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1 INTRODUCTION

Krylov subspace methods are one of the most widespread and extensively accepted
techniques for numerical solutions of today’s large-scale linear systems of the form

Ax = b, (1)

where A ∈ Rn×n, x, b ∈ Rn with b known and x unknown. Most of those linear
systems arise from various fields of computational science and engineering. Such
examples are electromagnetic applications, digital image processing, discrete- and
continuous-time Markov chains.

When the coefficient matrix A is symmetric, if A is positive definite, then the
well-known Conjugate Gradient (CG) method [1] is the best choice for solving the
linear systems (1), while if A is indefinite, then mathematically equivalent Mini-
mum Residual (MINRES) method [2] and Conjugate Residual (CR) method [3] are
applied.

On the other hand, when the coefficient matrix A is nonsymmetric, Krylov sub-
space methods based on minimizing the residual r = b−Ax may be efficient, such as
the Generalized Minimum Residual (GMRES) method [4] and the Generalized Con-
jugate Residual (GCR) method [5] have been proposed as the generalized revisions of
the MINRES and CR methods. In addition, Krylov subspace methods based on bi-
orthogonality are also used, such as the Bi-Conjugate Gradient (BiCG) method [6, 7]
has been given plenty of attentions to develop and improve its performance. As the
successful representations of the modified BiCG method, the Conjugate Gradients
Squared (CGS) method, Biconjugate Gradient Stabilized (BiCGSTAB) method and
Quasi-Minimal Residual (QMR) method have been studied by Sonneveld [8], van
der Vorst [9], and Freund and Nachtigal [10], respectively. Note that the conver-
gence behavior of all these methods is fairly well understood if the matrix A in (1)
is nonsingular [11].

However, this paper is concerned with the computation of the linear systems (1)
when the coefficient matrix A is singular. In recent years, many researches have
devoted much effort to analyze the performance of Krylov subspace methods for
singular systems. For instance, the interested readers can refer to the works for
the CG method [12, 13, 14, 15], the QMR and its variant, transpose-free QMR
(TFQMR) methods [16, 17, 18] and the GMRES-type methods [19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32].

Based on the work of Sogabe, Sugihara and Zhang [33], the main attention of
the present paper is to describe two conjugate direction methods and attempt to
extend their applications to compute the singular systems which arise from Markov
chains. One of the conjugate direction methods is the BiCG method [6, 7]. Another
is the BiCR method, which has been proposed by Sogabe, Sugihara and Zhang [33]
according to one of the simplest derivations of the BiCG method given by van
der Vorst [34]. As a matter of fact, the works of comparing different conjugate
direction methods are not new, e.g., Broyden has given a comparison of differ-
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ent conjugate direction methods for the real and nonsymmetric nonsingular matrix
in [35].

The remainder of the paper is organized as follows. In Section 2, Markov chain
modellings are briefly introduced. In Section 3, based on the work of [33], we
extend the BiCG and BiCR methods to solve Markov chain problems. In Section 4,
numerical experiments on several Markov chains are made and comparative analyses
between the BiCR and BiCG methods are given. Finally, conclusions and future
work are presented in Section 5.

Throughout this paper, the following notations will be used:

• AT: the transpose of the matrix A ∈ Rn×n;

• (x, y): the dot product given by xTy with x, y ∈ Rn;

• R(A): the range space of the matrix A;

• N (A): the null space of the matrix A;

• Kn(A, r): the Krylov subspace generated by a vector r, i.e.,

Kn(A, r) = span{r, Ar, . . . , An−1r};

• k = index(A): the smallest nonnegative integer k with R(Ak) = R(Ak+1).

2 MARKOV CHAIN MODELLINGS

In this section, Markov chain modellings which represent a class of singular systems
are briefly introduced and certain related properties are presented.

