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Abstract. Composition of simpler web services into custom applications is un-
derstood as promising technique for information requests in a heterogeneous and
changing environment. This is also relevant for applications characterised as de-

ductive web mining (DWM). We suggest to use problem-solving methods (PSMs)
as templates for composed services. We developed a multi-dimensional, ontology-
based framework, and a collection of PSMs, which enable to characterise DWM
applications at an abstract level; we describe several existing applications in this
framework. We show that the heterogeneity and unboundedness of the web demands
for some modifications of the PSM paradigm used in the context of traditional arti-
ficial intelligence. Finally, as simple proof of concept, we simulate automated DWM
service composition on a small collection of services, PSM-based templates, data
objects and ontological knowledge, all implemented in Prolog.

Keywords: Web services, web mining, problem-solving methods, ontologies



256 V. Svátek, M. Vacura, M. Labský, A. ten Teije

1 INTRODUCTION

Composition of simple web services into sophisticated (distributed) applications re-
cently became one of hot topics in computer science research. The area of applica-
tion for composite services is potentially wide. While the focus is often on customer
(e.g. travel) services, B2B transactions and financial services, the general paradigm
appears as applicable even to back-end tasks such as gene analysis in bioinforma-
tics [14] or web mining, the latter being the focus of this paper. Deductive web
mining (DWM) as particular species of web mining was first introduced in [18]; it
covers all activities where pre-existing patterns are matched with web data, be they
of textual, graph-wise or, say, bitmap nature. DWM thus subsumes web informa-
tion extraction, and differs from inductive web mining (such as association mining
in web text), which aims at discovery of previously unseen, frequent patterns in web
data. This does not mean that the ‘pre-existing patterns’ in DWM have necessarily
been hand-crafted: inductive learning of patterns (or analogous structures/models)
is merely viewed as an activity separate from DWM (‘reasoning’). Our current re-
search attempts to combine both areas (web service composition and DWM), which,
each of them separately, encompass a huge amount of research, while their inter-
section has been surprisingly left untouched. We attempt to show that abstract
knowledge models are helpful for capturing the essence of DWM tasks. Starting
from generic models (ontologies and problem-solving methods), we continue with
their manually designed, semi-formal combinations and instantiations, and finish
with automatically building operational simulation prototypes.

The structure of the paper is as follows. In Section 2 we outline the history
of our own DWM project named Rainbow, as initial motivation for DWM know-
ledge modelling. Section 3 presents our four-dimensional descriptive framework for
DWM, called TODD, and a collection of ontologies associated with it. Section 4
explains the notion of problem-solving methods (PSMs) and shows its instantiation
for DWM service modelling. Section 5 shows manually created models of existing
applications, based on TODD and PSMs. Section 6 discusses the possibility of auto-
matic, template-based (to read, PSM-based) web service composition in the DWM
domain. Section 7 describes concrete simulation experiments done in this direction
for the restricted task of pornography recognition. Finally, Section 8 surveys some
related projects, and Section 9 wraps up the paper.

2 BACKGROUND: THE RAINBOW PROJECT

The Rainbow project (http://rainbow.vse.cz) represents a family of more-or-
less independent DWM projects. Their unifying principles are commitment to web
service (WSDL/SOAP) front-end and agreement on shared upper-level ontology.
Furthermore, for each application, the developers also agree on a domain and share
the source of training/testing data. Otherwise, the formal principles of analysis me-
thods vary (from linguistic through statistical to e.g. graph theory), and so does the
representation of data (such as free text, HTML trees or link topology). The overall
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goal of the project is to verify the possibility of building web mining applications
from semantically described components. There have been three use cases to the
approach, each of them integrating several analysis tools:

1. Different pornography-recognition services, specialised in image bitmap analysis,
HTML structure analysis, link topology analysis, META tag analysis and URL
analysis, have been executed more-or-less standalone. Empirical tests, however,
proved that the synergy of different methods reduces the overall error (from 10%
for the best individual method to 6% for a combination of methods) [22].

2. Very simple analysis of company information (at the level of single pages) was
designed to be executed and integrated via a web browser plug-in, which dis-
played the structured list of extracted information in a side bar [17].

3. Last, an application specialised in bicycle offer extraction has been sewn to-
gether, including (in addition to ‘core’ DWM tools): the XML/full-text database
engine AmphorA, storing web pages as XHTML documents as source-data back-
end; a simple control procedure calling individual DWM tools, and integrating
and saving the results; an instance of RDF repository Sesame (http://www.
openrdf.org) for storing the results corresponding to a ‘bicycle-offer’ onto-
logy (RDF Schema); finally, an (HTML+JSP) semantic query interface with
pre-fabricated templates, shielding the user from the underlying RDF query
language (SeRQL) and enabling a simple form of navigational retrieval [10].

Although the application-building effort itself has essentially been manual to
date, the experience collected lead us to preliminary design of a semi-automatic
composition method presented later in this paper. The first and the third appli-
cation of Rainbow (beside other applications reported in the literature) have been
re-described in terms of our novel knowledge modelling inventory, and the first
(pornography recognition) was eventually subject of simulated experiments in ser-
vice composition.

3 CONCEPTUAL FRAMEWORK AND ONTOLOGIES FOR DWM

3.1 The TODD Framework

Based on experience from Rainbow, we proposed a framework that positions any
DWM tool or service within a space with four dimensions:

1. Abstract task accomplished by the tool. So far, we managed to characterise any
concrete DWM task as instance of either:

• Classification of a web object into one or more pre-defined classes.

• Retrieval of one or more web objects.

• Extraction of desired information content from (within) a web object.
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The Classification of an object takes as input its identifier and the list of semantic
classes under consideration. It returns one or more semantic classes to which
the object belongs.

