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Abstract. Visual odometry estimates a robot’s ego-motion with cameras installed
on itself. With the advantages brought by camera being a sensor, visual odo-
metry has been widely adopted in robotics and navigation fields. Drift (or error
accumulation) from relative motion concatenation is an intrinsic problem of visual
odometry in long-range navigation, as visual odometry is a sensor based on relative
measurements. General error analysis using “mean” and “covariance” of positional
error in each axis is not fully capable to describe the behavior of drift. Moreover,
no theoretic drift analysis is available for performance evaluation and algorithms
comparison. Drift distribution is established in the paper, as a function of the
covariance matrix from positional error propagation model. To validate the drift
model, experiment with a specific setting is conducted.

Keywords: Visual odometry, error analysis, motion concatenation, ego-motion,
navigational drift

Mathematics Subject Classification 2010: 62L12

1 INTRODUCTION

Visual odometry uses camera(s) to incrementally calculate a robot’s motion between
time steps, and finally localize the robot. In general, it can determine ego-motion
in all six degrees of freedom in the 3D world. Compared with other sensors used
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in robot navigation (e.g., odometry, GPS and IMU), visual odometry has its ad-
vantages, and has already been widely tested or applied in many fields. For driver
assistance or autonomous driving, ego-motion of a vehicle can be obtained by ana-
lyzing video inputs from the camera(s) installed in the vehicle (e.g., [1]). Visual odo-
metry is also a popular choice in Simultaneous Localization and Mapping (SLAM)
to obtain motion trajectory of a robot [2]. By looking downward, visual odometry
assists an unmanned helicopter to calculate its own moving trajectory when GPS is
unavailable [3]. It is even applied in underwater situations to help a robot to localize
itself [4].

As a sensor based on relative measurement, visual odometry estimates motion by
the following two steps: relative motion estimation between time steps, and motion
concatenation. For relative motion estimation, various algorithms have been tested
to implement visual odometry, using monocular [5, 6] or stereo [3, 7, 8], perspective
or omnidirectional [5, 6, 9] cameras. Among these, the most popular framework
for visual odometry is based on feature matching and tracking (e.g., [10, 11, 12]),
as shown in Figure 1. While considering that feature-based methods are sensitive
to systematic errors in intrinsic and extrinsic camera parameters, appearance-based
visual odometry uses appearance of world to extract motion information (e.g., [5]).
Recently, a specific quadrifocal method using dense pixel matching from temporal
stereo was also tested for visual odometry with very accurate results reported [1].
Furthermore, many other sensors can also be integrated with cameras to provide
more accurate results for long-range navigation.

Feature 
registration

Robust 
regression

Relative motion 
estimation

Motion 
Concatenation

Figure 1. A general visual odometry framework based on feature matching and tracking

1.1 Motivation

The idea of this paper is motivated by the following considerations:

1. Currently, attention has been widely paid to suppress navigational drift in visual
odometry, but methods to “see” drift output from algorithms are still limited
to experiments by running the algorithms. There are many visual odometry
algorithms with no discussion of analytical error propagation process, which
prevents the development of visual odometry from performance evaluation.

2. As a new and promising sensor, visual odometry needs a methodology for system-
atic and comparative analysis of its drift, in order to quantify the performance
of various algorithms.

3. When some allowable drift or “error” is given for a specific trajectory, how to
design or select a proper visual odometry algorithm? What is the maximum
measurement error allowed for every step? It is an inverse problem of general
error propagation.
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1.2 Related Works

The paper is mainly on error accumulation during motion concatenation step in
visual odometry. Drift or error accumulation has long been recognized in visual
odometry, and various methods have been suggested in order to suppress its effect,
such as frame selection techniques (e.g.,“Fire-walls” [11] or similarly keyframe [6,
13]), sparse bundle adjustment [8], more accurate spatial uncertainty models [7],
loop-closing [9], and most promisingly integrating with other navigation sensors
(e.g., inertial sensor [14], low-cost GPS [15], absolute orientation sensor [16]). All of
these techniques observe performance improvements in long-range navigation.

Drift analysis and evaluation are mainly based on experimental results in the
literature, by running algorithms on some testing roads and comparing the estimated
trajectory with the ground truth, which is usually obtained from GPS, while, for
presenting the results, charts with the estimated and real trajectory are usually
provided to give a direct comparison. However, methods for detailed analysis of
drift are limited in the literature.