Markov chains are one of the most important kinds of models in simulation.
Generally speaking, Markov chains are divided into discrete-time Markov chains
(DTMCs) and continuous-time Markov chains (CTMCs) [36, 37, 38]. For a finite and
irreducible Markov chain, there exists a unique stationary probability distribution
π whose elements are strictly greater than zero. If the Markov chain is a DTMC,
then it has

πP = π, π > 0, πe = 1, (2)

where P ∈ Rn×n is a transition probability matrix, and e = (1, . . . , 1)T is a n × 1
vector. This problem can be considered as an eigenvalue problem. If the Markov
chain is a CTMC, then we have

πQ = 0, π > 0, πe = 1, (3)

where Q ∈ Rn×n is an infinitesimal generator, and e is a column vector as given
above.

Observe that both the Equations (2) and (3) may be put into the same form.
Let I ∈ Rn×n be an identity matrix, then the Equation (2) may be rewritten as
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π(P − I) = 0, which has the same form as the Equation (3). On the other hand, we
may discrete a CTMC. From the Equation (3), we can have

π(Q4T + I) = π, π > 0, πe = 1, (4)

which has the same form as the Equation (2). In the discreted Markov chain,
transitions take place at interval 4T , where 4T is chosen sufficiently small such
that the probability of two transitions taking place in time 4T is negligible, e.g.,
one possibility is to take

4T ≤ 1

maxi |qii|
.

In this case, (Q4T + I) is stochastic and the stationary probability distribution
π of the CTMC, obtained from the Equation (3), is identical to that of the dis-
creted Markov chain, obtained from the Equation (4). Hence, numerical methods
designed to compute the stationary probability distribution of DTMCs can be used
to compute the stationary probability distribution of CTMCs, and vice versa.

Here our concern is to compute the stationary probability distribution of
CTMCs. The linear systems (3) may arise from information retrieval and web
ranking [39, 40, 41, 42], queueing systems [43, 44, 45, 46], stochastic automata
networks [47, 48, 49], manufacturing systems and inventory control [50] and com-
munication systems [51, 52, 53]. In order to analyze their performance measures,
it is required to find out the corresponding stationary probability distribution, i.e.,
the problem is changed to consider how to solve the linear systems (3) efficiently.

For simplicity, we rewrite the linear systems (3) to the form

Ax = 0, with A = QT, x = πT. (5)

Recently, there are large amounts of works that have been devoted to solving the
linear systems (5). Such examples are the direct methods in [11, 36, 54] and the
Krylov subspace methods in [12, 17, 18, 20, 23, 27, 28, 46, 48, 49, 54, 55]. In
addition, the readers may find other efficient methods which have been studied to
solve the linear systems (5) in [56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69]
and references therein.

To some extent, it is probably fair to say that none of these methods mentioned
before is completely satisfactory, since each method has its own advantages and
disadvantages. For example, GMRES and GCR methods apply the minimal resid-
ual smoothing process so that they show smooth convergence behavior; however,
GMRES and GCR methods may become impractical because the computational
work and memory increase linearly with the number of iterations increasing; see,
e.g., [11, 33]. Additionally, multilevel method can transfer a large linear system into
a smaller one by some aggregation strategies so that the numerical solution can be
computed in an efficient way; however, it may be expensive for unstructured prob-
lems since much time will be spent in constructing the restriction and prolongation
operators and transforming in each level; see, e.g., [57, 58].
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Motivated by the recent applications of the conjugate residual method to non-
symmetric linear systems by Sogabe, Sugihara and Zhang [33], we attempt to extend
the applications of the BiCR and BiCG methods to solve the stationary probability
distribution of the singular linear systems (5) in order to make them become possible
tools for the numerical solution of Markov chains in the next section.

Let us end this section with the following remarks:

Remark 1. The coefficient matrix A of (5) has zero column sum, positive diagonal
entries and non-positive off-diagonal entries. Thus A is singular.

Remark 2. The coefficient matrix A of (5) is irreducible. Thus from the well-known
Perron and Frobenius theory; see, e.g., [38], A has a one-dimensional null-space with
a positive vector, i.e.,

N (A) = {x ∈ Rn : Ax = 0} = span{z} for some positive vector z. (6)

Remark 3. The singular linear systems (5) are consistent. And all the Markov
chain matrices have the property index(A) = 1 which is equivalent to R(A) ∩
N (A) = ∅. This point has been discussed in papers [17, 24, 27, 28, 31, 37, 67, 68, 69]
as the condition of studying the related convergence theory.