The Retrieval of desired objects takes as input the syntactic class of object and
constraints expressing its semantic class membership as well as (part-of and ad-
jacency) relations to other objects; for example: “Retrieve (the XPath addresses
of) those HTML tables from the given website that are immediately preceded
with a possible ‘Product Table Introduction Phrase’ (containing e.g. the expres-
sion product*)”. Retrieval outputs the identifiers (addresses based on URIs,
XPath expressions and the like) of relevant objects.

The Extraction task takes as input the semantic class of information to be ex-
tracted and the scope (i.e. an object) within which the extraction should take
place; for example: “Extract the occurrences of Company Name within the scope
of given Company Website”. Extraction outputs some (possibly structured, and
most often textual) content. In contrast to Retrieval, it does not provide the
information about precise location from where the content was extracted.

2. Syntactic class of object to be classified or retrieved, or from which information is
to be extracted. Basic syntactic classes are defined in the Upper Web Ontology
(see Section 3.2). The assumption is that the syntactic class of object is always
known, i.e. its assignment is not by itself subject of DWM.

3. Data type and/or representation, which can be e.g. full HTML code, plain text
(without tags), HTML parse tree (with/without textual content), hyperlink
topology (as directed graph), frequencies of various sub-objects or of their se-
quences (n-grams), image bitmaps or even URL addresses.

4. Domain to which the task is specific.

We thus denote the framework as ‘task-object-data(type)-domain’ (TODD). Its
dimensions are to high degree independent, e.g. object class is only partially corre-
lated with data type. For example, a document may be classified based on its HTML
code, URL, META tag content or position in topology. Similarly, a hyperlink can
be classified based on its target URL or the HTML code of source document Clearly,
not all points of the 4-dimensional space are meaningful, for instance, a META tag
content cannot directly be used to classify a hyperlink.

3.2 The Collection of Rainbow Ontologies

In parallel with development of Rainbow tools, abstract ontologies were also de-
signed. In general, there are two kinds of classes in Rainbow ontologies – syntactic
and semantic. Syntactic classes currently considered are e.g. Document, Document-
Fragment, HyperLink or Phrase; semantic classes are e.g. ProductCatalogue, Leaf-
Document, ProductDescription or Sentence. As outlined above, semantic classes
differ from syntactic ones in the sense that their identification is subject of analysis,
while the identification of syntactic classes is assumed to be known in advance (say,
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no Rainbow tool should be developed in order to distinguish a physical page from
a collection of pages). Every semantic class is subconcept of some general syntactic
classes. In addition to concepts, there are also relations. Among the most widely
used relations in Rainbow ontologies is the transitive part-of relation, e.g. Product-
Description may be part-of a ProductCatalogue. Concepts can also be adjacent to
each other, they may be identified-by some other concepts etc.

The three dimensions of the TODD model (i.e. apart from the task dimension),
namely the distinction of data types, object (syntactic) classes and application do-
mains suggest a natural decomposition of the system of ontologies into four layers as
depicted in Figure 1: the Upper Web Ontology (UWO), partial generic web models,
partial domain-dependent web models, and integrated domain web ontologies. The
upmost layer (i.e. UWO) contains the object syntactic classes themselves. Further-
more, the upper two layers (‘generic models’) are domain-independent and therefore
reusable by applications from all domains, while the lower two layers (‘domain-
specific models’) add information specific to the domain of analysis, e.g. OOPS
(‘organisations offering products and services’) sites or web pornography. Finally,
the outer two layers1 contain concepts that are independent of the data type used for
their recognition, while the inner two (‘partial models’) contain data-type-dependent
concepts. Let us now characterise each of the four layers, in turn.

Fig. 1. Structure of the Rainbow ontology system shown on HTML analysis example

1 We might jointly call them e.g. ‘holistic models’, in contrast to ‘partial’ ones.
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Upper Web Ontology. The abstract Upper Web Ontology (UWO) provides a hie-
rarchy of common web-related concepts and relations that are shared by different
analysis types and application domains. It defines the most generic syntactic
classes, which are likely to be frequently reused across individual analysis tools:
Document, Document Collection, Document Fragment, Hyperlink and the like.

Partial Generic and Domain(-Specific) Web Models. For each way of ana-
lysis, partial web models (generic and domain-specific) occupy the middle layers
of the Rainbow ontology system. Concepts and relations defined in these mo-
dels represent the (syntactic and semantic) classes specific to one data type.
The partial web models consist of a generic and domain-dependent part. Ele-
ments introduced in the generic model are based on the UWO and are reusable
across different application domains. On the other hand, for each data type
there might be domain models specialised in different application domains. All
of these domain models are then based on a single generic model and the com-
mon UWO. Concepts from the generic and domain models mostly correspond to
semantic classes of resources, but new syntactic classes may be defined as well.
In Figure 1, the generic model and OOPS domain model for HTML analysis
are depicted within the dashed area. Examples of concepts from these models
and the UWO are shown on the right; class names are prefixed with corre-
sponding data types: ’H’ for HTML structure, ’T’ for topology etc. The HTML
Generic Web Model (i.e. the generic model considering HTML code as subject
of analysis) contains domain-independent concepts such as HTMLDocument or
HImageGallery. For the OOPS domain, these are further refined to concepts re-
lated to product and service offering, such as ‘HTML document with company
profile’ (HAboutCompany), ‘HTML document with references’ (HReferences) or
‘HTML document with product catalogue’ (HProductCatalogue).

Domain(-Specific) Web Ontologies. In our approach, domain-specific web on-
tologies can be built via merging the class hierarchies from domain-specific par-
tial web models. We studied the possibility of using Formal Concept Analy-
sis (FCA) for this purpose, which potentially yields new classes in addition to
those inherited from the merged ontologies. The resulting class hierarchy is no
longer restricted to a single data-type view and is included in a Domain Web
Ontology (DWO), as depicted in Figure 1.

For example, in the graph output by FCA based on web objects annotated with
HTML and Topology concepts, we identified one new (no-name) class which was
a combination of THub and HProductCatalogue. It represents the common no-
tion of product catalogue referring to child documents with detailed information
about individual products, and may be a meaningful addition to the ontology.
More details about the merging method are in [9].

