsible for making decisions and conducting the project’s development. In
turn, peripheral developers tend to marginally contribute to the project and be less
committed to it. In this paper, we call key developers the set of developers who
evolve the technical core of a software system. The technical core is extracted from
the technical network.
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2.2 Technical Networks

Technical networks describe software systems from a structural perspective. In the
context of OOP, such networks depict how classes depend on one another. Clustering
techniques may be used to determine how packages depend on others, providing
a high-level view of the system. In the following, we describe two techniques we
used in our study.

2.2.1 Call-Graph

A call-graph is a directed graph that represents calling relationships between sub-
routines in a computer program. A static call-graph is a special kind of call-graph
obtained by means of static analysis of the source code. In the context of OOP,
a static call-graph denotes calling relationships between operations. In this graph,
a directed edge indicates that the source operation makes use of the results of the
target operation. We highlight that the source operation is always a class operation,
while the target operation can be a class operation or an interface operation. The
latter case denotes a call dependency that leverages polymorphism.

2.2.2 Logical Dependencies Graph

A visionary work of Ball et al. [4] introduced the idea that version control systems
(VCSs) contain a significant amount of data exploitable in systems evolution studies.
One year later, Gall et al. [22] introduced the idea of logical dependencies (a.k.a.
logical coupling), which they defined as “observed identical change behavior or dif-
ferent elements during system evolution.” In other words, a logical dependency
refers to an evolutionary relationship established among artifacts that have been
frequently changed together during a specific timeframe.

A source code file can be viewed as representing a “bundle” of technical de-
cisions [12]. If a certain modification request (bug fix, new feature, etc.) can be
implemented by changing only one file, then it provides no evidence of any depen-
dency among files. However, when a modification request results in changes to more
than one file, then it can be assumed that decisions about the change of one file
depend in some way on the decisions made about changes to other files involved in
implementing the modification request [12]. The more a set of files changes together,
the more they are evolutionarily connected.

Unlike static analysis, logical dependencies analysis spots dependencies between
any kind of artifact that composes a system, including source code, configuration
files, and documentation. Such analysis is usually performed by parsing and an-
alyzing the commit logs of a VCS. The logical dependencies graph is a specific
graph in which nodes refer to artifacts, and edges refer to logical dependencies con-
necting these artifacts. More information about logical dependencies can be found
in [4, 23, 61, 62, 17, 41, 38].
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2.3 Social Networks

Social Network Analysis (SNA) focuses on the analysis of relationships among so-
cial entities [56]. In this field, social structures are often modeled by a graph whose
nodes represent social entities (e.g., an individual or group) and edges represent
a certain relationship or tie between two of such entities. In the context of software
development, social networks are often built to represent how developers interact
and communicate. Examples include building social networks to model develop-
ers communication extracted from messages in mailing lists or comments in issue
trackers.

2.3.1 Social Network Metrics

Several metrics were conceived to have indications of the importance of a certain
individual in a social network. Figure 1 depicts the metrics we used in this pa-
per.

Figure 1: Social network metrics (adapted from [43])

In the following, we present the rationale behind each metric and how they are
calculated:

Degree Centrality. Degree centrality is defined as the number of ties that a node
has [56]. Nodes with high degree centrality have higher probability of receiving
and/or transmitting whatever information flows in the network, i.e., they influ-
ence the nodes in their neighborhood [1]. Degree centrality is a local measure,
since only the connections of a node with its neighbors are taken into account
to evaluate its importance.
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Eigenvector Centrality. The Eigenvector centrality is a natural extension to the
notion of Degree Centrality: each node awards “one centrality point” for every
neighbor it has and Eigenvector Centrality gives each node a score proportional
to the sum of the scores of its neighbors. The key idea is that a node’s impor-
tance is increased when it has connections to other nodes that are themselves
important [56, 36]. Eigenvector Centrality can be computed by an iterative
degree calculation procedure known as the accelerated power method [25].

Algorithm 1: Eigenvector Centrality computation via Accelerated Power
Method

Input : An adjacency matrix Ai,j, where Ai,j = 1 if the ith node is adjacent
to the jth node, and Ai, j = 0 otherwise

Output: Eigenvector centrality value for all graph nodes

1Set CE(vi) = 1 for all i ;
2Compute C∗E(vi) =

∑
j
Ai,j ∗ CE(vj) ;

3Set λ equal to the square root of the sum of squares of each C∗E(vi) ;
4Set CE(vi) = C∗E(vi)/λ for all i ;
5Repeat lines 2 to 4 until λ stops changing ;

Betweenness Centrality. Nodes that occur on many shortest paths (a.k.a. geo-
desic distance) between other vertices have higher betweenness than those that
do not. Hence, betweenness centrality evaluates the degree of control a node has
over the information flowing in the network. Messages sent through the network
frequently pass through these nodes, i.e., they act as “brokers”. Betweenness
Centrality is given by the following equation:

CB(v) =

 ∑
s 6=v 6=t∈V

σst(v)

σst

 /[(n− 1) ∗ (n− 2)],

where σst is the number of shortest paths from s to t, and σst(v) is the number
of shortest paths from s to t that pass through a vertex v.

Closeness Centrality. The vertex closeness refers to the geodesic distance be-
tween a vertex v and all other vertices reachable from it. Closeness measures
how close a node is located with respect to every other node in the network.
Nodes with high closeness are able to reach most or all other nodes in the net-
work through geodesic paths. Closeness Centrality is given by the following
equation:

CC(v) =
|Jv|/(n− 1)∑

t∈Jv
dG(v, t)/|Jv|

where Jv is the set of vertices reachable from v (a.k.a influence range of v) and
dG(v, t) is the length of the geodesic path from v to t.
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2.3.2 Coordination Requirements Network
and Socio-Technical Congruence

Organizations often cope with complex tasks by first dividing them into smaller
interdependent work units and then assigning such units to teams. In this con-
text, coordination among teams arises as a response to such interdependent work
units [31]. Cataldo et al. [13, 12, 11] conceived an approach to elicit coordination
requirements. More specifically, his approach tackles the following problem: given
a particular set of dependencies among tasks, identify which set of individuals should
coordinate their activities.

Cataldo’s approach relies on two sets of relationships (Figure 2). The first set is
called Task Assignments (Ta) and defines which individuals are working on which
tasks. This set is represented by a matrix where each cell [i, j] indicates that the
developer i was assigned to the task j. In the context of software development,
this set might be built upon the set of files modified by each developer on a mod-
ification request or throughout the development of a software release. The second
set of relationships is called Task Dependencies (Td) and defines the interdepen-
dencies between tasks. This set is also represented by a matrix where each cell
[i, j] (or [j, i]) indicates whether tasks i and j are interdependent. In the context of
software development, this set might be built upon either the set of structural (syn-
tactic) dependencies or the set of co-changes (logical dependencies). Cataldo tested
both types of dependencies and concluded that co-changes provided a more accurate
representation of the most relevant product dependencies in software development
projects [12]. In the particular case of co-changes, the diagonal of Td indicates the
total number of times the source code files were changed during a certain develop-
ment period. In turn, off-diagonal cells indicate the number of times the two files
were changed together.

Once Task Assignments (Ta) and Task Dependencies (Td) matrices are built,
coordination requirements are ready to be determined. Multiplying Ta by Td results
in a people by task matrix that represents the extent to which a particular worker
should be aware of tasks that are interdependent to those that he or she is responsible
for [12]. Multiplying the Ta ∗Td product by the transpose of Ta results in a people
by people matrix where a cell [i, j] represents the extent to which person i works on
tasks that share dependencies with the tasks worked on by person j [12]. In other
words, this last matrix represents the Coordination Requirements (Cr), or the extent
to which each pair of people needs to coordinate their work. When calculating Td
using co-changes, the resulting Cr matrix is symmetric (2).

The term socio-technical congruence was coined by Cataldo et al. [12]. It refers
to the match between the coordination requirements and the actual coordination
activities carried out by workers. This concept builds mainly on the idea of “fit”
from the organizational theory literature [9]. In practical terms, given a certain
Cr matrix, it is possible to compare it to an Actual Coordination (Ca) matrix
representing the coordination activities that took place. This last matrix can be built
based on data from mailing lists or issue trackers (or both). Congruence is computed
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Figure 2: Illustrative example of coordination requirements calculation (extracted
from [10])

as the proportion of coordination activities that actually occurred (represented by
the Ca matrix) relative to the total number of coordination activities that should
have taken place (represented by the Cr matrix). For instance, if the Cr matrix
shows that 10 pairs should coordinate, and of these, only 5 pairs show coordination
activities in the Ca matrix, then the congruence is 0.5.