3 AN EXTENSION OF BICG AND BICR TO MARKOV CHAINS

In this section, we extend the proposed methods in [33] to solve the stationary
probability distribution of the singular linear system (5) which arises from Markov
chain problems.

It is well known that BiCG and BiCR methods are Krylov subspace methods for
solving the large-scale linear system (1), where the coefficient matrix A is often non-
singular and nonsymmetric. Particularly, as far as the BiCG method is concerned,
there are several ways to derive it, one of the simplest derivations can be found in
[33, 34]. However, both the BiCG and BiCR methods do not apply to solve the
stationary probability distribution of an irreducible Markov chain extensively, since
the coefficient matrix A in the linear system (5) which comes from some Markov
modellings is singular. With this in mind, we extend the BiCG and BiCR methods
to the linear system (5) as the following framework for the purpose of easily trans-
forming them into computer code and rapidly comparing their complexities. The
readers may be referred to see [11, 33, 34] for understanding their specific derivation
processes which is not to be introduced here again.

Observe Algorithms 1 and 2, it is not difficult to find that an advantage of the
BiCR and BiCG methods is that both of them possess short-term recurrences, which
is the basis for their successful applications. Their computational cost can be found
in Table 1 of [33]. More, some properties of the BiCG and BiCR methods have been
discussed by Sogabe, Sugihara and Zhang, for instance, if breakdown does not occur
in Algorithms 1 and 2, then there are
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Algorithm 1: The BiCR method for Markov chains

1: Choose an initial guess x0, with x0 ≥ 0 and ‖x0‖1 = 1,
2: Compute r0 = −Ax0 and choose s0 such that (s0, Ar0) 6= 0, e.g., s0 = r0,
3: Set p0 = r0, q0 = s0,
4: Compute w0 = Ap0, v0 = ATq0, c0 = vT0 w0, z0 = Ar0, d0 = sT0 z0,
5: For j = 1, 2, . . . , do
6: If cj−1 = 0, then the method fails
7: αj−1 = dj−1/cj−1

8: xj = xj−1 + αj−1pj−1

9: rj = rj−1 − αj−1wj−1

10: sj = sj−1 − αj−1vj−1

11: Check convergence; continue if necessary
12: zj = Arj
13: dj = sTj zj
14: βj−1 = dj/dj−1

15: pj = rj + βj−1pj−1

16: qj = sj + βj−1qj−1

17: wj = zj + βj−1wj−1

18: vj = ATqj
19: cj = vTj wj

20: End For

Algorithm 2: The BiCG method for Markov chains

1: Choose an initial guess x0, with x0 ≥ 0 and ‖x0‖1 = 1,
2: Compute r0 = −Ax0 and choose s0 such that (s0, r0) 6= 0, e.g., s0 = r0,
3: Set p0 = r0, q0 = s0,
4: Compute w0 = Ap0, v0 = ATq0, c0 = qT0 w0, d0 = sT0 r0,
5: For j = 1, 2, . . . , do
6: If cj−1 = 0, then the method fails
7: αj−1 = dj−1/cj−1

8: xj = xj−1 + αj−1pj−1

9: rj = rj−1 − αj−1wj−1

10: sj = sj−1 − αj−1vj−1

11: Check convergence; continue if necessary
12: dj = sTj rj
13: βj−1 = dj/dj−1

14: pj = rj + βj−1pj−1

15: qj = sj + βj−1qj−1

16: wj = Apj
17: vj = ATqj
18: cj = qTj wj

19: End For
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Theorem 1. [33]: For any i 6= j, the following bi-orthogonality properties hold,

1. (si, Arj) = 0,

2. (ATqi, Apj) = 0.

and

Theorem 2. [33]: Some further properties of the BiCR method are

1. (si, Apj) = 0, for i > j,

2. (si, Ari) = (si, Api),

3. (ATsi, Api) = (ATqi, Api).