The Rainbow collection of ontologies was implemented in DAML+OIL (prede-
cessor of OWL), mostly using the expressivity of RDF/S only. It contains 20 classes
in UWO, over 100 classes in partial generic models, and 24 classes in partial (OOPS)
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domain models. The ontologies have never been used operationally; they rather
served as proof of concept for the TODD model and also as starting point for
building a smaller but operational ontology (in Prolog) for the purpose of service
composition simulations, see Section 7.

4 PROBLEM SOLVING METHODS FOR DWM

4.1 Problem-Solving Modelling Classics

The first abstract model of knowledge-based problem solving (Problem Solving
Method – PSM), from which many successors took inspiration, was probably the
model of heuristic classification formulated in mid 80s by Clancey [6], see Figure 2.
It represents an abstraction over the reasoning structure of numerous diagnostic
expert systems from different domains. Its essence are three ‘primitive’ inferences
called ‘abstract’, ‘match’ and ‘specialise’, whose inputs/outputs are denoted as know-
ledge roles : ‘Observables’, ‘Variables’, ‘Solution Abstractions’ and ‘Solutions’. The
knowledge roles are, in a concrete application, mapped on domain concepts. For
example, a medical expert system for treatment recommendation might acquire pa-
tient lab tests and other findings as ‘Observables’, it would abstract more general
notions such as ‘obesity’ or ‘hypertension’ from them, match these with general ca-
tegories of drugs such as ‘diuretics’ or ‘β-blockers’, and, finally, specialise the drug
groups to concrete substances, drug brands and dosage, according to the context,
e.g. availability on market and coverage by insurance.
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Fig. 2. Inferences and knowledge roles in heuristic classification model

Later, the CommonKADS methodology [15], fully developed in mid 90s, for-
mulated complex guidelines for the design and usage of PSMs in the context of
knowledge-based system development. The knowledge-level description of a KBS is
viewed as consisting of three interconnected layers. (1) The domain layer describes
the relevant domain concepts and relations independent of their use for reasoning.
(2) The inference layer specifies the flow of inferences and data but not the control
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flow. It is typically expressed using inference diagrams such as that of heuristic clas-
sification. Knowledge roles in the diagram are mapped to concepts from the domain
layer. (3) The task layer specifies the decomposition of tasks to subtasks and the
algorithmic control structure. The lowest level of tasks in the decomposition tree
corresponds to inferences from the previous layer.

4.2 Library of Deductive Web Mining PSMs

Let us now present a collection of eight PSMs for DWM (namely, for the Classifica-
tion, Retrieval and Extraction tasks), in a style inspired with CommonKADS. It is
rather tentative, yet seems to cover a large part of realistic cases; examples will be
given in Section 5.

For Classification we consider three PSMs. Look-up based Classification amounts
to picking the whole content of the given object (cf. the Overall Extraction PSM
below), and comparing it with content constraints (such as look-up table), which
yields the class; for example, a phrase is a Company Name if listed in business regis-
ter. Compact Classification also corresponds to a single inference, it is, however, not
based on simple content constraints but on some sort of computation (e.g. Bayesian
classification), which is out of the scope of the knowledge modelling apparatus. Fi-
nally, Structural Classification corresponds to classification of an object based on
the classes of related objects (sub-objects, super-objects and/or neighbours). It
is thus decomposed to retrieval of related objects, their individual classification,
and, finally, evaluation of global classification patterns for the current object. It is
therefore recursive: its ‘inference structure’ typically contains full-fledged (Direct)
Retrieval and Classification tasks.

For Extraction, there will be again three PSMs, rather analogous to those of
Classification. Overall Extraction amounts to picking the whole content of the given
object. Compact Extraction corresponds to a single inference based on possibly
complex computation, which directly returns the content of specific sub-object/s of
the given ‘scope’ object. Finally, Structural Extraction corresponds to extraction
of information from an object via focusing on its certain sub-objects. Such objects
have first to be retrieved, then lower-grained extraction takes place, and, finally,
multiple content items possibly have to be integrated. Structural Extraction is thus
equally recursive as Structural Classification.

Finally, let us first introduce two PSMs for the Retrieval task. The upper in-
ference structure2 in Figure 3 corresponds to Direct Retrieval and the lower one to
Index-Based Retrieval, respectively. The names of inferences (in ovals) are mostly
borrowed from the CommonKADS library [15], while the knowledge roles are more
DWM-specific. In Direct Retrieval, potentially relevant objects are first retrieved
based on structural (parthood and adjacency) constraints, and then classified. Ob-

2 We do not show inference structures for Classification and Extraction, due to limited
space as well as due to incompatibility of their structural variants with the CommonKADS
notation, see below.
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jects whose classes satisfy the class constraints are the output of the method. In
the absence of class constraints, the method reduces to the ‘specify’ inference. In
Index-based Retrieval, the (abstract) class constraints are first operationalised so
that they can be directly matched with the content of objects. Then the objects are
retrieved in an index structure (which is considered as separate from the web space
itself), possibly considering structural constraints (provided structural information
is stored aside the core index).
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Class
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Fig. 3. Inference diagrams of Retrieval PSMs

An interesting issue related to the representation of above PSMs is the possible
interaction of different ‘time horizons’ in one application; static roles may become
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dynamic when changing the time scale. For example, a typical DWM application
may first build an index of a part of the website (or learn class definitions from
a labelled subset of objects), and then use the index to efficiently retrieve objects
(or use the class definitions to classify further objects). This interaction deserves
further study.