End-point absolute drift distance or drift ratio (ratio of the final drift value to
the traveled distance), is a common choice (e.g., [1, 4, 5, 6, 7, 11, 15, 16, 17]) to
measure the drift when running a visual odometry algorithm over some distance,
from tens or hundreds of meters to several kilometers. Their drawbacks are closely
related to the properties of drift. First, drift will not increase linearly with the
distance traveled, which was stated by Clark [16] and will be further proved in this
paper. Thus, when running algorithms on some distance, drift value and ratio will
change with different distances traveled. Moreover, running the same algorithms
on the same trajectory repeatedly will produce quite different drift value or ratio.
The reason is that drift is a random process, and it will not always increase, but
sometimes also decrease at some places, as errors in different motion vectors will
compensate to some extent. Thus, using end-point values (the final drift value, and
the final traveled distance) is inappropriate to model the whole random process.

Andrea [12] adopted a method different from the above, which is to measure
the drift distance induced within a predefined traverse (e.g., 100 m). For a whole
trajectory, drift statistics can be obtained from all the traverse segments. Later,
Navid [17] improved the method to measure drift for several distance intervals (e.g.,
10 m, 20 m, 50 m, and 100 m) to show the tendencies of the drift increment as distance
increased. Both of these methods analyze drift in a more detailed scale than offset
ratio, but still the dependence of drift on the traveled trajectory is not considered.

As a main contribution of the paper, we will study theoretical analysis of drift
for navigation with visual odometry. Based on this, a new drift evaluation method
using drift distribution will be introduced.

1.3 Organization

The paper is organized as follows. Section 2 discusses a well-adopted linear error
propagation model. The output of this error model is the second-moment (“co-
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variance”) of error distribution in each axis. Based on this, Section 3 presents a
general drift model for visual odometry, which is the main contribution of the pa-
per. Section 4 validates the drift model using a specific experiment setting. Finally,
conclusions are provided in Section 5.

2 ERROR DYNAMICS

Spatial error propagation as widely used in robotics and navigation fields can be
similarly applied in visual odometry, though it uses cameras as sensor for calculating
relative motion between time steps. This section will briefly discuss such a general
linearized error propagation method as used in [18, 19].

2.1 Notations

In this paper, capital letter (e.g., M) signifies matrices, lowercase (e.g., x) means
a scalar, and bolded lowercase (e.g., p) indicates a vector. Values for different time
steps are down-right indexed. Transposition of a matrix or vector is upper-right
indicated by T . For random variables, E(.) is the expectation. For a matrix, det(.)
is the determinant. Note that camera pose and relative motion are both represented
by 4× 4 homogeneous matrices.

The origin of the vehicle coordinate system locates on the center of the camera(s)
installed (left camera for stereo situation). The z-axis points to the front of a vehicle,
the x-axis to the left, and the y-axis upwards (right hand system). Accordingly, the
rotational angles along x-, y-, and z- axes are respectively named as pitch, yaw, and
roll. The initial camera position before moving is regarded as the global coordinate
system.

2.2 Linearized Error Propagation

Differential homogeneous transforms are used to represent the spatial error of camera
poses estimated. The error is assumed to be small enough that a first-order model
will provide a good approximation. The assumption is reasonable, as end-point
drift ratio is generally around 1 % ∼ 5 % in the literature. The estimated pose of
camera G is considered to be a nominal pose Ĝ with a small perturbation δG:

G = Ĝ(I + δG) (1)

where δG is the differential matrix representing the uncertainty associated with the
camera pose and is written as:

δG =


0 −δφ δθ δx
δφ 0 −δψ δy
−δθ δψ 0 δz

0 0 0 0

 (2)
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where δx, δy, δz are the positional errors and δψ, δθ and δφ are the orientational
errors along the x-axis, y-axis, and z-axis, respectively. Note that the spatial uncer-
tainties are associated with camera at each time step, the error variables must be
expressed with respect to the nominal pose coordinate frames established at each
time step. With the representation in Equation (1), the probabilistic property of
the uncertainty representation is modeled by the error vector, (δx, δy, δz, δψ, δθ, δφ)T

in δG. Also, motion estimated M for every time step is modeled in the same way.