Recently, a large amount of excellent experts has paid their attentions to study
the convergence analysis of Krylov subspace methods when applied to singular sys-
tems; see, e.g., [17, 24, 27, 28, 31, 37, 67, 68, 69]. In fact, as mentioned by Ipsen
and Meyer [30], when the coefficient matrix A is singular, even if a solution ex-
ists, it may not lie in the Krylov space Kn(A, r). They decomposed the space into
Rn = R(Ak) ⊕N (Ak) with k = index(A) for overcoming this problem. And then
they restrained the right-hand vector b by means of the Jordan canonical form of
A and kept b away from the nilpotent part of A such that the solution of a general
square system Ax = b may lie in a Krylov subspace.

From Remarks 1, 2 and 3 given in Section 2, the coefficient matrix A of (5)
is found to be a singular and irreducible matrix with a one-dimensional null space
spanned by a positive vector. In particular, the matrix A possesses the property
index(A) = 1. For the consistent systems (5), general conditions have been provided
in [17] and [30] under which the Krylov subspace method is convergent. It is natu-
ral that the convergence analysis of the Krylov subspace method is also true for the
BiCR and BiCG methods when applied to singular systems that arise from Markov
chains, since both of them are Krylov subspace methods based on bi-orthogonality.
Hence, suppose there is no breakdown, then as a direct consequence of the conver-
gence theory given in [17] and [30], a simple result for the BiCR and BiCG methods
applied to Markov chain problems is presented as follows.

Theorem 3. For the consistent systems (5), if the coefficient matrix A is a singu-
lar and irreducible matrix with index(A) = 1, then the BiCR and BiCG methods
determine a solution for the linear systems (5).

Theorem 3 indicates the convergence of Algorithms 1 and 2. Indeed, it is well
known that the convergence rate of Krylov subspace methods have close relation
with the distribution of the eigenvalues of the coefficient matrix [11]. The more
the eigenvalues are clustered together, the faster these Krylov subspace methods
will converge. Hence, a desired eigenvalue distribution is wished to be obtained by
the applications of preconditioning techniques. Based on the unpreconditioned Algo-
rithms 1 and 2, the preconditioned BiCG and BiCR methods are given in Algorithms
3 and 4 respectively, in which the matrix M ∈ Rn×n denotes the preconditioner.
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Algorithm 3: The preconditioned BiCR method for Markov chains

1: Choose an initial guess x0, with x0 ≥ 0 and ‖x0‖1 = 1,
2: Compute r0 = −Ax0 and choose s0 such that (s0, Ar0) 6= 0, e.g., s0 = r0,
3: Compute g0 = M−1r0, h0 = M−Ts0,
4: Set p0 = g0, q0 = h0,
5: Compute w0 = Ap0, v0 = ATq0, t0 = M−Tv0, c0 = tT0 w0, z0 = Ag0, d0 = hT0 z0,
6: For j = 1, 2, . . . , do
7: If cj−1 = 0, then the method fails
8: αj−1 = dj−1/cj−1

9: xj = xj−1 + αj−1pj−1

10: rj = rj−1 − αj−1wj−1

11: sj = sj−1 − αj−1vj−1

12: Check convergence; continue if necessary
13: gj = M−1rj
14: hj = hj−1 − αj−1tj−1

15: zj = Agj
16: dj = hTj zj
17: βj−1 = dj/dj−1

18: pj = gj + βj−1pj−1

19: qj = hj + βj−1qj−1

20: wj = zj + βj−1wj−1

21: vj = ATqj
22: tj = M−Tvj
23: cj = tTj wj

24: End For

4 NUMERICAL RESULTS AND ANALYSIS

In this section, we try to make some numerical experiments to illustrate numerical
behavior of the BiCG and BiCR methods, with applications to several practical
Markov chain problems. For convenience, we let PBiCG and PBiCR denote the
preconditioned BiCG and BiCR methods, respectively. These methods are tested
with respect to the number of iterations (IT), computational time in seconds (CPU),
and their convergence histories which are plotted in the following figures with IT
(on the horizontal axis) versus Relres (on the vertical axis), where Relres is defined
as log10(‖rn‖2/‖r0‖2).