4.3 Traditional vs. DWM Classification

Among the three tasks, it is Classification that is most appropriate for comparison
with existing PSM research. Classification problem solving was recently systema-
tised by Motta and Lu [13]. Their taxonomy of classification problems is mainly
derived from the presence (or absence) of a few key features:

1. Whether the goal is to find one, all or the best solution. This distinction can
well be ported to the DWM context.

2. Whether all observables are known at the beginning or are uncovered opportunis-
tically (typically at some cost) during the problem solving process. In DWM, the
latter is typically the case (provided we interpret ‘observables’ as the web ob-
jects themselves); the cost is, however, only associated with download/analysis
time, and its increase is smooth-unlike e.g. medical applications, where addition
of a single examination may lead to abrupt increase of (financial or social) cost.

3. Whether the solution space is structured according to a refinement hierarchy.
Presence of class hierarchy is quite typical in DWM; in the Rainbow project, it
is reflected in concept taxonomies that constitute our ontology, see Section 3.

4. Whether solutions can be composed together or each presents a different, self-
contained alternative. We believe that in DWM, elementary classification will
mostly be carried out over disjoint classes, but can be superposed by multi-way
classification with non-exclusive class taxonomies. We discuss this option below,
in connection with the refine inference of Heuristic Classification.

Motta and Lu [13] also formulated a generic task-subtask decomposition tem-
plate, which can be instantiated for different task settings:

1. First the observations have to be verified whether they are legal (Check).

2. All legal observations (〈feature,value〉-pairs) have to be scored on how they con-
tribute to every possible solution in the solution space (MicroMatch).

3. Individual scores are then aggregated (Aggregate).

4. Candidate solutions are determined via aggregated scores (Admissibility).

5. Final solutions are selected among candidate solutions (Selection).

Compared to this generic Classification template, our notion of DWM classifi-
cation is slightly simplified and more goal-driven. Some parts of Structural Classifi-
cation PSM can be mapped on the generic template: classification from lower level
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of recursion is similar to MicroMatch, while evaluation of global pattern unites the
Aggregate, Admissibility and Selection steps. There is no Check step (since no ob-
servations are known a priori), but an extra step of Retrieval (since objects relevant
for classification of current object have first to be determined).

We can also compare Structural Classification with Clancey’s Heuristic Classi-
fication (HC) mentioned earlier. In (DWM) Structural Classification, the abstract
inference is replaced with classify inferences applied on related (contained and/or
adjacent) objects; this is due to the ‘object-relation-object’ (rather than ‘object-
feature-value’) character of web data representation. The match inference from HC
corresponds to ‘evaluation of global classification patterns’. Finally, a refinement
from general to case-specific solution might rather have the form of classification
according to multiple hierarchies in DWM (e.g. in data-type-specific ontologies).
The object is then assigned to the class that is defined as intersection of both origi-
nal classes. For example, in the pornography application (see Section 5), an object
classified as Image Gallery may also be independently classified as Scarce Text Frag-
ment, which yields the class Porno Index.

5 RE-ENGINEERING TODD-BASED DESCRIPTIONS

Let us now describe concrete applications in terms of the TODD framework, includ-
ing the mapping of tasks to PSMs. We only describe the Rainbow pornography-
recognition application [22] (Table 1) and the bootstrapping approach to website
information extraction by Ciravegna et al. [5] (Table 2). More such descriptions
(for the Rainbow bicycle application and for two more third-party applications) are
in [18].

5.1 Syntax of the Semi-Formal Language

We use an ad hoc semi-formal language with Prolog-like syntax. Its building blocks
are decompositions of tasks (‘heads of clauses’) to ordered sequences of subtasks
(‘bodies of clauses’). Individual task descriptions (‘literals’) look as follows, respec-
tively:

Cla?(<obj_var>, <obj_class>, <data_type>, <domain>, <classes>)

Ret?(<obj_var>, <obj_class>, <data_type>, <domain>, <constraints>)

Ext?(<obj_var>, <obj_class>, <data_type>, <domain>, <content>)

The ‘predicate’ (task name) corresponds to the first dimension in the TODD
framework. An extra letter is used to distinguish the PSMs introduced in the pre-
vious sections: ClaS for Structural Classification, ClaL for Look-up based Classifi-
cation, ClaC for Compact Classification; RetD for Direct Retrieval, RetI for Index-
based Retrieval; ExtS for Structural Extraction, ExtC for Compact Extraction and
ExtO for Overall Extraction. From the nature of the PSMs follows that each ClaS
task can be decomposed to a structure including (among others) one or more sub-
tasks of type Classification; analogously, each ExtS task can be decomposed to
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a structure including one or more subtasks of type Extraction. In the examples, the
‘unification’ of a ‘goal’ with a ‘clause head’ is always unique; the representation is
only ‘folded’ for better readability.

The remaining three dimensions of the TODD model are reflected by the ‘argu-
ments’ <obj class>, <data type> and <domain>. Finally:

• <obj var> is variable referring to the ‘current’ object of the task instance: input
object in the case of Classification and output object/s in the case of Retrieval.
We use object variables (and object classes) even for Extraction; however, here
they only refer to the scope of extraction, not to a ‘current’ object as in Classi-
fication and Retrieval.

• <classes> is the list of classes distinguished in the classification task (beside
named classes, we use the symbol @other for a ‘complement’ class).

• <constraints> is the list of logical expressions determining the set of objects
to be retrieved; they correspond to the knowledge roles Class Constraints (class
membership restrictions) and Structural Constraints (parthood/adjacency re-
strictions).

• <content> is the list of types of content information (datatype properties in
semantic web terminology) to be extracted.

For simplicity, we ignore strictly procedural constructs such as selections or itera-
tions, as well as the cardinality of input and output.

5.2 Descriptions of Applications

The upper level of the pornography-recognition process is an instantiation of the
Structural Classification PSM as discussed in the previous section. In order to clas-
sify the whole website (i.e. document collection), symptomatic ‘out-tree’ topology
structures are first sought; their sources (local hubs) can possibly be identified with
‘index’ pages with image miniatures. To verify that, the hub is examined for presence
of ‘nudity’ PICS rating in META tags (Look-up Classification PSM), for presence
of indicative strings in the URL, and its whole HTML code is searched for ‘image
gallery’-like structures with low proportion of text (which distinguishes pornography
from regular image galleries). The analysis further concentrates on individual pages
referenced by the hub, and attempts to identify a single dominant image at each
of them. The images are then analysed by (bitmap) image analysis methods; in
particular, the proportion of body colour and the central position of a dominant ob-
ject are assessed. In the description, we omit the ‘evaluation of global classification
pattern’ subtasks, for brevity; their inclusion would be straightforward.