3 MOTIVATION AND RESEARCH QUESTIONS

3.1 Identifying Key Developers

In this study, we were interested in identifying key developers, i.e., the ones who
evolve the technical core of a software system. There are several reasons motivating
such identification. Firstly, an individual might be interested in contacting a key
developer and it might be the case that the projects’ website is not updated (due
to the high turnover of developers in FLOSS [60], for example) or does not include
such information. An example would include a certain project needing one expert
for a specific activity and trying to search for key developers in related projects
(e.g., from similar domain). Secondly, key developers might serve as tutors to new-
comers and help them become familiar with the project’s landscape [16]. Finally,
(iii) projects might reach their end of life just because their set of key developers
decided to stop contributing to the project. Thus, the number of current active key
developers may indicate the longevity of the project. Indeed, longevity expecta-
tion is often an important factor driving the selection of one among similar FLOSS
projects and libraries.

However, identifying key developers is not a trivial task. It requires identifying
the technical core of a software system at different points in time and determining
the extent to which each developer helped to evolve such core. This leads to our
first research question:

RQ 1: How to identify key developers?
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3.2 Characterizing Key Developers from a Social Network
Analysis Perspective

Social interaction within software development is acknowledged as an important
aspect and has been the subject of a series of studies [14, 7, 19, 52, 11]. Given
the role of key developers in technical tasks (e.g., maintenance and evolution of
the technical core) and social aspects (e.g., development of a shared understand-
ing of the system architecture, conflict resolution, leadership establishment, and
others [15]), we are interested in analyzing how exactly these developers behave in
terms of communication and coordination. Do key developers socialize more than
other developers? Do they act as brokers? Do they better fulfill their coordination
requirements (socio-technical congruence) when compared to others? This leads us
to our second research question:

RQ 2: What is the participation of key developers in terms of communication
and coordination within the project?

3.3 Characterizing Key Developers According to Their Contribution

Besides characterizing key developers from a SNA perspective, we also intend to
characterize them according to their contributions to the project. Firstly, how
key developers reach this important status? Do they always make core commits
or do they reach this status progressively by first doing some peripheral commits
and then changing the core more frequently? Such an investigation may unveil
whether key developers build their skills and expertise during the course of the
project or bring it from past experiences. Besides that, do key developers com-
mit more? For instance, while conducting case studies involving the Apache Server
and the Mozilla web browser, Mockus et al. [34] hypothesized that “open source
developments have a core of developers who control the code base, and create ap-
proximately 80 % or more of the new functionality”. Finally, we are interested in
exploring whether key developers are specialists who contribute only to specific mod-
ules of the system or are generalists who contribute to different modules. Do key
developers have similar patterns of contribution? This leads to our last research
question:

RQ 3: What are the characteristics of the contributions of key developers?

4 RESEARCH DESIGN

In order to answer our research questions, we adopted a case study as our research
method. A case study is a well-established empirical method aimed at investigat-
ing contemporary phenomena in their natural context [58]. More specifically, we
conducted a descriptive case study with retrospective data collection [48]. Our
case study sought to portray the characteristics of key developers by leveraging the
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project’s available historical information. In contrast to embedded case studies,
where multiple units of analysis are studied within a case, our case study is essen-
tially holistic, i.e., the case is studied “as a whole”. In a nutshell, we focused on
a particular release of a FLOSS project and gathered different types of information
from it. Using a series of supporting tools (Section 4.1), we identified key developers
(RQ1), characterized them according to SNA techniques (RQ2), and characterized
their contributions (RQ3). In the next subsections, we introduce the design of this
study by presenting the supporting tools used, the rationale for choosing the case,
and the main steps followed for the identification and analysis of the key develop-
ers.

4.1 Supporting Tools

Empirical studies that mine software repositories usually demand extensive tool
support due to the large amount and complexity of data to be collected, pro-
cessed, and analyzed [48]. Given the different data sources required in this study,
we employed and developed a variety of tools: XFlow [49], JDX2, MMX3, and
Jung4.

XFlow. XFlow is an extensible open source tool we developed developed. Its main
goal is to support empirical software evolution analyses by considering both
social and technical aspects. By bringing together these two views, the tool
aims to support exploratory and descriptive case studies that call for a deeper
understanding of software evolution aspects. In this study, XFlow was employed
to calculate the coordination requirements network [13] and build treemaps [51].

JDX. Java Dependency eXtractor (JDX) is a Java library we developed to extract
dependencies and compute the call-graph from Java code. The library relies
on the robust Java Development Tools Core (JDT Core) library, which is the
Eclipse IDE incremental compiler. As a desirable consequence, JDX is able to
handle Java source code in its plain form. This facilitates studies that involve
processing large amounts of code mined from VCSs.

MMX. Mail Message eXtractor (MMX) is a tool we developed to retrieve mes-
sages from mailing lists and compute social networks. It parses raw mailing-list
archives (mboxes) and uses the header of emails to couple messages, email ad-
dresses, and threads. MMX was employed to retrieve message threads from the
Ant developers’ mailing list5 and compute the communication network.

2 https://github.com/joseteodoro/JDX
3 https://code.google.com/p/message-extractor/
4 http://jung.sourceforge.net/
5 http://ant.apache.org/mail/dev/
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Jung. Java Universal Network/Graph Framework is a Java library that provides
a common and extensible language for modeling, analyzing, and visualizing data
that can be represented as a graph or network. Jung was employed to compute
network properties, such as the eigenvector centrality of nodes.

4.2 The Case Selection and Initial Data Collection

For the case study, we decided to focus on the analysis of a timeframe correspond-
ing to the development of a particular FLOSS project release. The goal was to
minimize influencing factors, since different releases may be developed using differ-
ent processes/methods and may last for different periods of time. We looked for
a particular project/release that met the following criteria:

1. source code hosted on a Subversion (SVN) repository with anonymous read
access;

2. availability of information about the development activities (change logs and
communication traces), and

3. a large active development team.

The first requirement was due to constraints of the tools we developed/used. The
second one was raised because we needed historical development information to
conduct the socio-technical analysis. Finally, the requirement to have a large active
development team took place because we needed enough social data to answer our
research questions and we were interested in identifying key developers as a subset
of a large group.

We relied on data from the Ohloh platform6 to decide about the size of the
development team for our study. Ohloh is a social coding platform that moni-
tors a huge number of open source projects by collecting information about their
licenses, number of commits, number of developers, total lines of code, main pro-
gramming languages, etc. By the time this paper was written, the Ohloh platform
monitored 656 761 open source projects and characterized team size according to
the data depicted in Table 1. Such characterization is based on a statistical analy-
sis that the platform does on the number of active developers from the last twelve
months.

After inspecting a series of FLOSS projects, we decided to analyze Apache
Ant. This project is one of the most popular open source tools for automating
software build processes. Differently from make and other shell-based build tools,
Ant is written in Java and provides extensibility points via the implementation
of Java classes. Ant operates on a user-provided XML configuration file that de-
scribes the build processes. Apache Ant is hosted by the Apache Software Foun-
dation (ASF), which is a non-profit organization that encompasses nearly a hun-
dred distinguishing FLOSS projects that cover a wide range of technologies and

6 Ohloh by BLACK DUCK – http://www.ohloh.net/.
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Number of Active Developers Team Characterization

0 No recent development activity

1 Only a single active developer

2 or 3 Small development team

4 to 6 Average size development team

7 to 27 Large, active development team

28 or more Very large, active development team

Table 1: Characterization of team size according to the Ohloh platform

address several problems from diverse domains. Examples of ASF projects in-
clude Apache HTTP Server, Geronimo, Cassandra, Lucene, Hadoop, Maven, and
Struts.

We picked the development period of release 1.7, which started on December 19,
2003 and ended on December 13, 2006 (roughly 3 years). Such release met all pre-
established criteria. Its code was hosted on a Subversion repository, information
about development activities was available in commit logs and mailing lists, and
there was a large team of active developers. To identify the number of active devel-
opers, XFlow was employed to parse the commit logs from the project’s repository.
We focused on the mainstream development portion of the project. More specifi-
cally, only commits with files from the trunk branch (“ant/core/trunk/src/main/”)
were considered. Besides that, commits having no java files were discarded. Apply-
ing these filters resulted in the identification of 1 834 commits done by 16 developers.
Figure 3 depicts the number of active contributors in the first day of each month of
the picked development period. We deem a certain developer as active in the first
day of month m if the period encompassing his first and last commits in the project
includes the first day of m. Such period is constrained to the 3-year development
period we chose. In Figure 3, red bars denote a single active developer, yellow bars
denote an average-size development team, and blue bars denote a very large, active
development team. Such classification was done based on the data from the Ohloh
platform (Table 1).

Figure 3 reveals that the Ant project had an average size development team
during the first year of the analyzed period. Afterwards, the project had mostly
a large, active development team (with peaks of 11 active developers).