All experiments were run by using the Matlab 7.0.4 implementation on Microsoft
Window XP with 2.27GHz 64-bit processor and 2GB memory. And in all cases the
initial guess is generated by random sampling with a uniform (0,1) distribution and
normalized to one in the one norm, since this choice seems to work well for almost
all of the tests considered here. The stopping criteria used here were

‖rn‖2/‖r0‖2 < tol,
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Algorithm 4: The preconditioned BiCG method for Markov chains

1: Choose an initial guess x0, with x0 ≥ 0 and ‖x0‖1 = 1,
2: Compute r0 = −Ax0 and choose s0 such that (s0, r0) 6= 0, e.g., s0 = r0,
3: Compute g0 = M−1r0, h0 = M−Ts0,
4: Set p0 = g0, q0 = h0,
5: Compute w0 = Ap0, v0 = ATq0, c0 = qT0 w0, d0 = sT0 g0,
6: For j = 1, 2, . . . , do
7: If cj−1 = 0, then the method fails
8: αj−1 = dj−1/cj−1

9: xj = xj−1 + αj−1pj−1

10: rj = rj−1 − αj−1wj−1

11: sj = sj−1 − αj−1vj−1

12: Check convergence; continue if necessary
13: gj = M−1rj
14: hj = M−Tsj
15: dj = sTj gj
16: βj−1 = dj/dj−1

17: pj = gj + βj−1pj−1

18: qj = hj + βj−1qj−1

19: wj = Apj
20: vj = ATqj
21: cj = qTj wj

22: End For

where rn is the residual of the nth iteration, and tol = 10−3. Note that the signs “N”
and “nnz(A)” denote the size and the number of nonzero of the coefficient matrix
A in the singular linear systems (5), respectively.

4.1 Example 1: The M/M/1 Queue

This example is taken from Latouche and Ramaswami [56], which is a canonical
example of homogeneous birth-and-death processes where the only allowed transi-
tions are from the state n to the next higher state n + 1 for all n ≥ 0 and from n
to n − 1 for n ≥ 1. It is a single server queueing system with an infinite waiting
room. Customers arrive in the system at the renewal epochs of a Poisson process
with parameter λ = 1. If there are other customers already present, then they en-
ter a waiting room, otherwise they obtain service immediately. The service rate is
exponential with parameter µ = 1.

The preconditioner for this test problem is chosen to be M = U + UT, where
U ∈ Rn×n is the upper triangular matrix of A. To illustrate that the eigenvalue
distributions of the preconditioned matrix M−1A are more clustered together than
those of the original coefficient matrix A, Figure 1 has plotted the eigenvalue distri-
butions of A and M−1A when the size of this example is N = 1 000. It is clear that
the eigenvalue distributions of M−1A are desirable.
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Figure 1. Comparison of the eigenvalue distributions between the original matrix A (top)
and the preconditioned matrix M−1A (bottom) for Example 1 when N = 1 000

N nnz(A) BiCG BiCR PBiCG PBiCR

1 000 2 998 28 (0.013) 20 (0.010) 17 (0.008) 12 (0.005)

5 000 14 998 29 (0.032) 20 (0.022) 17 (0.020) 12 (0.017)

10 000 29 998 29 (0.061) 20 (0.045) 17 (0.039) 12 (0.035)

50 000 149 998 29 (0.356) 20 (0.261) 17 (0.211) 12 (0.172)

100 000 299 998 29 (0.731) 20 (0.546) 17 (0.518) 12 (0.449)

200 000 599 998 29 (1.466) 20 (1.203) 17 (1.171) 12 (0.921)

500 000 1 499 998 29 (2.749) 20 (2.512) 17 (2.135) 12 (1.647)

Table 1. IT and CPU (in brackets) of these methods for Example 1.
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Figure 2. Convergence histories of these methods for Example 1

Table 1 lists the number of iterations and the computational time in seconds
(in brackets) for the four algorithms on this M/M/1 queueing problem. We observe
that both the preconditioned BiCG and BiCR methods run faster than the unpre-
conditioned BiCG and BiCR methods, while the PBiCR method is superior to the
PBiCG method both in terms of IT and CPU time. Especially, it is not difficult to
find that these methods are quite stable even though the size of this test problem
has a dramatic increase.