The approach to information extraction described in [5] and implemented in
the Armadillo system heavily relies on knowledge reuse, thanks to the well-known
redundancy of WWW information. We only describe the most elaborated part of
the method, targeted at extraction of person names (additionally, various personal
data and paper titles are extracted for the persons in question). First, potential
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ClaS(DC, DocCollection, _, Pornography, [PornoSite,@other]) :-

RetD(D1, Document, topology, General, [D1 part-of DC, LocalHub(D1)]),

ClaS(D1, Document, _, Pornography, [PornoIndex,@other]),

RetD(D2, Document, topology, General, [D2 follows D1]),

ClaS(D2, Document, _, Pornography, [PornoContentPage,@other]).

ClaS(D, Document, _, Pornography, [PornoIndex,@other]) :-

ClaL(D, Document, meta, Pornography, [PornoResource,@other]),

ClaS(D, Document, url, Pornography, [PornoResource,@other]),

RetD(DF, DocFragment, html-txt, General, [DF part-of D, ImgGallery(DF)]),

ClaC(DF, DocFragment, freq, General, [ScarceTextFragment,@other]).

ClaS(D, Document, _, Pornography, [PornoContentPage,@other]) :-

ClaL(D, Document, meta, Pornography, [PornoResource,@other]),

RetD(Im, Image, html-txt, General, [Im referenced-in D]),

ClaC(Im, Image, image, Pornography, [PornoImage,@other]).

Table 1. TODD-based description of pornography application

names are cropped from the website, and checked against binary classification tools
such as context-based named-entity recognisers (Compact Classification), as well
as against public search tools (namely, online bibliographies, homepage finders and
general search engines) that produce the same binary classification (person name –
yes/no) as by-product of offering information on papers or homepages (i.e. Index-
based Retrieval). Furthermore, for the results of general web search, the page from
the given site is labelled as homepage if the name occurs in a particular (typically,
heading) tag. The seed names obtained are further extended by names co-occurring
in a list or in the same column of a table. Finally, potential person names from
anchors of intra-site hyperlinks are added.

5.3 Discussion

The models of third-party applications such as the presented Armadillo example
were created based on the text of research papers. We cannot naturally view them
as complete, as the textual descriptions in papers are usually simplified (e.g. due to
space limitations) as well. The whole modelling excercise was (apart from reading
the text itself) always a matter of 20–30% minutes, and no critical problems have
been encountered. In general, the TODD model and our collection of PSMs proved
well-applicable on pre-existing DWM tasks and tools. Typically, the core task in
the applications was either classification or extraction, which occured recursively for
different objects and was interleaved with retrieval of appropriate objects. The only
model encompassing all three task types was indeed that of Armadillo application;
there phrases of a certain semantic class (‘potential person name’) are first retrieved,
then false candidates are filtered out via classification, yielding true person names,
and finally the textual content is extracted from the names so as to be used in
subsequent tasks.
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ExtS(DC, DocCollection, _, CSDept, [names]) :-

RetD(P1, Phrase, text, General, [P1 part-of DC, PotentPName(P1)]),

ClaC(P1, Phrase, text, General, [PName,@other]),

RetI(P2, Phrase, freq, Biblio, P1 part-of P2, PaperCitation(P2)]),

RetI(D, Document, freq, General,

[P1 part-of D, D part-of DC, PHomepage(D)]),

RetD(DF1, DocFragment, freq, General,

[Heading(DF1), DF1 part-of D, P1 part-of DF1),

ExtO(P1, Phrase, text, General, [names]),

RetD(DF2, DocFragment, html, General,

[ListItem(DF2), DF2 part-of DC, P1 part-of DF2]),

RetD(DF3, DocFragment, html, General,

[ListItem(DF3), (DF3 below DF2; DF2 below DF3)]),

ExtS(DF3, DocFragment, text, General, [names]),

RetD(DF4, DocFragment, html, General,

[TableField(DF4), DF4 part-of DC, P1 part-of DF4]),

RetD(Q, DocFragment, html, General,

[TableField(DF5), (DF5 below DF4; DF4 below DF5)]),

ExtS(DF5, DocFragment, text, General, [names]),

RetD(DF5, DocFragment, html, General,

[IntraSiteLinkElement(DF5), DF5 part-of DC]),

ExtS(DF5, DocFragment, text, General, [names]),

...

ExtS(DF, DocFragment, text, General, [names]) :-

RetD(P, Phrase, text, General,

[DF contains P, PotentialPersonName(P)]),

ExtO(P, Phrase, text, General, [names]).

Table 2. TODD-based description of an Armadillo application

6 TEMPLATE-BASED COMPOSITION OF DWM SERVICES

6.1 Template-based Approach to Web Service Composition

While the abstraction of (‘decomposable’) models from legacy applications is defi-
nitely a task to be carried out by a human, the construction of such models (and even
the on-the-fly design of operational applications) from properly described compo-
nents might be, to some degree, within the reach of automated service composition
methods. In the research on web service composition, three alternative research
streams can currently be identified:

1. Programming in the large, i.e. composition of services by (more-or-less) tra-
ditional procedural programming in languages such as BPEL4WS (http://
www-128.ibm.com/developerworks/library/ws-bpel). The main advantage
is perfect control over the choice and linkage of different services at design time.
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This, however, on the other hand, entails a lower degree of flexibility at run
time.