4.3 Addressing RQ1: Identifying Key Developers

As we were interested in characterizing key developers, our first step was to dis-
cover which developers actually worked on the core source code artifacts of the
Apache Ant project. This investigation required finding both the core of the tech-
nical network and the particular developers that worked on such core. We applied
the following algorithm (described in pseudocode) for the 1834 commits of the case
study:
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Figure 3: Number of active developers in the beginning of each month

Algorithm 2: Determining Key Developers
Input : The list of commits during the period
Output: The list of key developers

1. coreCommits <-- new Empty List();

2. for each commit do {

3. code <-- checkoutCodeFromSVN(commit.revisionNumber);

4. technicalNetwork <-- JDX.calculateClusteredCallGraph(code);

5. technicalNetworkCore <-- obtainCore(callGraph, egv);

6. if (isCoreCommit(commit, technicalNetworkCore)){

7. coreCommits.add(commit);

8. }

9. }

10. keyDevelopers <-- determineKeyDevs(coreCommits);

For a given commit, we checked out its corresponding code from Subversion
(line 3). Then, we used JDX to calculate the project’s static call-graph (line 4).
JDX clusters the method nodes belonging to the same Java file, which results in
a graph in which nodes represent the Java files and the edges represent their call-
ing relationships. We then employed the eigenvector centrality metric and a quar-
tile analysis to find the core of the technical network produced in the prior step
(line 5). We recall that such metric embodies the notion that a node’s importance
in a network increases by having connections to other vertices that are themselves
important [36]. Thus, we assume that a source code file becomes more important
by having connections to other source code files that are themselves important.
The files that had a centrality score equal to or larger than the third quartile (Q3)
were deemed as core. Then, we determined whether a commit was core or pe-
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ripheral (line 6). In this study, we considered that core commits were those that
contained at least one source code file that belonged to the core of the techni-
cal network. Those commits showed that the developer in question was actually
able to modify the core of the project (even if the developer changed a single core
file). Finally, after calculating the list of core commits, we determined the key de-
velopers (line 10). We accomplished that by computing the absolute number of
core commits per developer and performing a quartile analysis on such distribu-
tion. Developers whose number of core commits was equal to or larger than Q3
were deemed as key. We chose the absolute number of core commits because it
determines the frequency with which each developer contributed to the technical
core. In this sense, we consider that developers who produce few core commits
(even if that accounts for all their commits) cannot be deemed as key develop-
ers.

4.4 Addressing RQ2: Characterizing Key Developers
from a Social Network Analysis Perspective

This subsection describes how we characterized developers from a social network
analysis perspective. In summary, we first built communication networks from the
project’s mailing list using three different approaches. After that, we analyzed these
networks using SNA metrics. Next, we calculated the coordination requirements
network and found its core. Finally, we calculated the socio-technical congruence of
each key developer.

4.4.1 Building the Communication Networks

To characterize key developers from a social network analysis perspective, we built
the communication network from the projects’ mailing list. In the literature, the
construction of a communication network from mailing lists is done in different
ways depending on the purpose of the study at hand. Hence, we decided to eval-
uate how the key developers fit into communication networks calculated according
to three different strategies (Figure 4), namely: Prior [26], FirstAndPrior, and
TransposeAndTimes [56, 3]. In the following, we describe each of these strate-
gies.

Prior. This method results in an undirected graph where vertices are developers
and edges link developers. An edge links developers a and b when either a
directly replies to b or b directly replies to a (Figure 4 a)). We rely on the
Response-ID and Message-ID fields from the email headers to create these con-
nections.

FirstAndPrior. As the previous strategy, this one creates edges based on the
Message-ID and Response-ID fields. However, it additionally creates links be-
tween the developer who initiates the thread and all other participants (Fig-
ure 4 b)). A reasonable interpretation is that all developers in the thread are
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indirectly responding to the first message. This method is biased towards the
developers who started a thread, since those initiators are always linked to those
who responded them.

TransposeAndTimes. This method links together everyone that participated in
the same thread (Figure 4 c)). To compute this graph, a Developer × Thread
matrix is created. In such matrix, the cell [i, j] is assigned the value one when
developer i participated in thread j (i.e., the developer sent a message in this
thread). After this matrix is completed, we multiply it by its transposed version
to obtain a Developer x Developer matrix. The output of the method is built
on top of this last matrix: links are created between developers i and j when
the matrix cell [i, j] has a value greater than one.

We collected and parsed data from the developers’ mailing list7 using the MMX
tool we developed. We highlight that we collected messages from the release de-
velopment period only (i.e., from December 19, 2003 to December 13, 2006). Af-
terwards, we built communication networks according to the three aforementioned
strategies.

4.4.2 Analyzing the Communication Networks Using SNA Metrics

We analyzed the communication networks using SNA metrics (Section 2.3.1). The
goal of this analysis was to better understand how key developers behave in terms
of communication. We employed Degree Centrality and Eigenvector Centrality to
investigate whether key developers socialized more than others did. Next, we em-
ployed Betweenness Centrality to assess if key developers acted as brokers that end
up bridging other developers. Finally, we used Closeness Centrality to analyze the
communication distance to the other developers. In all three analyses, we distin-
guished high centrality values by performing a quartile analysis and determining
those that were higher than or equal to the third quartile. All SNA metrics were
calculated using Jung 4.1.

4.4.3 Building the Coordination Requirements Network
and Determining Its Core

The coordination requirements network depicts the set of other developers that
a certain developer should coordinate his/her work with. These requirements arise
as a consequence of developers working on interdependent artifacts. We built the
project’s coordination requirements network by applying the method introduced
by Cataldo et al. [13, 12, 11] (Section 2.3.2). We used XFlow to build the Ta
and Td matrices. Ta matrix denoted which files were changed by each devel-
oper over the release development period. Td matrix was built considering the
co-changes that occurred during the same period. As co-changes are very sensi-
tive to commits with crosscutting changes [41] (such as changing license or fix-

7 http://mail-archives.apache.org/mod_mbox/ant-dev/
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a)

b) c)

Figure 4: Multiple methods to define a communication network based on an email
thread: a) Prior, b) FirstAndPrior, c) TransposeAndTimes
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ing code style), we decided to filter out such commits. We accomplished that by
determining the number of files per commit distribution and finding the outliers.
More precisely, we ignored those commits in which the number of files was above
(Q3 + 1.5 ∗ IQR), where Q3 indicates the third quartile and IQR indicates the inter-
quartile range.

With the coordination requirements network in hands, we determined its core.
Analogously to the case of the technical network, we proceeded by calculating the
Eigenvector Centrality of each node and employing a quartile analysis. This way,
we were able to investigate the extent to which key developers were supposed to
coordinate their work with other developers.

4.4.4 Determining the Socio-Technical Congruence

Inspired by the measure of socio-technical congruence defined by Cataldo et al. [13,
12, 11] (Section 2.3.2), we computed the proportion of social activity that actu-
ally occurred (given by a communication network) relative to the social activ-
ity that should have occurred (given by the coordination requirements network)
for each developer. Since we calculated the communication network according to
three different strategies, we also calculated three congruence lists. For each list,
we performed the same quartile analysis of previous scenarios: congruence val-
ues that were equal to or higher than the third quartile were deemed as high.
This analysis revealed whether key developers have a high socio-technical congru-
ence.

4.5 Addressing RQ3: Characterizing Key Developers’ Contributions

After having characterized key developers from a SNA perspective, we started to
investigate their contributions. First, we investigated how interleaved their core
and non-core commits were and how core commits were distributed over time. The
goal was to better understand how key developers reached this status, i.e., were
they always key developers or did they reach this status progressively? Afterwards,
using XFlow, we computed the list of top contributors, i.e., those developers that
made most part of the commits. More precisely, we determined the list of top com-
mitters by analyzing the distribution of commits per developer. The goal was to
check if key developers were also top committers. In particular, as we stated in
Section 3.3, Mockus et al. [34] hypothesized that “open source developments have
a core of developers who control the code base, and create approximately 80 % or
more of the new functionality”. Since we were not able to differentiate new features
from bug fixes, we tested a more general hypothesis: we verified whether key devel-
opers did 80 % or more of the total number of commits. Finally, we also intended
to investigate whether key developers tended to be specialists or generalists. For
this purpose, we leveraged the treemap visualization provided by XFlow and ana-
lyzed how dispersed their contributions were. Treemap is a compact visualization
method that uses nested rectangles to display information with hierarchical charac-



696 G. A. Oliva, J. T. da Silva, M. A. Gerosa, F. W. S. Santana et al.

teristics [51]. In our case, the treemaps operate on all directories and Java files inside
the “ant/core/trunk/src/main” path. In particular, leaf rectangles represented files
and non-leaf rectangles represented folders. We built a treemap for each key devel-
oper and colored the non-leaf rectangles (source code files) that he or she worked
on.