Figure 2 has shown the convergence histories of these four algorithms for this
test problem when the sizes of the matrix A are N = 50 000 and N = 200 000,
respectively. One can see that the PBiCR and PBiCG methods use fewer iteration
steps than the BiCR and BiCG methods, to reach the desired accuracy. It turns
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out that these conjugate direction methods are extended to solve Markov chain
modellings are feasible and efficient.

4.2 Example 2: Uniform 2D Lattice

The second test problem is a 2D lattice with uniform weights. As discussed in [58],
it is similar to an isotropic elliptic PDE problem. Here we let the 2D lattice be
square and use h to denote the number of nodes in every row or column, then the
total size of the coefficient matrix A in the singular linear systems (5) is N = h2.

In this experiments, let the preconditioner be M = U + UT as given in the first
test problem. To show the effectiveness of this preconditioner, Figure 3 depicts the
eigenvalue distributions of the coefficient matrix A and those of the preconditioned
matrix M−1A when h = 50, i.e., N = 2 500. Observe that the application of the
preconditioner M has improved the eigenvalue properties of the original matrix A,
which explains why the preconditioned BiCR and BiCG algorithms are superior to
the unpreconditioned BiCR and BiCG algorithms.

h N nnz(A) BiCG BiCR PBiCG PBiCR

50 2 500 12 300 17 (0.016) 16 (0.015) 10 (0.010) 9 (0.008)

100 10 000 49 600 18 (0.062) 16 (0.053) 11 (0.038) 9 (0.030)

200 40 000 199 200 18 (0.271) 16 (0.254) 11 (0.181) 9 (0.166)

300 90 000 448 800 19 (0.649) 16 (0.580) 11 (0.423) 9 (0.396)

400 160 000 798 400 19 (1.193) 16 (1.036) 11 (0.903) 9 (0.725)

500 250 000 1 248 000 19 (1.863) 16 (1.703) 11 (1.213) 9 (1.001)

Table 2. IT and CPU (in brackets) of these methods for Example 2.

Numerical results for this test problem are provided in Table 2. Again, it seems
that both the preconditioned BiCG and BiCR methods run faster than the un-
preconditioned BiCG and BiCR methods, while the PBiCR method outperforms
the PBiCG method both in terms of iteration steps and computational time. Fur-
thermore, these methods are quite stable for this uniform 2D lattice problem, even
though there exists some small changes in the sense of iteration counts when the
size of this problem is not large.

Convergence histories of these four algorithms for this example have been given
in Figure 4 when h = 300 and h = 500, respectively. From an intuitive point, it is
easy to find that the PBiCR and PBiCG methods converges faster than the BiCR
and BiCG methods. Particularly, the PBiCR method performs the best.

4.3 Example 3: Two-Queue Overflow Networks

The last test problem is the two-queue overflow networks with the customer arrival
rate and service rate of the servers being λi and µi (i = 1, 2), respectively. Suppose
the number of servers is si and the waiting space is Li − si − 1 (i = 1, 2). The
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Figure 3. Comparison of the eigenvalue distributions between the original matrix A (top)
and the preconditioned matrix M−1A (bottom) for Example 2 when h = 50

queueing discipline is first-come-first-served. Specifically, we allow the overflow of
customers to occur from queue 2 to queue 1 when queue 2 is full and there is
still a waiting space in queue 1. The graph of the two-queue overflow networks
and the form of its generator matrix have been presented in a few papers; see,
e.g., [43, 49].