Error propagation of visual odometry is then to find the total error of the esti-
mated camera pose in a compound spatial relation, corresponding to motion con-
catenation in every time step. At time t, we have the estimated camera pose Gt−1

and relative motion Mt−1,t with their corresponding uncertainties using Equation (1)
as, respectively

Gt−1 = Ĝt−1(I + δGt−1) and Mt−1,t = M̂t−1,t(I + δMt−1,t). (3)

The spatial propagation is then to calculate the camera pose uncertainty at time t
by motion concatenation as1

Gt = Gt−1 ·Mt−1,t = Ĝt−1M̂t−1,t(I + . . .

M̂−1
t−1,tδGt−1M̂t−1,t + δMt−1,t + M̂−1

t−1,tδGt−1M̂t−1,tδMt−1,t). (4)

With the first-order approximation, it will be

Gt = Ĝt−1M̂t−1,t(I + M̂−1
t−1,tδGt−1M̂t−1,t + δMt−1,t). (5)

The differential matrix of Gt becomes:

δGt = M̂−1
t−1,tδGt−1M̂t−1,t + δMt−1,t (6)

where M̂−1
t−1,tδGt−1M̂t−1,t is the transformation of camera pose’s differential matrix

δGt−1 to the reference frame of camera pose Gt. As the error vectors of δGt−1 and
δMt−1,t are independent, the covariance of the camera pose error at time t can be
easily computed to be

ΣGt = JΣGt−1J
T + ΣMt−1,t (7)

where ΣGt−1 and ΣMt−1,t are the covariance matrices of the error vectors of δGt−1 and

δMt−1,t respectively. J is the 6× 6 Jacobian matrix of M̂t−1,t, and can be expressed
as:

J =

[
RT RTDT

0 RT

]
(8)

1 Right multiplication of the motion is because the estimated motion is based on the
camera’s coordinate system, while not the global one.
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where R is the rotational sub matrix of Mt−1,t, and

D =

 0 −zn yn
zn 0 −xn
−yn xn 0

 (9)

and t = (xn, yn, zn)T is the translational vector in Mt−1,t.

3 DRIFT ANALYSIS IN VISUAL ODOMETRY

Though slightly different in the form, error propagation as described in Section 2
has been widely adopted in robotics and navigation fields. Covariance of the state
vector is the usual output of the error analysis. With such covariance matrix, error
distribution of every state element becomes evident. However, specifically for visual
odometry, error analysis can be improved. For this purpose, drift is analyzed in this
section.

3.1 Drift Distribution Model

Drift s is the 3D Euclidean distance between the nominal destination traveled by
the camera and that estimated by the visual odometry algorithm. It is a function
of camera pose’s error vector, defined as

s =
√

(δx)2 + (δy)2 + (δz)2. (10)

Note that only three translational error elements are included in the drift defi-
nition, while the rotational ones are taken as intrinsic. The explanations are as
follows. Firstly, in visual odometry for ground vehicle, though error in a vehicle’s
yaw angle may increase boundlessly, its pitch and roll angle will generally be small
and physically bounded by the ground plane, and will not accumulate infinitely2.
Secondly, the final positional drift is caused partly by accumulated angular error, and
partly by accumulated translational error. Clark [16] proved that rotational error
will contribute more than translational one to the final positional drift. Overall, the
positional drift we analyzed in the paper includes a large part of contribution from
the rotational drift. Finally, it is also a common practice to analyze the final drift
using positional distance.

For theoretic analysis, one assumption is made that the variables δx, δy and
δz follow Gaussian distribution with a mean of zero and covariance as described
by Equation (7). The validation of the assumption is experimentally proved by
Williams [2], and still based on the following reasons. First, many of the noise
input disturbances (e.g., feature localization uncertainty, calibration uncertainty)

2 Visual odometry used in helicopters, it will be a different story as no ground plane is
available in air.
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encountered in visual odometry are approximately Gaussian; and Gaussian inputs to
linear systems will still be Gaussian. Equation (5) can be regarded as linearization,
as error vectors from camera pose and motion are linearized for the new camera pose;
and the deviation from the Gaussian condition in Equation (5) is caused only by the
inexactness of the approximation in linearizing. Secondly, Central-Limit Theorem
proves that the total input effect on the system tends towards a Gaussian condition
as the number of independent inputs becomes larger (see [20], page 369). For large
scale visual odometry, the number of inputs is usually very large (over hundreds or
thousands). Finally, convolution of two Gaussian distributions will still be Gaussian
distributions [21]. As we have approximated the original motion concatenation as
a linear subsystem convolution, so for the Gaussian distribution inputs of the linear
system, the convolution output will still be Gaussian.