5 RESULTS

5.1 Identification of Key Developers

As mentioned before, we computed the technical network at the time of each commit
and calculated the core of such network, identifying if the commit contained a core
modification. After that, we calculated the number of core modifications made by
each developer. In Table 2, we depict the results we obtained:

Developer Number of Core Commits Delta Key Developer

dev A 0 0 NO

dev B 0 0 NO

dev C 1 1 NO

dev D 2 1 NO

dev E 3 1 NO

dev F 3 0 NO

dev G 5 2 NO

dev H 7 2 NO

dev I 18 11 NO

dev J 28 10 NO

dev K 31 3 NO

dev L 58 27 NO

dev M 89 31 YES

dev N 147 58 YES

dev O 182 35 YES

dev P 232 50 YES

Table 2: Developers and associated number of core modifications to the system

We sorted the developers according to the number of core commits they per-
formed. The third column of the table (delta) shows the difference between the
number of commits of a developer and his predecessor. The total number of core
commits was 806, which represents 44 % of all commits. The third quartile of the
number of core commits per developer was 81.25. Four developers made more than
81 core commits, namely: dev M, dev N, dev O, and dev P. Interestingly, this set
of 4 key developers was responsible for 81 % of all core commits. Hence, the Pareto
Principle holds for this project.
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5.2 Characterizing Key Developers from a Social Network
Analysis Perspective

We used MMX to compute the three different communication networks of the
project. Figure 5 depicts the results we obtained in the form of graphs in which
vertices represent developers and edges represent the connections among them.
The graphs are shown using a circular layout because it makes it easier to de-
termine the density of the networks and the number of connections a certain node
has.

a)

b)

The rationale behind the construction of each communication network led to
networks of different sizes. The communication network built using Prior had
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c)

Figure 5: Communication networks of Apache Ant calculated using a) Prior,
b) FirstAndPrior, and c) TransposeAndTimes strategies

12 developers and 51 connections. The communication network built using Fir-
stAndPrior had 14 developers and 64 connections. The communication network
built using TransposeAndTimes was the largest one with 15 developers and 86 con-
nections. In the next subsections, we present the results of analyzing these social
networks.

5.2.1 Analyzing the Communication Networks Using SNA Metrics

We first wanted to understand whether key developers socialize more. We opera-
tionalized that by inspecting the communication networks built from the project’s
mailing list. To this end, we calculated the Degree Centrality and the Eigenvector
Centrality metrics for the three networks. These two metrics essentially inform how
coupled nodes are in a network. The results are depicted in Table 3, where cells
in green denote values that are higher than or equal to the third quartile of each
column.

Even though the two centralities inform coupling from different perspectives (lo-
cal vs global) and the communication networks were built using different strategies,
the results did not change. The developers dev M, dev P, and dev N had high scores
in all cases, which indicates that they socialized more than others did. Interestingly,
dev O had a very distinct behavior: he did not socialize much (he did not even
appear in some of the networks).

Subsequently, we investigated whether key developers acted as brokers (or brid-
ges) in the communication networks. To this end, we analyzed the three networks
using Betweenness Centrality. The results are depicted in Table 4.
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Degree Eigenvector

P FP TT P FP TT

dev E 10 11 13 0.098 0.086 0.076

dev F 3 3 12 0.029 0.023 0.070

dev D 2 0.012

dev M 11 12 13 0.108 0.094 0.076

dev O 2 7 0.016 0.041

dev H 10 12 0.078 0.070

dev J 8 9 13 0.078 0.070 0.076

dev K 9 11 13 0.088 0.086 0.076

dev A 9 10 13 0.088 0.078 0.076

dev I 10 11 12 0.098 0.086 0.070

dev C 7 8 12 0.069 0.063 0.070

dev G 6 7 11 0.059 0.055 0.064

dev P 10 12 14 0.098 0.094 0.081

dev N 11 13 14 0.108 0.102 0.081

dev L 8 9 11 0.078 0.070 0.064

Q3 10 11 13 0.098 0.088 0.076

SUM 102 128 172 1.000 1.000 1.000

Table 3: Do key developers socialize more?

Betweennes

P FP TT

dev E 1.152 0.988 0.948

dev F 0.000 0.000 0.091

dev D 0.000

dev M 4.319 4.488 0.948

dev O 0.000 0.000

dev H 0.393 0.091

dev J 0.143 0.125 0.948

dev K 0.452 0.988 0.948

dev A 0.643 0.554 0.948

dev I 1.152 0.988 0.091

dev C 0.000 0.000 0.091

dev G 0.000 0.000 0.000

dev P 1.152 5.988 6.948

dev N 4.319 10.488 6.948

dev L 1.667 2.000 0.000

Q3 1.538 2.622 0.948

SUM 15.000 27.000 19.000

Table 4: Do key developers act as brokers/bridges?
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Again, key developers had a distinct participation. For all three networks, dev M,
dev P, and dev N had distinctly high centrality scores (except for dev P in the Prior
network). Therefore, we conclude that these key developers are not only connected
to many others (either directly or indirectly), but also serve as bridges between other
developers. The key developer dev O had zero betweenness for FirstAndPrior and
TransposeAndTimes.

Finally, we wanted to investigate how close the key developers were to the other
developers. The closer they are, the easier it is for them to reach other develop-
ers (and vice-versa). To this end, we calculated the Closeness Centrality metric
for each of the three communication networks. The results are depicted in Ta-
ble 5.

Closeness

P FP TT

dev E 0.917 0.867 0.933

dev F 0.579 0.565 0.875

dev D 0.538

dev M 1.000 0.929 0.933

dev O 0.542 0.667

dev H 0.813 0.875

dev J 0.786 0.765 0.933

dev K 0.846 0.867 0.933

dev A 0.846 0.813 0.933

dev I 0.917 0.867 0.875

dev C 0.733 0.722 0.875

dev G 0.688 0.684 0.824

dev P 0.917 0.929 1.000

dev N 1.000 1.000 1.000

dev L 0.786 0.765 0.824

Q3 0.917 0.882 0.933

SUM 10.014 11.125 13.019

Table 5: Are key developers close to other developers?

The results we obtained put key developers in the spotlight. Developers dev M,
dev P, and dev N had a centrality score higher than the third quartile. Developer
dev O had the lowest closeness score in the FirstAndPrior network and the second
lowest score in the TransposeAndTimes network.

5.2.2 The Core of the Coordination Requirements Network

We used XFlow to calculate the coordination requirements network (Figure 6). Each
vertex represents a developer and each edge maps two developers that were supposed
to coordinate their efforts because the artifacts they changed were interdependent
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from an evolutionary point of view. The coordination requirements network we
obtained was dense, with 16 developers and 102 connections.

Figure 6: The coordination requirements network

We further analyzed this network by determining its core and checking whether
key developers belonged to it. The goal was to better understand the extent to which
key developers were supposed to coordinate their work with other developers. The
results we obtained are depicted in Table 6, where green cells denote the developers
in the core.

The results indicate that all key developers were in the core of the coordination
requirements network: dev P, dev N, dev O, dev M. Indeed, these four developers
had connections to all other developers in the network.

5.2.3 Socio-Technical Congruence

We computed the socio-technical congruence of each developer. Figure 7 depicts
the results we obtained. The data show that the interval of congruence values is
large (ranging from 0 % to 100 %). We also performed a quartile analysis to identify
developers with high congruence. The results we obtained were the following:

High Congruence for Prior: dev N, dev M, dev E, dev I

High Congruence for FirstAndPrior: dev N, dev M, dev E, dev P,

High Congruence for TransposeAndTimes: dev N, dev E, dev P, dev A, dev F

5.3 Characterizing Key Developers’ Contributions

We investigated how interleaved core and non-core commits were for each key de-
veloper. The results are depicted in Figure 8. In this figure, each single vertical bar
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Eigenvector Centrality Score

dev P 0.074

dev N 0.074

dev M 0.074

dev K 0.074

dev C 0.064

dev O 0.074

dev D 0.044

dev H 0.064

dev G 0.039

dev J 0.074

dev L 0.074

dev F 0.054

dev B 0.044

dev A 0.054

dev E 0.054

dev I 0.069

Q3 0.074

SUM 1

Table 6: Developers in the core of the coordination requirements network

denotes the activity of one week. If a developer only produces core commits during
a week, then the bar representing that week becomes totally green. Analogously, if
a developer produces only non-core commits during a week, then the bar becomes
totally red. If half of the commits are core, then the bar becomes half green and
half red.

Figure 7: Socio-technical congruence of the developers



Evolving the System’s Core: A Case Study on the Identification and . . . 703

Figure 8: Key developers: Interleaving of core and peripheral commits

Apart from the first contributions of dev M, we can clearly notice that core and
non-core commits were very much interleaved for all key developers. This shows
that these developers were very important for the project over the whole release
development period. This picture also suggests that the proportion of core commits
was very stable for each key developer. We further investigated this phenomenon
by calculating, for each key developer, the cumulative count of core and non-core
commits, as well as the cumulative percentage of core commits. The results are
depicted in Figure 9.