For simplicity, in this test, we have set s1 = s2 = 1, λ1 = λ2 = 1 and µ1 = µ2 = 1.
Let the incomplete LU factorization of the coefficient matrix A be

A = LU +R,
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Figure 4. Convergence histories of these methods for Example 2

where L ∈ Rn×n and U ∈ Rn×n are the lower and upper triangular matrices, re-
spectively. Then the preconditioner for this test problem is chosen to be M = LU
with the drop tolerance of the incomplete LU factorization is 0.01. In order to
illustrate the efficiency of the preconditioner M , Figure 5 shows the eigenvalue dis-
tributions of the original matrix A and those of the preconditioned matrix M−1A
when L1 = 32 and L2 = 32, i.e., N = 1 024. It is clear that the eigenvalue distri-
butions of the preconditioned matrix M−1A is desirable, most of them are closely
clustered around 1.

Table 3 has supplied numerical results for this test problem. By a close look
at the results in Table 3, we find that the iteration steps and computational time
needed by the preconditioned BiCR and BiCG methods are less than those of the
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L1 L2 N nnz(A) BiCG BiCR PBiCG PBiCR

32 32 11 024 41 992 22 (0.025) 16 (0.011) 2 (0.010) 2 (0.009)

64 64 41 096 201 224 22 (0.125) 16 (0.111) 2 (0.104) 2 (0.100)

128 128 161 384 811 408 22 (0.181) 16 (0.154) 2 (0.102) 2 (0.101)

128 256 321 768 1631 327 22 (0.295) 16 (0.202) 2 (0.126) 2 (0.123)

256 256 651 536 3261 656 22 (0.533) 16 (0.431) 2 (0.355) 2 (0.349)

256 512 1311 072 6541 335 22 (1.093) 16 (0.856) 2 (0.657) 2 (0.648)

Table 3. IT and CPU (in brackets) of these methods for Example 3
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Figure 5. Comparison of the eigenvalue distributions between the original matrix A (top)
and the preconditioned matrix M−1A (bottom) for Example 3 when L1 = 32,
L2 = 32
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Figure 6. Convergence histories of these methods for Example 3

unpreconditioned BiCR and BiCG methods. Moreover, the data in Table 3 indicate
the efficiency and feasibility of Algorithms 1–4 again, since the number of iterations
required by them are almost unchanged.

Additionally, an intuitive understanding can be obtained from Figure 6, where
the convergence histories of these four methods for this test problem are plotted
when L1 = 128, L2 = 128 and L1 = 256, L2 = 512, respectively. It is clear
that the BiCR and BiCG methods with one suitable preconditioner are not bad
choices.
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5 CONCLUSIONS AND FUTURE WORK

In this paper, we have described two conjugate direction methods, BiCR and BiCG,
and extended their applications to solve the stationary probability distribution for
Markov chain modellings. Some properties of the BiCR and BiCG methods are con-
sidered, and the corresponding preconditioned versions are provided in Algorithms 3
and 4 with the aim of easily transforming them into a computer code. Numerical
experiments have been made on several practical Markov chain problems. Figures 1,
3 and 5 have indicated that eigenvalue properties of the original matrix A are able to
be improved by using suitable preconditioners. Numerical results in Tables 1–3 have
shown that the required iteration steps and computational time by the precondi-
tioned BiCR and BiCG methods are less than those of unpreconditioned BiCR and
BiCG methods. Furthermore, the convergence histories of these four algorithms have
been compared in Figures 2, 4 and 6, which illustrate their efficiency and feasibility
from an intuitive point.

Note that we do not consider other methods in this paper since our aim here
is to indicate the feasibility of the BiCG and BiCR methods in solving singular
linear system (5) which arise from Markov chain problems. Actually, from the
previous analysis, we know that both the BiCG and BiCR methods possess the
short-term recurrences, which may make them outperform certain other iterative
methods like the classical Jacobi and Gauss-Seidel, and so on. We leave these
numerical comparisons among different methods for the future research. Moreover,
it would be interesting to extend these proposed methods to other sophisticated
Markov chain problems [45, 46, 51, 52].
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