2. Planning in artificial intelligence style, based on pre- and post-conditions of
individual services without pre-specified control flows, as in OWL-S [4]. This
approach offers extreme flexibility; however, the results may be unpredictable if
all conditions are not perfectly specified.

3. Template-based composition, in which concrete services are filled in run time
into pre-fabricated templates [11, 21].

More specifically, [21] suggested to view web service composition templates as
analogy to PSMs, and to view the configuration of the template again as a kind of
reasoning task, that of parametric design.

Parametric design is a simplification of general configuration. It assumes that
the objects to be configured (in our case: complex Web services) have the same
overall structure that can be captured by templates. Variations on the configura-
tion can only be obtained by choosing the values of given parameters within these
templates. The configuration process is carried out by a so-called broker tool, and
employs the propose-critique-modify (PCM) reasoning method, taking advantage of
background knowledge of the broker. The PCM method consists of four steps:

• The propose step generates an initial configuration. It proposes an instance of
the general template used for representing the family of services.

• The verify step checks if the proposed configuration satisfies the required pro-
perties of the service. This checking can be done by both pre/post-condition
reasoning, or by running the service.

• The critique step analyses the reasons for failure that occurred in the verification
step: it indicates which parameters may have to be revised in order to repair
these failures.

• The modify step determines alternative values for the parameters identified by
the critique step. The method then loops back to the verify step.

The propose-critique-modify method for Parametric Design requires specific
types of configuration knowledge to drive the different steps of the configuration
process. The question is whether this configuration knowledge (PCM knowledge)
can be identified for large classes of Web services. It turns out that this is indeed
possible for a specific class of web services, namely, classification ones.

Based on the work by Motta and Lu [13], we assume that classification services
can be described in a single template. This template (see Section 4.3) consists of
five steps: Check, MicroMatch, Aggregate, Admissibility and Selection.

Example values of Admissibility parameter are (see [21] for more):

• weak-coverage: All 〈feature,value〉 pairs in the observations are consistent with
the feature specifications of the solution.
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• strong-coverage: All 〈feature,value〉 pairs in the observations are consistent with
the feature specifications of the solution and explained by them.

• strong-explanative: All 〈feature,value〉 pairs in the observations are consistent
with the feature specifications of the solution, explained by them, and all features
specified in the solution are present.

The value of Selection parameter then decides whether e.g. the number of un-
explained and missing features is considered in ranking candidate solutions.

The broker may employ e.g. the following pieces of knowledge:

• Propose knowledge for the Admissibility parameter: if many 〈feature,value〉 pairs
are irrelevant then do not use strong-coverage.

• Critique knowledge for the Selection parameter: if the solution set is too small
or too large then adjust the Admissibility or the Selection parameter.

• Modify knowledge for the Admissibility parameter: if the solution set has to the
increased (reduced) in size, then the value for the Admissibility parameter has
to be moved down (up) in the following partial ordering:
weak-coverage ≺ strong-coverage ≺ strong-explanative.

A prototype PCM broker has been successfully applied on real data in the do-
main of conference paper classification (for reviewer assignment).

6.2 Rainbow Applications as Composite Web Services

For the first truly composite application of Rainbow, a few hundred lines of Java
code sufficed to weave together the tools (web services) cooperating in the ana-
lysis of bicycle websites [10]. However, with increasing number of available tools,
composition by traditional programming soon becomes cumbersome. On the other
hand, the space of suitable tools will hardly be as borderless as in semantic-web sce-
narios of information search, which are assumed amenable to planning approaches.
The template-based approach thus looks as a reasonable compromise. The collec-
tion of PSMs abstracted from real deductive web mining applications, explained in
Section 4.2, could be the basis for templates. Furthermore, individual components
(services) can be positioned in the TODD space, which could, among other, play
a similar role as the space of template parameters from [21].

An important point is to evaluate the possibility to adapt the parametric design
approach from [21] to the (specific features of) web analysis PSMs; this is the subject
of the next subsection. Main focus will be on classification, which is the only task
considered in [21] and also one of the tasks studied in this paper.

6.3 DWM Service Configuration as Parametric Design

As we outlined in Section 4.2, the PSMs for deductive web mining tend to involve
recursion: a reasoning process starting at one object is successively redirected to
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other objects in its parthood or neighbourhood. This more-or-less disqualifies rea-
soning methods relying on a single and fixed feature template such as parametric
design. There seem to be at least two possible solutions to this problem:

1. to allow for multiple templates per task, differing in the number of ‘sibling’ sub-
tasks and degree of recursion, and to include heuristics for template selection as
part of broker knowledge;

2. to modify the parametric design algoritm to involve, in addition to setting pa-
rameter values, also template-restructuring operations such as subtask replica-
tion and recursive unfolding (i.e. replacement of parameter with a whole tem-
plate for processing a different object).

In the rest of the paper, we mostly focus on the first solution. Although
it obviously oversimplifies many aspects of real-world settings, it is easier to de-
sign and implement in its rudimentary form and also remains more faithful to the
original parametric design concept. Table 3 shows five templates for the classifi-
cation task (encoded in Prolog): the first amounts to single classification of the
current object, the second aggregates two different ways of classifying the current
object, the third and the fourth rely on another object (sub-object or adjacent
object) in order to classify the current object, and the fifth combines direct clas-
sification of current object with its structural classification (via classification of
another object). The arguments of the templ clauses amount to the following:
template identifier (sc#), composed service signature, list of component services
signatures (one for each ‘empty slot’), list of ontological constraints among ob-
ject classes. Each signature (i.e. s() structure) first defines the task type accom-
plished by the service; the numbers (0, 1, . . . ) have the semantic of variables that
either refer to objects or to slots themselves (0 being the ‘start-up’ object of the
composed service), and the Prolog variables C# correspond to classes of these ob-
jects.