The key developer dev M had higher ratio of core commits in his first contri-
butions. However, starting from his 46th commit, the number of non-core commits
dominated (Figure 9 a)). From his 64th commit onwards, the ratio of core commits
stabilized at the 35 % to 42 % range (Figure 9 b)). The key developer dev N also
had a higher ratio of core commits in his first contributions. Although it took just
a little bit longer, the turnover also ended up occurring (Figure 9 c)). The number
of non-core commits also grew at a little bit higher pace. However, from his 262nd

commit onwards, the ratio of core commits stabilized at the 38 % to 41 % range
(Figure 9 d)). The key developer dev O had much more interleaved commits. How-
ever, as in the previous cases, the turnover also occurred at some point (Figure 9 e)).
Starting from his 66th commit, the rate of core commits stabilized at the 45 % to
53 % range with a descending trend at the very end (Figure 9 f)). Finally, the key
developer dev P had a very stable contribution pattern. Differently from others, his
ratio of non-core commits was often higher (except for very rare circumstances that
happened in the beginning) (Figure 9 g)). Right from his 72th commit onwards, his
ratio of core commits stabilized at the 41 % to 47 % range (Figure 9 h)). Given the
temporal dimension provided (Figure 8), it is possible to notice that this developer
produced very few commits from the middle of July, 2005 until the middle of July,
2006 (one year period).
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a) b)

c) d)

e) f)

g) h)

Figure 9: Core commits vs. non-core commits (left) and cumulative percentage of
core commits (right): dev M a), b), dev N c), d), dev O e), f), dev P g), h)
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Following this analysis, we employed XFlow and calculated the set of top con-
tributors. Figure 10 depicts the cumulative percentage of the number of com-
mits. According to the data, the four key developers (25 % of them) were re-
sponsible for 81 % of the commits. Therefore, we conclude that the operational
version of Mockus’ hypothesis we defined indeed holds for this release of the Ant
project.

Figure 10: Cumulative percentage of the number of commits

Finally, to discover the focus of the key developers’ contributions, we built
treemaps. Each treemap depicts the files that a certain developer worked on. Fig-
ure 11 shows the treemap of each key developer. The first treemap (Figure 11 a))
depicts the files that dev P worked on. His treemap is almost full-colored, which
indicates that he worked on many classes of the project during the studied release.
Interestingly, he did not touch any file in the repository folder (bottom left portion
of the figure). The second treemap (Figure 11 b)) belongs to dev N. This treemap is
also very colored and shows that the developer worked on many files. Again, no files
from the repository folder were touched. The third treemap (Figure 11 c)) belongs
to dev M. Although his treemap is not as colored as the previous ones, it is possible
to notice that his contributions are spread all over the system. In particular, differ-
ently from the two previous key developers, he worked on all files from the repository
folder. Finally, the last treemap (Figure 11 d)) depicts the files that dev O touched.
Although dev O did more commits than dev N, his treemap is much less colored.
In this sense, his contributions are more focused than dev N’s. In particular, his
contributions seem to be a little bit more concentrated on the right-hand side of the
treemap. However, it is also true that he worked on many different classes of the
system.
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a)

b)

c)
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d)

Figure 11: Contribution treemaps: a) dev P, b) dev N, c) dev M, and d) dev O

5.4 Summary of Findings

We summarized our findings in Table 7. This table depicts the list of key developers,
developers in the core of the communication networks (Eigenvector Centrality ana-
lysis), developers in the core of the coordination requirements network, developers
with high socio-technical congruence, and top contributors.

We identified four key developers, namely: dev P, dev N, dev O, and dev M.
Although the core of the communication networks was different, three of the key
developers appeared in all of them. This indicates that most key developers were also
very active in the developers’ mailing list during the analyzed period. Interestingly,
while the core of Prior and TransposeAndTimes communication networks included
other developers, FirstAndPrior had the best match with the set of key developers.
Moreover, although the FirstAndPrior network has a larger number of links than
Prior, its core is smaller.

In relation to the core of the coordination requirements network, all key devel-
opers belonged to it (although it included three more developers). This means that
key developers indeed had to coordinate their efforts with a large number of people.
We also computed the socio-technical congruence by comparing the communication
networks with the coordination requirements network. Two key developers (dev N
and dev M ) had a high congruence when considering Prior, three key developers
(dev P, dev N, and dev M ) had a high congruence when considering FirstAndPrior,
and two key developers (dev P and dev N ) had a high congruence when considering
TransposeAndTimes. The congruence calculated based on FirstAndPrior showed
the best match with key developers. The key developer dev O did not appear in
any of the calculated congruencies. Curiously, the congruencies C1 and C3 had
a very small intersection (only devs N and E appeared in both). Interestingly,
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Developer Key
Devel-
oper

Important in
Communication
Network

Core of Co-
ordination
Require-
ments
Network

High Congruence Top
Con-
tribu-
tors

P FP TT C1 C2 C3

dev P 4 4 4 4 4 4 4 4

dev N 4 4 4 4 4 4 4 4 4

dev O 4 4 4

dev M 4 4 4 4 4 4 4 4

dev L 4

dev J 4 4

dev K 4 4

dev E 4 4 4 4 4

dev H

dev G

dev C

dev F 4

dev I 4 4

dev A 4 4

dev D

dev B

Table 7: Summary of findings

the sets of key developers and top contributors were identical. In fact, by taking
a closer look at the contribution volumes, we conclude that the set of key developers
also heavily contributed to the peripheral areas of the technical network. Finally,
despite the various networks we calculated and analyses we performed, five devel-
opers did not show up in any of them, namely: dev H, dev G, dev C, dev D, and
dev B.

Finally, we notice that dev N had a mark for each criterion included in Table 7.
Furthermore, dev P and dev M also missed one socio-technical congruence evaluation
each. In other words, the rows corresponding to these developers are much more
filled than those associated with other developers. In turn, the developer dev O
exhibited a very different behavior, since he was a key developer and top committer
who participated very rarely in the mailing list.

6 DISCUSSION

In the following, we discuss our research questions in light of the results we obtained.
We conclude the section by discussing threats to the validity of the results.
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6.1 RQ 1: How to Identify Key Developers?

To identify key developers, we conceived the method described in Section 4.3. In
our case study, 4 developers were responsible for 81 % of all core commits. This
corroborates the hypothesis that a small number of developers becomes responsible
for the technical core of a system.

It is worth to note that we automated the whole process of identifying key
developers in a way that it is possible to reuse it for any Java project. Given the
motivation presented in Section 3.1, we believe this methodological and technological
support can be leveraged for various scientific and practical purposes.

We faced some challenges from the technical point of view to operationalize
our method, since it required processing 1834 code snapshots and calculating the
associated core of each corresponding technical network. To that end, we had to
build our own tool (JDX) for calculating dependencies from Java code. We needed
to develop a tool to operate directly on source code due to the difficulties associated
with compiling and building automatically each version of a software. We also
needed to develop a tool for extracting different social networks from the mailing
list.

On the other hand, challenges still exist for replicating our study considering
a large number of projects. Key developers and the social networks are identified
on a delimited timeframe basis, such as a release. Using releases as the unit of
analysis requires gathering the release dates of all projects, which might not be
available in the project’s documentation. In addition, different projects have dif-
ferent release cycle policies. In particular, releases may vary from short ones (e.g.,
Firefox) to long ones (e.g., our case study). Moreover, the same project might
even change its own release cycle policy over time. Apache Ant, for example, has
both very short and very long releases. These facts suggest that the specific time-
frames to be analyzed should be carefully chosen on a case basis. Difficulties also
come from the fact that some projects make extensive use of branching. In those
cases, analyzing only the trunk would provide misleading results. Therefore, doing
a large scale study would require developing a rationale for determining whether
branches need to be considered, as well as a way to group the results from different
branches.

6.2 RQ 2: What Is the Participation of Key Developers in Terms
of Communication and Coordination within the Project?

The first step required building the communication network from the mailing-list
archive of the project. In particular, we built communication networks accord-
ing to three different strategies: Prior, FirstAndPrior, and TransposeAndTimes.
Analyzing such network with SNA metrics showed interesting patterns. Three of
four key developers were very active in the mailing lists, having high scores for
different centrality measures. Given the specific set of metrics we considered, we
concluded that those three key developers socialize more than other developers, act
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as bridges linking other developers, and were socially close to them. However, the
key developer dev O had a very distinct behavior. He communicated very rarely
in the mailing list and did not appear in the communication network built using
Prior.

Calculating the coordination requirements for the project resulted in a dense
network. This indicated that developers shared many interdependent tasks. We
highlight that all four key developers were in the core of this network. Indeed, key
developers were connected to all other developers. In the next step, we calculated
the socio-technical congruence of each developer. As we had three communication
networks, we obtained three different associated scores for each developer. With the
exception of dev O, each key developer had at least two high scores. As expected,
dev O had a low congruence in all three cases.