Applying the Gaussian assumption, the joint probability density function for
the error vector elements (δx, δy, δz) may be written as

p(δx, δy, δz) =
1

(2π)
3
2

√
det(P̄ )

exp

{
−1

2
[δx, δy, δz]T P̄−1[δx, δy, δz]

}
(11)

where

P̄ =

 σ2
δx rδxδy rδxδz

rδxδy σ2
δy rδyδz

rδxδz rδyδz σ2
δz

 (12)

with
σ2
δx , E(δx2) σ2

δy , E(δy2) σ2
δz , E(δz2)

rδxδy , E(δxδy) rδyδz , E(δyδz) rδxδz , E(δxδz).

P̄ is a sub-matrix from the error covariance matrix Σ in Equation (7), as not all the
elements of the error vector are needed for drift.

Drift s as a random variable expressed by Equation (10) is practical for Monte
Carlo simulations, but too complicated for statistical analysis, as δx, δy and δz are
mutually correlated. For statistical analysis, a linear transformation as presented
in Appendix A is used to transform three correlated norm variables (δx, δy, δz) into
three uncorrelated (δ̄x, δ̄y, δ̄z). Then

s =
√

(δ̄x)2 + (δ̄y)2 + (δ̄z)2. (13)

Now with the independent norm variables δ̄x, δ̄y and δ̄z, and their variances
σ̄2
x, σ̄

2
y and σ̄2

z , their probability density function is as follows (take δ̄x as an example):

px(δ̄x) =
1√

2πσ̄x
exp

{
− δ̄x

2

2σ̄2
x

}
. (14)

As δ̄x, δ̄y and δ̄z are uncorrelated, then their joint probability density function is

pxyz(δ̄x, δ̄y, δ̄z) = px(δ̄x) · py(δ̄y) · pz(δ̄z). (15)
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Finally the probability function for s is

P (s) = P

(√
δ̄x2 + δ̄y2 + δ̄z2 ≤ s

)
=

∫∫∫
I

pxyz(δ̄x, δ̄y, δ̄z) dδ̄x dδ̄y dδ̄z (16)

where I is the integration region
√
δ̄x2 + δ̄y2 + δ̄z2 ≤ s. Using spherical coordinate

system, we will have

P (s) =

∫ s

0

∫ π

0

∫ 2π

0

r2 sinϕ

(2π)
3
2 σ̄xσ̄yσ̄z

exp

{
−r

2

2

(
sin2 ϕ cos2 θ

σ̄2
x

+
sin2 ϕ sin2 θ

σ̄2
y

+
cos2 ϕ

σ̄2
z

)}
dr dϕ dθ (17)

and, the probability density function for drift s will be

p(s) =

∫ π

0

∫ 2π

0

s2 sinϕ

(2π)
3
2 σ̄xσ̄yσ̄z

exp

{
−s

2

2

(
sin2 ϕ cos2 θ

σ̄2
x

+
sin2 ϕ sin2 θ

σ̄2
y

+
cos2 ϕ

σ̄2
z

)}
dϕ dθ. (18)

The drift distribution in Equation (18) is calculated following drift definition,
and covariance matrix from the general error propagation as discussed in Section 2.2.
For theoretical analysis, the main step is to transform the obtained correlated error
vector elements to be uncorrelated following Appendix A. Thus, a key point of the
drift distribution model is that drift distribution is closely related to the specific
trajectory, and the position in the trajectory.

It should be pointed out that the definite integral in Equation (18) can be solved
analytically only when

σ̄2
x = σ̄2

y = σ̄2
z . (19)

Otherwise, the integration may be performed numerically.