In addition to classification (cla) and retrieval (ret) services types, the tem-
plates also include slots for auxilliary services needed to accomplish the target classi-
fication task. As types of auxilliary services, we so far considered aggregation (agr),
transformation (tsf) and iteration (not shown here). For example, the presence of
sub-object of certain class determines the class of the super-object in a certain way.
In particular, the certainty factor of classification of sub-object is transformed to
certainty factor of classification of super-object; the data flow between the services
is indicated by the ref(SourceService,SourceObject) construct. Similarly, clas-
sification of the same object by different methods has to be compared and the result
computed via aggregation (e.g. combining the certainty factors).

In more detail, the body of third template declares that, given an input object
No. 0 of class C1, we can (1) apply a service that can retrieve a ‘target’ object (No. 1)
of class C4 within some ‘source’ object of class C3 (subclass of C1); we instantiate
the ‘source’ object with object No. 0; (2) then apply on the (retrieved) object No. 1
a classifier that is capable of classifying any object of class C5 (superclass of C4) into
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class C6 or its complement; (3) and finally, transform the result of classification of
object No. 1 (into class C6 or its complement, via the second service in the sequence)
into the result of classification of object No. 0 into class C2 (as target class to be
determined) or its complement.

templ(sc1,s(cla,0,0,C1,C2),

[s(cla,0,0,C3,C4)],[subclasseq(C3,C1),subclasseq(C4,C2)]).

templ(sc2,s(cla,0,0,C1,C2),

[s(cla,0,0,C3,C4),s(cla,0,0,C5,C4),s(agr,[ref(1,0),ref(2,0)],0,C4,C4)],

[subclasseq(C3,C1),subclasseq(C5,C1),subclasseq(C4,C2)]).

templ(sc3,s(cla,0,0,C1,C2),

[s(ret,0,1,C3,C4),s(cla,1,1,C5,C6),s(tsf,ref(2,1),0,C6,C2)],

[subclasseq(C3,C1), rel(part,C4,C3), subclasseq(C4,C5)]).

templ(sc4,s(cla,0,0,C1,C2),

[s(ret,0,1,C3,C4),s(cla,1,1,C5,C6),s(tsf,ref(2,1),0,C6,C2)],

[subclasseq(C3,C1),rel(adj,C4,C3),subclasseq(C4,C5)]).

templ(sc5,s(cla,0,0,C1,C2),

[s(cla,0,0,C3,C4),s(ret,0,1,C5,C6),s(cla,1,1,C7,C8),

s(tsf,ref(3,1),0,C8,C4),s(agr,[ref(1,0),ref(4,0)],0,C4,C4)],

[subclasseq(C3,C1),subclasseq(C5,C1),rel(part,C6,C5),

subclasseq(C6,C7),subclasseq(C4,C2)]).

Table 3. Sample templates for classification task

7 SIMULATION OF TEMPLATE CONFIGURATION
AND EXECUTION

7.1 One-Shot Setting Without Broker Knowledge

As seen from the above discussion, there are two main differences from the original
approach to web service composition using parametric design (Section 6.1):

• We do not have a single template but a choice of multiple ones.

• For the individual template slots, we don’t deal with a clearly defined family of
different methods (variations of a method) but with a theoretically borderless
space of applicable tools.

It was therefore natural to start with a fragment of the original Parametric Design
model only, namely, with its Propose and Verify (in the sense of service execu-
tion) phases only. Although broker knowledge would be desirable (and was used in
previous work [21]) for the Propose phase, it was not indispensable, and we could
perform service configuration based on the signatures in the templates only. The
use of broker knowledge is only discussed in the following subsection.
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We implemented a collection of simple programs in Prolog consisting of:

1. the five templates discussed in the previous sections

2. four simulated ’websites’ (inspired by real ones), in clausal form, an incomplete
example is in Table 4

3. simplified services (incl. auxilliary ones) equipped with meta-data

4. a configuration tool that selects and fills in the templates based on service meta-
data

5. an execution tool that executes the filled template for a given data object

6. an ‘ontology’ (derived from that described in section 3.2) containing definitions
of basic concepts needed for the composition and/or execution phase.

site(s2). % website

class(s2,nonporno).

page(p23). % page with 2 html fragments and 1 picture

url_of(u23,p23).

url_terms(u23,[hot]).

part(p23,s2).

linkto(p21,p23).

textprop(p23,0.8). % proportion of text on page

part(f231,p23).

html_frag(f231). % fragment 1

part(i2311,f231).

image(i2311).

body_color(i2311,0.1).

part(f232,p23).

html_frag(f232). % fragment 2

Table 4. Incomplete example of simulated ‘website’ in clausal form

The whole setting is very rudimentary. The service slots in templates are li-
mited to a single object on input and on output. The classification services only
perform binary classification, i.e. they output a certainty factor for a single class on
output (distinguishing it from its complement). The classes amount to pornography-
relevant ones, such as pornography-containing site or pornography content page.

Table 5 shows two examples of service composition. The first one suggests two
ways of classifying a document as pornoContentPage, based on two different tem-
plates: either by directly classifying the document or by first retrieving and classify-
ing its follow-up document and then transforming the certainty factor. The second
one suggests to classify a site by retrieving and classifying its hub page.

The composed services can then be executed. For example, we can call the
already configured template sc4 using the ID of input object, its initial class (e.g. just
document as syntactic class) and the certainty factor of this class (it should be 1 in
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?- propose(cla, document, pornoContentPage).

Number of solutions: 2

Template: sc1

Configuration:

s(cla, 0, 0, document, pornoContentPage, cla_por_url)

Template: sc4

Configuration:

s(ret, 0, 1, document, document, ret_follows)

s(cla, 1, 1, document, pornoContentPage, cla_por_url)

s(tsf, ref(2, 1), 0, pornoContentPage, pornoContentPage, tsf_porno2)

?- propose(cla, doc_coll, porno_coll).