In summary, these results show that three of the four key developers often com-
municate to others (in the mailing list) and have high socio-technical congruence.
A key developer did not exhibit this behavior, but performed a large number of
core commits. Cataldo et al. [13] stated that most productive workers reach higher
levels of congruence than the less productive ones. In our case, this did not happen
with one of the key developers. As Cataldo’s study was conducted with industrial
projects, further investigation is necessary under open source settings.

6.3 RQ 3: What Are the Characteristics of the Contributions
of the Key Developers?

We investigated how key developers reached this status. The results of the analysis
of their commits unveiled interesting patterns. Firstly, we noticed that core and non-
core commits were often interleaved. This indicates that all key developers brought
their skills and expertise from contributing to previous releases of the system (or
even other systems). A further examination also revealed that, for each developer,
the proportion of non-core commits eventually became higher than that of core
commits. Also, by the end of the release development period, key developers had
similar ratios of core commits (ranging from 40 % to 45 %). Hence, we concluded that
key developers exhibited similar contribution behaviors in terms of the frequency
that they touched the technical core.

Afterwards, we determined the set of top contributors by calculating the number
of commits made by each developer. Key developers were the top four committers,
being responsible for 81 % of all commits. This showed that the operational version
of Mockus’ hypothesis we defined held for the case we studied. We further examined
the situation by investigating how dispersed their contributions were. In general,
all key developers contributed to many different parts of the system. In particular,
dev P and dev N had almost full-colored treemaps. At the same time, neither of
them changed any files from a particular package called “repository”. Later on, we
observed that only dev M touched that package. Furthermore, even though dev O
had a low socio-technical congruence, he was able to make changes to different
packages of the system. On the other hand, we hypothesize that his socio-technical
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congruence indeed played a role in his contributions. We discovered that, although
he committed more than dev N, his treemap was much less colored, indicating that
his contributions were more focused than dev N ’s. In other words, we hypothesize
that the low participation of dev O in the communication network posed difficulties
for him to touch certain portions of the code. In general, this last analysis showed
that the key developers not only contributed to the core of the system, but also to
peripheral areas.

6.4 Threats to Validity

Some factors may have influenced the validity of our study. A common practice in
FLOSS development concerns the submission of patches by external developers. As
these developers do not have permission to commit their fixes to the projects’ version
control system, their contributions are often committed by one of the regular project
developers – and SVN does not record the original author. As a result, this may have
introduced some noise in the data used to calculate key developers. Furthermore,
we gathered communication data just from the mailing list, so any communication
outside such list was not considered.

The methods we employed to build the communication networks also incur some
limitations. The Prior method links the author of a message to its direct repli-
ers, thus assuming that each replier reads at least the last available message. The
method FirstAndPrior is less restrictive, as it also links repliers to the author that
initiated the message thread. This method thus assumes that repliers also read the
message that started the thread. This may lead to bias in projects which desig-
nate specific members to start discussion threads in the mailing list, since links will
always be created between thread responders and the thread initiator. The Trans-
poseAndTimes is the less restrictive method, since it links all thread contributors
to each other. This method models the assumption that each thread contributor
reads all messages before writing its own. In summary, each of the three methods
models a particular kind of participant behavior and can be seen as complementary.
Interestingly, our results revealed that most key developers could be deemed com-
municative regardless of the particular way in which the communication network
was built.

The adoption of the Eigenvector Centrality metric to define the core of a network
might have affected our findings. We believe that this measure captures a behavior
that seems adequate to our analysis, but we acknowledge that other approaches
(e.g. k-core or islands) would likely provide different results. Regarding the method
we used to define key developers, we initially tried a different approach that con-
sidered a commit to be core when at least half of its files belonged to the techni-
cal core. The list of key developers we obtained in that case was identical to the
one presented in this paper. Hence, we decided to keep the simpler version of the
method.
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The inclusive nature of the algorithm we employed to calculate the coordi-
nation requirements network may have generated a network that is denser than
it should be. This may have also leaded to a core that is also larger than it
should be.

In this study, we adopted a quartile analysis approach to support the identifica-
tion of key developers and the networks’ core. This strategy enabled us to compare
distributions under the same settings. However, it is possible that alternative sta-
tistical techniques would lead us to different conclusions. In addition, our analysis
method assumes that all studied networks possess a core structure, which might not
hold true for all projects. Finally, our analysis focused on data from two repositories
only: the mailing list and the version control system. As a consequence, we may
have missed empirical evidence that could be found in other repositories or in other
releases of the project.

In relation to the external validity, since we studied a single release of a project,
we cannot state that these results remain valid for other projects or even for the
entire Apache Ant project. In fact, threats to the generalizability of this study
are inherent to the nature of the employed research design. McGrath [33] states
that no research method can satisfy adequately the following three dimensions at
the same time: generalizability, realism, and precision. In particular, case studies
naturally maximize realism, but seldom satisfy generalizability (since they involve
a small number of non-randomly selected situations) or precision (because there is
a low level of control over influencing factors). Hence, we leverage the realism of our
results and conclusions.

7 RELATED WORK

7.1 Identification of Key Developers

A number of previous studies investigated different approaches to determine key
developers. Crowston et al. [15] investigated three specific approaches, namely

1. the list of contributors officially named as developers,

2. the most frequent contributors, and

3. a social network analysis of the developers’ interaction patterns.

By applying these approaches to the bug fixing interactions of 116 SourceForge
projects, the authors concluded that each approach identified different individuals
as key developers. As in our paper, the results suggest that the group of key devel-
opers in FLOSS projects corresponds to only a small fraction of the total number
of contributors. Similarly to our approach, Jergensen et al. [28] determined the set
of key developers based on their contributions to the system’s core. However, while
we determined the technical core using call-graphs, Jergensen and colleagues deter-
mined it using logical dependencies (co-changes). They computed the Eigenvector
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Centrality of each artifact included in the technical network and calculated the cen-
trality of each commit as the mean of the centrality scores of the files it comprises.
From this, they compute an overall code centrality score for each developer, which
refers to the sum of the centralities of their commits. Thus, in their approach, a de-
veloper can become prominent (key) by either making many commits to files with
low or medium centralities, or by making fewer commits with high centrality scores.
Our approach is more pragmatic, as we consider that a commit is core when it in-
cludes at least one artifact belonging to the technical core (i.e., an artifact with high
Eigenvector Centrality score). In this sense, our notion of key developer is slightly
different from theirs. We consider that developers become prominent (key) only
when they frequently modify the technical core. While this study and Jergensen’s
rely on Eigenvector Centrality to determine the technical core, different approaches
have been suggested in the literature. For instance, MacCormack et al. [30] identify
core-periphery structures in software systems based on two metrics, namely Fan-
In Visibility (FIV) and Fan-Out Visibility (FOV). FIV corresponds to the number
of other components that a specific component transitively depends upon. FOV, in
turn, corresponds to the number of other components that transitively depends on a
specific component. Core components are those that have both FIV and FOV above
50 % of the maximum value of these metrics. A discussion of other approaches for
defining the technical core of software systems can be found in [50]. Zhang et al. [59]
defined key developers as those who regularly contributed to the project and parti-
cipated in the mailing lists. They studied the ArgoUML project and determined the
set of key developers using SNA metrics. They calculated the precision and recall
of their method using an oracle. The oracle was initially defined based on their def-
inition of key developers and was then refined with the help of ArgoUML’s project
leader. According to Zhang et al., different metrics had similar performance, and
they were able to identify more than 60 % of the key developers. In a later study [60],
the same authors extended the original work by adding bipartite networks that link
developers to email topics. They achieved the best performance in the identifi-
cation of key developers when using bipartite networks and degree centrality. In
a broader context, Arroyo et al. [43] state that few methods exist to determine sets
of key players in social networks. They present such methods, discuss them, and
propose a new one based on entropy measures. Their approach selects the set of
nodes that produces the largest change in connectivity entropy when removed from
a graph.

7.2 Characterizing Key Developers from a SNA Perspective

Other studies have focused on investigating the characteristics and behavior of key
developers from a social network analysis perspective. Bird et al. [7] found a strong
relationship between the number of messages sent and the number of different people
who respond to them. The authors also found that the level of activity in the source
code is a strong indicator of the social status of a developer. Indeed, in our case
study we found that all key developers were top contributors. In addition, we found
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that three of four key developers were often active in the mailing list, which might
contribute to their social status within the community.

Hung et al. [27] built a social network based on the paths (directories) included
in the change-set of commits (Figure 12). After that, they calculated the Closeness
Centrality of each node and determined how core they were. They also proposed to
classify developers according to the model proposed by Ye and Kishida [57], which
includes the following FLOSS roles: project leader, core member, active developer,
peripheral developer, bug fixer, bug reporter, reader, and passive user.