If

σ̄2
x = σ̄2

y = σ̄2
z = σ̄2 (20)

drift s will follow Maxwell-Boltzmann Distribution, with density function as

p(s) =

√
2

π

1

σ̄3
s2 exp

(
− s2

2σ̄2

)
. (21)

With the drift distribution density function such as Equation (21), some more
interesting quantities can be derived. The most probable drift, sp, is the drift most
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likely to happen and corresponds to the maximum value of p(s). To find it, we
calculate dp/ds, set it to zero and solve for s as

dp(s)

ds
= 0 (22)

which yields
sp =

√
2σ̄. (23)

The mean drift, E(s), is the mathematical average of the drift distribution

E(s) =

∫ ∞
0

sp(s) ds =
2√
π
sp. (24)

The root mean square drift, srms, is the square root of the average square drift:

srms =

(∫ ∞
0

s2p(s) ds

)1/2

=

√
3

2
sp. (25)

The typical drift is related as follows

0.886E(s) = sp < E(s) < srms = 1.085E(s). (26)

3.2 Drift Propagation

Recall the differential camera pose matrix in Equation (6) as

δGt = M̂−1
t−1,tδGt−1M̂t−1,t + δMt−1,t.

From this equation, we can derive the drift propagation equation as follows. For
notational simplicity, time indexes in variables are removed; then camera poses at
time t − 1 and t are represented by G and G′ respectively, with relative motion
matrix between them as M . So the motion concatenation is G′ = GM .

Write the motion matrix into general rotation and translation form; we can have

M =

[
Rm tm
0 1

]
(27)

and its differential matrix will be

δM =

[
δRm δtm
0 0

]
. (28)

Camera pose G and its differential matrix will have the similar form.
Then from Equation (6), we will have[
δR′ δt′

0 0

]
=

[
RT
m −RT

mtm
0 1

]
·
[
δR δt
0 0

]
·
[
Rm tm
0 1

]
+

[
δRm δtm
0 0

]
.

(29)
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After simple matrix and vector multiplication, we will have the following equa-
tion from Equation (29):

δt′ = RT
mδRtm +RT

mδt + δtm (30)

where δt′ = [δx′, δy′, δz′]T is the translational error at time t.
From drift definition in Equation (10), it is obvious that

s′2 = δt′
T
δt′. (31)

Substituting Equation (30) into Equation (31), note the relation that

(tm)T δRT δt + δtT δRtm = 0 (32)

as δRT = −δR. And similarly,

(tm)T δRTRmδtm + (δtm)TRT
mδRtm = 0. (33)

Finally, we have

s′2 = s2 + δtTmδtm + (δRtm)T δRtm + 2δtTmR
T
mδt. (34)

It is evident from Equation (34) that the drift after motion concatenation s′

is composed of four parts: the previous drift s, the translational error in relative
motion measurement δtm, error from the previous rotational drift by affecting the
translational motion δRtm, and rotated translational error δtTmR

T
mδt.

Another point to emphasize is that drift will not always increase. From Equa-
tion (34), it is clear that the first three items in the right part are all contribute to
the increase of drift, while the sign of the last item is undetermined. An example of
drift decrease can be observed in Figures 5, 6, 7 in the experiment section.

3.3 Using Drift Distribution as Error Quantification for Visual Odometry

The most popular way for experimental performance evaluation of visual odometry is
the drift value or drift ratio after running the algorithm on a testing trajectory. The
drawbacks of such method are as follows. Firstly, as error propagation is a random
process, drift value from running the algorithm once cannot tell the real performance.
Secondly, as the drift is dependent on the trajectory traveled, different places on the
trajectory will have different drift values, possibly larger or smaller. Finally, it is
impossible to compare performance of various visual odometry algorithms based on
the drift value.

Drift distribution such as Equation (21) is suggested to evaluate performance
of various visual odometry. Compared with covariance, the advantages brought by
drift distribution are as follows. Firstly, directly observed from Equation (10), drift
provides an overall description of error for visual odometry. With this description
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as an index, different visual odometry algorithms can be compared. As error dis-
tribution may be different for each state elements, comparing error propagation for
visual odometry directly by covariance matrix is not feasible. Secondly, using drift
distribution as the output of visual odometry experiment will present the overall
error propagation of a specific visual odometry algorithm on the testing road by
running only once. Finally, drift distribution facilitates the inverse problem as dis-
cussed in Section 1.1. In conclusion, experiment will prove that drift distribution
from running the algorithm on a testing trajectory will not only tell the performance
of the algorithm, but can also be used for comparison with other algorithms.