Number of solutions: 1

Template: sc3

Configuration:

s(ret, 0, 1, doc_coll, localhub, ret_localhub)

s(cla, 1, 1, document, pornoContentPage, cla_por_url)

s(tsf, ref(2, 1), 0, pornoContentPage, porno_coll, tsf_porno1)

Table 5. Service composition dialogue

this case). The execution engine returns the ID of output object (for a classification
task, it is identical to input object), its suggested class ( pornoContentPage), and
the certainty factor of this refined class. The results can be compared with ‘gold
standard’ data and thus provide a simple form of verification of the configuration.

7.2 Towards a Complete Parametric Design Cycle

While the initial configuration of the template (Propose phase) could be accom-
plished using ’semantic signatures’ of individual services only, its subsequent au-
tomated modification requires additional knowledge. Tentative examples of such
knowledge (albeit still meant for the Propose phase) have been formulated in [19].
Compared to broker knowledge from [21], they also include template selection and
reformulation knowledge in addition to slot-filling knowledge. Note that, in our
multiple-template version, broker knowledge relates to template selection as well as
to specification of arguments for all subtasks within the template:

• Templates with lower number of distinct objects (X, Y, Z, . . . ) should be pre-
ferred.

• Non-recursive templates should be preferred; moreover, look-up classification
should be preferred to compact classification.

• Default partial ordering of data types with respect to object classification, for
Document object (may be overridden in a domain context):
frequency ≻ URL ≻ topology, free text ≻ metadata.
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• URL-based or topology-based classification (as rather unreliable kinds of ser-
vices) should never be used alone, i.e. can only be filled into a template with
‘parallel’ classification of same object, such as SC2 or SC4.

• Default partial ordering of types of relations ( @rel) to be inserted into classi-
fication template (may be overridden in a domain context):
part-of ≻ is-part ≻ adjacent.

• Preference of domains used in structural classification,with respect to the domain
of current object: same domain ≻ super-domain ≻ other domain.

• The class of object determined by a Classification sub-task should be (accord-
ing to domain knowledge) sub-class of the class of objects determined by the
immediately preceding Retrieval sub-task in the template.

Let us further show a hypothetical scenario of the use of broker knowledge, in
connection with the pornography-recognition application discussed in Section 5. Let
us assume a web pornography ontology grafted upon the Upper Web Ontology and
containing among other the following description-logic axioms:

PornoSite same-class-as (WebSite and (has-part some PornoIndex))

PornoIndex same-class-of (LocalHub and (followed-by >1 PornoContentPage))

For an application recognising pornography websites, the broker would select the
template SC3, which is simpler than SC4; neither SC1 nor SC2 would be applicable
(assuming no service was able to recognise PornoSite by Look-Up or Compact
Classification). In attempting to fill SC3 in, it would seek a class of related object
that could help determine the class of current object. With the help of the first
axiom, it finds out that PornoIndex could serve for the purpose (as part of sufficient
condition); it will thus instantiate the Classification sub-task accordingly. Then it
will determine, by the second axiom, a suitable class of objects to be retrieved in
the preceding (Retrieval) sub-task as LocalHub; since this is not a pornography
concept but generic concept, Domain1 will be set to General. Finally, it finds
out that LocalHub cannot be recognised as PornoIndex merely by Look-Up or
Compact Classification. It will thus have to create another SC3 template, on the
second level, in order to recognise PornoIndex by means of PornoContentPages
following it in the link topology.

8 RELATED WORK

In accordance with the structure of the paper, we divide the related work overview
into two parts, related to conceptual models of web space and to PSM-based mo-
delling of web analysis, respectively.

In the OntoWebber project [8], a ‘website ontology’ was designed. It was, how-
ever, biased by its application on portal building (i.e. ‘website synthesis’), and thus
did not fully cover the needs of automated analysis; moreover, the problem-solving
side of modelling was not explicitly addressed. The same holds for semantic concep-
tual models of web space used for adaptive hypermedia design, see e.g. [16], which
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generally rely on a combination of domain model, user model and adaptation model;
automated analysis, on the other hand, cannot have ambitions to reconstruct such
models and has to rely on lower-level features.

Until recently, PSMs have been understood as specific for knowledge-intensive
but ‘data-temperate’ tasks. A few PSMs for data-intensive tasks have, however, also
been designed. In the IBrow project [1], operational PSM libraries have been deve-
loped for two areas of document search/analysis: Anjewierden [3] concentrated on
analysis of standalone documents in terms of low-level formal and logical structure,
and Abasolo et al. [2] dealt with information search in multiple external resources.
Direct mining of websites was, however, not addressed; IBrow libraries thus do
not cope with the problem of web heterogeneity and unboundedness. In contrast,
the Armadillo system [5] attempts to integrate many website analysis methods; it
currently relies on sequences manually composed from scratch by the user, although
a template-based solution is also being envisaged. Besides, PSM-based solution has
also been developed for task configuration in Knowledge Discovery in Databases
(KDD) [7]; however, although some aspects of modelling are similar, the nature of
web data is significantly different from that of tabular data.

9 CONCLUSIONS AND FUTURE WORK

We demonstrated that web service composition, and specifically its variant based on
problem-solving modelling, can be applied to deductive web mining. However, the
task demanded a significant modification of principles used in previous domains. In
particular, due to the nature of web as underlying data structure, service templates
tend to involve recursion, which impacts the process of template-filling. On the
other hand, the TODD framework, although originally developed independently,
easily became the cornerstone of service descriptions created manually as well as of
the tentative method of automated composition.

The current prototype of composition tool was only meant for the sake of initial
experiment on (semi-)artificial data. We plan to proceed to real data when switch-
ing to a functional architecture incorporating independently-developed (often third-
party) tools, as envisaged in the Rainbow project. In addition to the multi-template
model, we also expect to implement and test the solution based on automatic tem-
plate restructuring. Future research also includes specification of templates for other
DWM tasks, in particular those with nature of extraction, taking models of appli-
cations from Section 5 as starting point. Finally, we consider to align our approach
with the WSMO project (http://www.wsmo.org), which also partially applies the
PSM paradigm to web service composition.
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