Figure 12: Building a social network based on commit history (adapted from [27])

In a broader context, Oezbek et al. [37] investigated the patterns of interac-
tion among the core and peripheral sets of developers to check the validity of the
“onion model” [35]. After building social networks based on mailing lists data from
11 FLOSS projects of different domains, the authors observed that the core holds
a disproportionately large share of communication with the periphery. They also
observe that members of the core not only show a particular intense participation,
but also appears to have a qualitatively different role as well. However, such hypoth-
esis remains to be investigated. The authors also concluded that the transition of
individual mailing list participants towards higher participation is qualitatively dis-
continuous. Finally, in the domain of online communities, researchers have studied
ways to foster content contributions [54].

7.3 Characterizing Key Developers According to Their Contribution

Terceiro et al. [55] investigated the relationship between code structural complex-
ity and the participation level of developers (dichotomized as core and peripheral).
By relying on previous studies of Robles et al. [46, 47], the authors split the entire
studied period in 20 periods of equal duration, and for each period, they consid-
ered the 20 % top committers to be the core team. They found out that core de-
velopers make changes to the source code without introducing as much structural
complexity as the peripheral developers. Moreover, core developers also remove
more structural complexity than peripheral developers do. Geldenhuys [24] studied
the claim that 20 % of the participants in FLOSS projects often contribute 80 %
of the work. In their investigation, they considered 9 FLOSS projects of different
domains and sizes, and found that 80 % of all commits were done by 3.1 % to 8.9 %
of the developers. The actual number of developers that did 80 % of all commits
also ranged from 1 to 327. These results pose doubts on the hypothesis stated by
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Mockus et al.: “. . . if this core group uses only informal, ad hoc means of coordi-
nating their work, it will be no larger than 10–15 people”. In contrast, our study
corroborates Mockus’ hypothesis, since the four key developers we identified per-
formed 81 % of all commits. Furthermore, differently from the Geldenhuys’s study,
we determine key developers based on how frequently developers contributed to the
core.

7.4 Other Studies

De Souza et al. [18] investigated the ways in which development processes are some-
how inscribed into software artifacts. The authors hypothesized that when devel-
opers shift from the periphery to the core of the code authorship social network,
a distinct phenomenon occurs: developers initially contribute with code that per-
forms some functionality by calling others’ code and, as these developers become
more important, their code start to be called by other developers. In particular, De
Souza and colleagues showed a periphery to core shift within the MegaMek project,
and a core to periphery shift (opposite effect) within the Apache Ant project. Fi-
nally, regarding the foundations of our study, researchers and practitioners have
long recognized the relationship between the architecture of a software system and
the coordination effort required to evolve such a system. For instance, it has been
shown that the performance of software developers is related to how well they align
their coordination efforts with the existing technical dependencies in the software
architecture, both at the team level [53] and at the individual level [10]. Indeed,
misalignment between these aspects is seen as a possible explanation for breakdowns
in software development projects [5].

8 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a descriptive case study involving a release of the Apache
Ant project. We aimed to identify and characterize key developers, i.e., those devel-
opers that evolve the technical core of the system. Given the dynamics of FLOSS
development and the associated high turnover of developers, it becomes difficult
to distinguish the set of key developers from the outside. Consequently, making
this information explicit in the project’s website and keeping it updated can be
difficult. For instance, Zhang et al. [60] reported the extreme case of ArgoUML,
which had contributions from 1,100 developers during a period of 8 years. At
the same time, recognizing key developers and their characteristics (skills, social
profile, etc.) can be useful for a number of reasons, such as for recruiting spe-
cialists, assigning tutors to newcomers, and determining the longevity likelihood
of the project. Characterizing key developers is particularly useful to the mainte-
nance of healthy FLOSS communities. For instance, determining the expertise of
key developers can be useful to reason about what would happen if those devel-
opers left the project. The example provided by Ye et al. [57] is emblematic: the
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development of the now popular GIMP image processing tool froze for about 20
months because their two creators graduated, started full-time employment, and
no longer had time to contribute to the project. In a long term perspective, we
expect that characterizing key developers will help researchers understand the re-
quirements and the process that developers often undergo in order to become key
ones.

We addressed three research questions in our case study: How to identify key
developers? (RQ 1), What is the participation of key developers in terms of com-
munication and coordination within the project? (RQ 2), and What are the char-
acteristics of the contributions of the key developers? (RQ 3). We tackled RQ 1
by conceiving, implementing, and applying a robust method for identifying key de-
velopers (Section 4.3). The method accounts for the evolutive nature of software
and extracts the technical core of Java systems directly from source code. Apply-
ing the method resulted in the identification of four key developers. After that, we
addressed RQ 2 by investigating two kinds of networks: a communication network
built from mailing list data and a coordination requirements network [13, 12, 11] built
from co-changes in the source code files. We built the communication networks ac-
cording to three different strategies and we found in all cases that three of the key
developers socialized more than other developers, acted as bridges connecting other
developers, and were close to them in the social structure. Furthermore, we found
that these same developers also had a high socio-technical congruence [13, 12, 11].
At the same time, we noticed that a key developer did not communicate often
in the mailing list and had a low socio-technical congruence. This was somewhat
counter-intuitive, as we concluded that this developer was able to evolve the tech-
nical core without talking to others in the mailing list. We then answered RQ 3
by analyzing how frequently key developers touched the technical core. We dis-
covered that their core and non-core commits were often very interleaved, which
provided evidence that they brought their skills and expertise from previous experi-
ences. We also analyzed the volume and dispersion of key developers’ contributions.
In terms of their contribution volume, we found evidence that the set of key de-
velopers was identical to the set of top committers. Besides that, we noticed that
key developers not only contributed to the core, but also to peripheral areas of the
system.

As future work, we believe that applying our analysis to different FLOSS projects
would help to verify whether key developers characteristics are similar to those
we reported. Furthermore, extending our analysis framework with statistical in-
formation regarding the number of messages sent and replied in the mailing list
could provide additional insights. Considering other sources of information (such
as issue tracking systems) would likely provide additional insight into key devel-
opers’ characteristics as well. Employing qualitative research would also enrich
the outcomes of this study. The final step would be to conduct large scale ex-
aminations involving a considerable number of projects. This way, it would be
possible to better determine the different profiles of key developers. However, a se-
ries of challenges need to be tackled beforehand in order to make this study fea-
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sible, such as mapping email addresses (aliases) to individuals in an automated
way.
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[1] Abraham, A.—Hassanien, A.-E.—Snášel, V.: Computational Social Network
Analysis: Trends, Tools and Research Advances, 1st ed., Springer Publishing Com-
pany, Incorporated, 2009.

[2] Arnold, R. S.: Software Change Impact Analysis. IEEE Computer Society Press,
Los Alamitos, CA, USA, 1996.

[3] Balieiro, M. A.—de Júnior, S. F. S.—de Souza, C. R. B.: Facilitating Social
Network Studies of FLOSS Using the OSSNetwork Environment. In: Russo, B., Dami-
ani, E., Hissam, S. A., Lundell, B., Succi, G. (Eds.): Open Source Development,
Communities and Quality, IFIP 20th World Computer Congress, Working Group 2.3
on Open Source Software (OSS 2008), September 7–10, 2008, Milano, Italy, IFIP,
Springer, 2008, Vol. 275, pp. 343–350.

[4] Ball, T.—Adam, J.-M. K.—Harvey, A. P.—Siy, P.: If Your Version Control
System Could Talk. . . ICSE Workshop on Process Modeling and Empirical Studies
of Software Engineering, March 1997.

[5] Bass, M.—Mikulovic, V.—Bass, L.—Herbsleb, J.—Cataldo, M.: Archi-
tectural Misalignment: An Experience Report. Proceedings of the Sixth Working
IEEE/IFIP Conference on Software Architecture (WICSA ’07), Washington, DC,
USA, IEEE Computer Society, 2007, pp. 17.

[6] Beck, K.—Andres, C.: Extreme Programming Explained: Embrace Change. Sec-
ond ed., Addison-Wesley Professional, 2004.

[7] Bird, C.—Gourley, A.—Devanbu, P.—Gertz, M.—Swaminathan, A.: Min-
ing Email Social Networks. Proceedings of the 2006 International Workshop on Mining
Software Repositories (MSR ’06), New York, NY, USA, ACM, 2006, pp. 137–143.

[8] Booch, G.—Maksimchuk, R. A.—Engel, M. W.—Young, B. J.—Conal-
len, J.—Houston, K. A.: Object-Oriented Analysis and Design with Applications.
Third ed., Addison-Wesley Professional, 2007.



718 G. A. Oliva, J. T. da Silva, M. A. Gerosa, F. W. S. Santana et al.

[9] Burton, R. M.—Obel, B.: Strategic Organizational Diagnosis and Design: The
Dynamics of Fit (Information and Organization Design Series). Third ed., Springer,
2003.

[10] Cataldo, M.: Dependencies in Geographically Distributed Software Development:
Overcoming the Limits of Modularity. Ph.D. thesis, Carnegie Mellon University, Pitts-
burgh, PA, USA, 2007, AAI3292617.