4 EXPERIMENT

Experiments are conducted to illustrate the validation of the established drift model.
Moreover, some important facts of the drift in visual odometry are also revealed
from the experimental results. We report about experiments which use a specific
setting. Note that though there are several visual odometry frameworks as reviewed
in Section 1, we adopt the widely used one as in Figure 1. The analysis method is
of not different for other frameworks.

4.1 Experiment Setting

(a) (b)

Figure 2. The camera’s real trajectory (0→ 1→ 2→ 3→ 4→ 1) for simulation in a) XZ
plane and b) XY plane. Note that the trajectory (1 → 2 → 3 → 4 → 1) forms
a close-looping

We combine real dataset with simulation technology to conduct the experiment.
A real trajectory3 from Malaga dataset [22] is adopted, with centimeter-accuracy
ground truth provided by DGPS. Moreover, we manually add another segment of the
trajectory to form a local close-looping in order to test systematic error propagation.
In Figure 2, the trajectory (0→ 1→ 2→ 3→ 4) is from DGPS, and the trajectory

3 The trajectory has been transformed to left camera’s trajectory.
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(4→ 1) is manually connected local close-looping. Totally, the trajectory is sampled
2 574 times, with a driving distance about 1.2 km.

Following the framework as in Figure 1, we simulate feature registration, instead
of using real stereo frames of the dataset. The details of simulation will be explained
in Section 4.1.1. Recall that the first essential step of visual odometry is relative mo-
tion estimation, which is modeled as an absolute orientation problem in [8, 23], and
a well-known SVD (Singular Value Decomposition)-based solution [23] is adopted
here.

All using SVD-solver for relative motion estimation, three different drift suppres-
sion schemes during motion concatenation are implemented for comparison. The
first one, named DIRECT, directly concatenates the estimated relative motion in
every time step without any suppression. As error will accumulate well fast, DI-
RECT will generally not be adopted in real visual odometry algorithm. However, it
is used here as a baseline for drift performance comparison. The second one, named
KEYFRAME, uses key-frame selection for drift minimization; relative motion vec-
tors will only concatenate between key frames, thus drift will be suppressed as the
number of concatenation for a trajectory is decreased. KEYFRAME is simple, easy
to implement, and widely adopted in literatures (e.g., [11]). The third one, named
SBA, adopts sparse bundle adjustment for minimizing errors both in features regis-
tered, as well as the motion between frames. For accurate visual odometry, SBA is
a common choice (e.g., [8]).

4.1.1 Simulated Feature Registration

Paras image width (w) image height (h) focal length (f̄)

Values 1 024 768 796

Paras base-line (b̄) principal center (ū0, v̄0) feature number (n)

Values 0.8 (512, 384) 200

Table 1. Parameters used in simulation. Note “base-line” is in meters, “feature number”
has no unit, and others are in pixels

Feature registration includes spatial feature detection, and sequential feature
tracking. We use a similar method as in [10] to simulate features in stereo according
to the camera’s real relative motion from the ground truth. The parameters and
their values used are listed in Table 1. For camera’s real relative rotational and
translational motion R̄ and t̄ from time t to t+ 1, we simulate features as in Algo-
rithm 1. Note that systematic error and random error can be simulated separately
or simultaneously.

The benefits of combining real trajectory with simulated feature registration
are mainly threefold. As the main reason, error sources (systematic and random)
can be controlled to take effect with simulation. Also, though outliers in feature
registration commonly exist in real situation and contribute to the estimation error,
they are unpredictable and currently cannot be modeled. While using simulation,
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there will be no outliers in feature registration at all. Thus, robust regression, as
a necessary step with real feature registration, can be avoided with the simulated
data. Finally, realistic motion conditions are considered, as real trajectory contains
various motion types (e.g., constant speed, turning, acceleration, vibration, and so
on).

Step 1: Randomly generate n points in the left frame at t

{tp̄i(u, v)|0 ≤ u ≤ w, 0 ≤ v ≤ h, i = 1, . . . , n}

Step 2: Randomly generate float disparity value d within some range

{di|d ∈ [10 . . . 80], i = 1, . . . , n}

Step 3: With tp̄ and d, and using triangulation, we obtain 3D points;

{tp̄i(x, y, z), i = 1, . . . , n}

as well as points in the right frame at t;

{tq̄i(u, v), i = 1, . . . , n}

Step 4: With camera motion R̄ and t̄ from t to t+ 1, 3D points move;

t+1p̄i = R̄T · tp̄i − R̄T · t̄

Step 5: Project the 3D points into stereo frames at t+ 1, we will have;

{t+1p̄i(u, v)|i = 1, . . . , n} and {t+1q̄i(u, v)|i = 1, . . . , n}

Step 6a for systematic noise;
Add zero-mean gaussian noise to the parameters f , b, u0 and v0;
Step 6b for random noise;
Add zero-mean gaussian noise with variance σ2 to u of image points in stereo
at t and t+ 1;

tpi ∼ N (tp̄i, σ
2) tqi ∼ N (tq̄i, σ

2)
t+1pi ∼ N (t+1p̄i, σ

2) t+1qi ∼ N (t+1q̄i, σ
2)

Algorithm 1: Simulated stereo feature matching and tracking

4.1.2 Experiment Results

Many error sources will affect the accuracy of the adopted SVD-based algorithm,
such as calibration errors in camera’s intrinsic parameters, feature localization un-
certainty and the number of features.
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General error propagation. Errors in camera’s intrinsic parameters (f, b, u0,
v0) will cause systematic error in visual odometry. We simulate errors in each
intrinsic parameters as Step 6a of Algorithm 1 to see the effect in visual odometry
on the close-looping. The estimated trajectory as well as the positional error from
systematic errors are shown in Figure 3. It is obvious from the results that errors in
different parameters will cause distinct systematic error in visual odometry, not only
scale error (e.g., errors caused by b) or constant bias but also some unrecognizable
errors (e.g., errors by (u0, v0)). Moreover, the relationship between errors in para-
meters and systematic error in visual odometry is also dependent on the algorithm
adopted.

Figure 3. The estimated trajectory (left), as well as the positional error (right) for DI-
RECT visual odometry caused by the simulated systematic error in camera’s
intrinsic parameters a) f , b) b, and c) u0, v0. Note that the closed trajectory
(1→ 2→ 3→ 4→ 1) as in Figure 2 is used
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We simulate errors in feature localization only as Step 6b of Algorithm 1 to see
the effect of random noise in visual odometry. With feature localization uncertainty
modeled as zero-mean Gaussian noise with standard deviation value 0.1, the trajec-
tory estimated, as well as the accumulated error in position are shown in Figure 4.
Note that the result shown in Figure 4 is only one running of the algorithm on
the testing trajectory, which may be quite different from another running, as error
accumulation is a random process.

(a) (b)

(c) (d)

Figure 4. Visual odometry results and positional errors using DIRECT algorithm with
simulated random noise in feature localization. a) The real and estimated trajec-
tories. b), c), d) Positional error with standard deviation (±σ) in x-, y-, z-axis,
respectively

Linearized error dynamics. Now we adopt the model as developed in the paper
to analyze the error propagation in visual odometry. Before that, we need to get the
covariance matrix Q in every estimation step from Monte Carlo simulation. With
assumption that the noise in each relative motion element is uncorrelated, we can
obtain Q from the statistics of all the relative motion measurement.

The experiment on drift distribution estimation using DIRECT, KEYFRAME
and SBA are not meant to compare the drift values between them, as they are
evident. Drift distribution from both Monte Carlo simulation and the theoretical
model developed in the paper are compared to prove the point that the latter one
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is of validity. Also, another point to validate is that the drift distribution model is
applicable to various visual odometry algorithms, as long as motion concatenation
step is used.

In Figure 4, the standard deviation for each positional errors from matrix P
as in Equation (7) are presented. These results are the popular outputs from error
analysis. Note that as variances of the positional error in each axis are not the same,
drift distribution will be calculated as Equation (18) while not Equation (21).