[11] Cataldo, M.—Herbsleb, J.: Coordination Breakdowns and Their Impact on De-
velopment Productivity and Software Failures. Software Engineering, IEEE Transac-
tions, Vol. 39, 2013, No. 3, pp. 343–360.

[12] Cataldo, M.—Herbsleb, J. D.—Carley, K. M.: Socio-Technical Congruence:
A Framework for Assessing the Impact of Technical and Work Dependencies on Soft-
ware Development Productivity. Proceedings of the Second ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM ’08), New
York, NY, USA, ACM, 2008, pp. 2–11.

[13] Cataldo, M.—Wagstrom, P.—Herbsleb, J. D.—Carley, K. M.: Identifica-
tion of Coordination Requirements: Implications for the Design of Collaboration
and Awareness Tools. In: Hinds, P. J., Martin, D. (Eds.): CSCW, ACM, 2006,
pp. 353–362.

[14] Conway, M.: How Do Committees Invent? Datamation, Vol. 14, 1968, No. 4,
pp. 28–31.

[15] Crowston, K.—Wei, K.—Li, Q.—Howison, J.: Core and Periphery in
Free/Libre and Open Source Software Team Communications. Proceedings of the
39th Annual Hawaii International Conference on System Sciences (HICSS ’06), Wash-
ington, DC, USA, 2006, IEEE Computer Society, 2006, Vol. 06, p. 118.1.

[16] Dagenais, B.—Ossher, H.—Bellamy, R. K. E.—Robillard, M. P.—
de Vries, J. P.: Moving into a New Software Project Landscape. Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering (ICSE ’10),
New York, NY, USA, ACM, 2010, Vol. 1, pp. 275–284.

[17] D’Ambros, M.—Lanza, M.—Lungu, M.: Visualizing Co-Change Information
with the Evolution Radar. IEEE Trans. Software Eng., Vol. 35, 2009, No. 5,
pp. 720–735.

[18] de Souza, C.—Froehlich, J.—Dourish, P.: Seeking the Source: Software
Source Code as a Social and Technical Artifact. Proceedings of the 2005 International
ACM SIGGROUP Conference on Supporting Group Work (GROUP ’05), ACM, 2005,
pp. 197–206.

[19] de Souza, C. R.—Quirk, S.—Trainer, E.—Redmiles, D. F.: Supporting Col-
laborative Software Development Through the Visualization of Socio-Technical De-
pendencies. Proceedings of the 2007 International ACM Conference on Supporting
Group Work (GROUP ’07), ACM, 2007, pp. 147–156.

[20] de Souza, C. R. B.—Redmiles, D. F.: An Empirical Study of Software Developers’
Management of Dependencies and Changes. Proceedings of the 30th International
Conference on Software Engineering (ICSE ’08), New York, NY, USA, ACM, 2008,
pp. 241–250.



Evolving the System’s Core: A Case Study on the Identification and . . . 719

[21] Foote, B.—Yoder, J. W.: Big Ball of Mud. In: Harrison, N., Foote, B., Rohn-
ert, H. (Eds.): Pattern Languages of Program Design, Addison-Wesley Professional,
2000, Vol. 4, Ch. 29, pp. 654–692.

[22] Gall, H.—Hajek, K.—Jazayeri, M.: Detection of Logical Coupling Based on
Product Release History. Proceedings of the International Conference on Software
Maintenance (ICSM ’98), Washington, DC, USA, IEEE Computer Society, 1998,
pp. 190.

[23] Gall, H.—Jazayeri, M.—Krajewski, J.: CVS Release History Data for Detect-
ing Logical Couplings. Proceedings of the 6th International Workshop on Principles
of Software Evolution, Washington, DC, USA, 2003, IEEE Computer Society, pp. 13.

[24] Geldenhuys, J.: Finding the Core Developers. Proceedings of the 2010 36th

EUROMICRO Conference on Software Engineering and Advanced Applications
(SEAA ’10), Washington, DC, USA, IEEE Computer Society, 2010, pp. 447–450.

[25] Hotelling, H.: Simplified Calculation of Principal Components. Psychometrika,
Vol. 1, 1936, pp. 27–35, DOI 10.1007/BF02287921.

[26] Howison, J.—Inoue, K.—Crowston, K.: Social Dynamics of Free and Open
Source Team Communications. In: Damiani, E., Fitzgerald, B., Scacchi, W.,
Scotto, M., Succi, G. (Eds.): Open Source Systems, 2006, IFIP, Springer, 2006,
Vol. 203, pp. 319–330.

[27] Huang, S.-K.—Liu, K.-M.: Mining Version Histories to Verify the Learning Pro-
cess of Legitimate Peripheral Participants. Proceedings of the 2005 International
Workshop on Mining Software Repositories (MSR ’05), New York, NY, USA, ACM,
2005, pp. 1–5.

[28] Jergensen, C.—Sarma, A.—Wagstrom, P.: The Onion Patch: Migration
in Open Source Ecosystems. Proceedings of the 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foundations of Software Engineering
(ESEC/FSE ’11), New York, NY, USA, ACM, 2011, pp. 70–80.

[29] Lehman, M.—Perry, D.—Ramil, J.—Turski, W.—Wernick, P.: Metrics and
Laws of Software Evolution – The Nineties View. Proceedings IEEE International
Software Metrics Symposium (METRICS ’97), Los Alamitos CA, 1997, IEEE Com-
puter Society Press, pp. 20–32.

[30] Maccormack, A.: The Architecture of Complex Systems: Do “Core-Periphery”
Structures Dominate? Academy of Management Proceedings 2010, Vol. 1, 2010,
pp. 1–6.

[31] March, J. G.—Simon, H. A.: Organizations. 2nd ed., Wiley-Blackwell, 1993.

[32] Martin, R. C.—Martin, M.: Agile Principles, Patterns, and Practices in C#.
First ed. Prentice Hall, 2006.

[33] McGrath, J. E.: Dilemmatics: The study of Research Choices and Dilemmas.
American Behavioral Scientist, Vol. 25, 1981, No. 2, pp. 179–210.

[34] Mockus, A.—Fielding, R. T.—Herbsleb, J. D.: Two Case Studies of Open
Source Software Development: Apache and Mozilla. ACM Trans. Softw. Eng.
Methodol., Vol. 11, July 2002, pp. 309–346.

[35] Nakakoji, K.—Yamamoto, Y.—Nishinaka, Y.—Kishida, K.—Ye, Y.: Evo-
lution Patterns of Open-Source Software Systems and Communities. Proceedings of



720 G. A. Oliva, J. T. da Silva, M. A. Gerosa, F. W. S. Santana et al.

the International Workshop on Principles of Software Evolution (IWPSE ’02), New
York, NY, USA, ACM, 2002, pp. 76–85.

[36] Newman, M.: Networks: An Introduction. First ed. Oxford University Press, 2010.

[37] Oezbek, C.—Prechelt, L.—Thiel, F.: The Onion has Cancer: Some Social Net-
work Analysis Visualizations of Open Source Project Communication. Proceedings
of the 3rd International Workshop on Emerging Trends in Free/Libre/Open Source
Software Research and Development (FLOSS ’10), New York, NY, USA, ACM, 2010,
pp. 5–10.

[38] Oliva, G. A.—Gerosa, M. A.: On the Interplay Between Structural and Logical
Dependencies in Open-Source Software. Proceedings of the 2011 25th Brazilian Sym-
posium on Software Engineering (SBES ’11), Washington, DC, USA, IEEE Computer
Society, 2011, pp. 144–153.

[39] Oliva, G. A.—Gerosa, M. A.: IVAR: A Conceptual Framework for Dependency
Management. Proceedings of the IX Workshop on Modern Software Maintenance
(WMSWM ’12), 2012.

[40] Oliva, G. A.—Santana, F. W.—de Oliveira, K. C. M.—de Souza, C. R. B.—
Gerosa, M. A.: Characterizing Key Developers: A Case Study with Apache Ant.
Proceedings of the 18th International Conference on Collaboration and Technology
(CRIWG ’12), Springer-Verlag, Berlin, Heidelberg, 2012, pp. 97–112.

[41] Oliva, G. A.—Santana, F. W.—Gerosa, M. A.—de Souza, C. R.: Towards
a Classification of Logical Dependencies Origins: A Case Study. Proceedings of the
12th International Workshop on Principles of Software Evolution and the 7th Annual
ERCIM Workshop on Software Evolution (IWPSEEVOL ’11), New York, NY, USA,
ACM, 2011, pp. 31–40.

[42] Oliva, G. A.—Steinmacher, I.—Wiese, I.—Gerosa, M. A.: What Can Com-
mit Metadata Tell Us about Design Degradation? Proceedings of the 2013 Interna-
tional Workshop on Principles of Software Evolution (IWPSE 2013), New York, NY,
USA, ACM, 2013, pp. 18–27.

[43] Ortiz-Arroyo, D.: Discovering Sets of Key Players in Social Networks. In: Abra-
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