The similar linearized error propagation models have been used in robotics and
navigation, and their correctness has been widely tested. For validating the drift
analysis results, Monte Carlo simulation is used again. The drift distribution will be
specific for an algorithm, though each running of the algorithm will present different
drift values. For the three algorithms (DIRECT, KEYFRAME and SBA), we run
the SVD-algorithm with the same feature localization uncertainty as random noise
for 1 000 times, as well as the respective drift suppression method. The results are
presented in Figures 5, 6, 7. From these results, we can have a direct comparison
of performance for visual odometry algorithms adopting the above drift suppression
methods in navigating the trajectory. Firstly, the magnitude of mean drift value in

(a) (b)

(c) (d)

Figure 5. Drift analysis for DIRECT algorithm. Theoretical drift analysis results are com-
pared with that of Monte Carlo simulation. a) The mean drift with the distance
traveled. Three randomly selected places (1), (2), (3) are marked where specific
drift distributions are presented in b), c), d), respectively. Note that the vertical
dot-dashed lines in b), c), d) are the mean drift values of the distribution
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(a) (b)

(c) (d)

Figure 6. Drift analysis for KEYFRAME algorithm. Theoretical drift analysis results
are compared with those of Monte Carlo simulation. a) The mean drift with the
distance traveled. Three randomly selected places (1), (2), (3) are marked where
specific drift distributions are presented in b), c), d), respectively. Note that the
vertical dot-dashed lines in b), c), d) are the mean drift values of the distribution

these figures shows as expected that SBA has the smallest drift value, while DIRECT
the largest. Moreover, different distance in the trajectory may have different drift
distribution, as presented in b), c), d) of the these figures. Finally, for a specific
drift suppression method, drift property is unique, with the measurement covariance
in each step being the same. Thus, performance evaluation of visual odometry
using various drift suppression methods is capable using drift propagation model as
developed.

5 CONCLUSION

This paper proposes navigational drift analysis in visual odometry. Instead of mo-
deling error in each axis, positional drift is modeled to provide an overall description
of the navigational error. Moreover, with error distribution in each axis, we obtain
theoretical drift propagation as a trajectory-dependent distance function. With such
drift propagation model, visual odometry algorithms can be compared and evaluated
in navigational accuracy.
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(a) (b)

(c) (d)

Figure 7. Drift analysis for SBA algorithm. Theoretical drift analysis results are com-
pared with those of Monte Carlo simulation. a) The mean drift with the distance
traveled. Three randomly selected places (1), (2), (3) are marked where specific
drift distributions are presented in b), c), d), respectively. Note that the vertical
dot-dashed lines in b), c), d) are the mean drift values of the distribution
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A APPENDIX: TRANSFORM OF THREE CORRELATED NORM
RANDOM VARIABLES INTO UNCORRELATED

Assume zero-mean normal variables δx, δy and δz, with covariance matrix M known
as

M =

 E(δxδx) E(δxδy) E(δxδz)
E(δyδx) E(δyδy) E(δyδz)
E(δzδx) E(δzδy) E(δzδz)

 . (35)

Note that E(δxδy), E(δxδz) and E(δyδz) are not zero, so δx, δy and δz are correlated.
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Consider a linear transformation L3×3 defined by δ̄x
δ̄y
δ̄z

 = L3×3

 δx
δy
δz

 . (36)

Then we have  δ̄x
δ̄y
δ̄z

 · (δ̄xδ̄y δ̄z) = L ·

 δx
δy
δz

 · (δxδyδz) · LT . (37)

In order to be uncorrelated among δ̄x, δ̄y and δ̄z, so

E(δ̄xδ̄y) = 0

E(δ̄y δ̄z) = 0

E(δ̄z δ̄x) = 0. (38)

Taking expectation of Equation (37), it will be

M̄ = L ·M · LT (39)

where

M̄ =

 σ̄2
x 0 0

0 σ̄2
y 0

0 0 σ̄2
z

 (40)

with

σ̄2
x = E(δ̄2

x) σ̄2
y = E(δ̄2

y) σ̄2
z = E(δ̄2

z). (41)

As M is a real symmetric matrix, and M̄ is a diagonal matrix, the transformation
L can be easily obtained from Equation (39). The variances of the normal variables
δ̄x, δ̄y and δ̄z are σ̄2

x, σ̄
2
y and σ̄2

z , which are the eigenvalues of M . Assuming l1, l2, l3
are the corresponding eigenvectors of M , then L = (l1 l2 l3) is the required linear
transformation from three correlated normal variables to three uncorrelated.
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