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Dúbravská cesta 9

845 07 Bratislava, Slovakia

e-mail: branislav.simo@savba.sk

Abstract. This paper describes two different approaches to exploiting interactivity
and MPI support available in the Interactive European Grid project. The first appli-
cation is an air pollution simulation using Lagrangian trajectory model to simulate
the spread of pollutant particles released into the atmosphere. The performance
of the sequential implementation of the application was not satisfactory, therefore
a parallelization was planned. The MPI programming model was used because of
some previous experience with it and its support in the grid infrastructure to be
used. Then the interactivity enabling the user to receive visualizations of simu-

lation steps and to exercise control over the application running in the grid was
added. The user interface for interacting with the application was implemented as
an plug-in into the Migrating Desktop user interface client platform. The other
application is an interactive workflow management system, which is a modification
of a previously developed system for management of applications composed of web
and grid services. It allows users to manage more complex jobs, composed of se-
veral program executions, in an interactive and comfortable manner. The system
uses the interactive channel of the project to forward commands from a GUI to the
on-site workflow manager, and to control the job during execution. This tool is able
to visualize the inner workflow of the application. User has complete in-execution
control over the job, can see its partial results, and can even alter it while it is
running. This allows not only to accommodate the job workflow to the data it
produces, extend or shorten it, but also to interactively debug and tune the job.
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1 INTRODUCTION

The focus of current grid infrastructures like EGEE [10] and middleware like gLite [7]
is targeted on batch processing of computing intensive jobs, usually sequential ones.
While this model is very good for e.g. parameter study applications, where the
execution time of single instance is not that important as the time required to process
the whole set of of jobs, there are a lot of applications where the minimization of
the run time of a single instance is important. One of the ways to achieve that goal
is to parallelize the computation into cooperating processes using for example the
MPI [8] messaging protocol as a means for data exchange.

The other feature lacking in currently prevalent grid infrastructures is the ability
to interact with the application running in the grid. This fact stems from the focus
on the high throughput aspect of the whole grid architecture. After having the high
throughput grids established and deployed on the production level, it is time to
support the additional types of applications.

The development in the Interactive European Grid (int.eu.grid) project [1, 4] is
focused on implementing these two missing features, intra- and inter-cluster MPI
support, and interactive applications. The tools providing this functionality are dis-
cussed in the next chapter. The following sections describe two different environmen-
tal applications that make use of the available MPI and interactivity functionality
in order to provide better experience to the end user.

Section 3 presents an air pollution application simulating the spread of pollutant
particles released to the atmosphere using the Lagrangian trajectory model. This
application is very useful for study of development of past air contaminations and
forecasting of behavior of possible future ones. Forecasting scenarios are important
for contingency planning and preparation of e.g. evacuation plans. In the event of
an accident the fast execution of the forecasting model with actual meteorological
conditions is essential in proper management of the emergency. The ability to inter-
actively increase the number of simulated particles allows faster proceeding of the
simulation in the beginning when the particles are grouped together and increasing
their number only after some time subject to operator’s consideration.

In Section 4 we describe an interactive workflow management system of the flood
forecasting application. The system was developed as a modification of a system
developed previously in the project K-Wf Grid [11] as a management tool for appli-
cation composed of web and grid services. It allows users to manage more complex
jobs, composed of several program executions, in an interactive and comfortable
manner. The system uses the interactive channel of the project to forward com-
mands from a GUI to the on-site workflow manager, and to control the job during
execution. While the system is used to interactively run the workflow of the flood
forecasting application, it is also suitable for other applications, where the user may
want to adapt their workflow execution during runtime, according to partial results
or other conditions. If the need arises, another analysis may be added to process
any interesting partial results that were computed. Or, if a simulation provides
uninteresting data, the rest of the workflow subtree may be cancelled, and resources
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shifted to other parts of the job. Any application, which currently uses a shell script
calling several components (binary modules or other scripts) may be easily con-
verted to a visually controlled workflow. The workflow can then be saved, exported
to an XML file, and later reused – such reuse is very simple even for non-experts.

2 TOOLS FOR INTERACTIVITY AND MPI

In order to use the interactivity and MPI, applications had to be integrated with or
adapted to several components of the int.eu.grid project. The application executable
had to be modified to use the MPI calls and linked to MPI library. We use the
OpenMPI [9] flavor of the MPI specification. The project also supports PACX-
MPI [27] for inter-cluster parallel computing. On the client side an application
specific visualization plug-in had to be created to provide customized user interface
for the application in the Migrating Desktop (MD) [5] rich client framework. The
MD provides an application programming interface (API) to the developer for direct
connection to the application. The conceptual schema is shown in Figure 1. Below
we give further description of these components.

Fig. 1. Interactive channel connecting Migrating Desktop with application running
in the grid

The user interface client – Migrating Desktop – is a rich client framework and
graphical user interface (GUI) that hides the complexities of the grid from the user.
It provides basic functionality necessary for working with grid: single sign-on us-
ing user’s certificate, data management (transfer of data files from workstation to
grid and back, registration of files to virtual directory), job management (job sub-
mission, monitoring), visualization of job results. The MD is implemented in Java
language and runs as a client on the user’s machine. It is based on the Eclipse OSGi
framework [12] plug-in architecture, thus allowing customization of its functionality.
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Plug-ins play important role in application support by providing application specific
functionality. Input plug-ins provide custom input parameter specification, visuali-
zation plug-ins provide visualization of application outputs and user interface for
interactive application control. A plug-in is provided in the form of a Java archive
called bundle. It is loaded to the MD automatically upon startup after registra-
tion into the central registry. In order to be able to control interactive application,
writing a visualization plug-in is usually necessary.

The user-application connection is realized by setting up a data channel between
the application running in the grid and the client plug-in. It is a data tunnel that
can transfer raw binary data that are to be interpreted by the application. The
channel passes all the data from the standard output of the application to the plug-
in and data sent to the channel are passed to the standard input of the application.
In case of MPI application, standard outputs of all MPI processes are merged and
sent as one output stream into the channel. The standard input is available only to
the master process of the application, which must then distribute any information
to other processes if necessary (see Figure 1).

3 INTERACTIVE AIR POLLUTION APPLICATION

The Air pollution simulation, originally named IMS Model Suite, is a complex soft-
ware system developed by MicroStep-MIS [19] primarily for environmental pollution
assessment and prediction of consequences of nuclear accident or radiological emer-
gency. It provides users with a comprehensive set of services (local, regional or
continental scale dispersion and deposition modeling, data processing and visuali-
zation) as well as outputs (particle trajectories, surface and volume concentrations,
calculations of the effective and equivalent doses). The architecture of the system,
computational complexity and existing or potential interfaces to other systems and
services make this application well suited for the Grid and virtual organization en-
vironment. The essence of all Lagrangian models is the observation of individual
particles and numerical calculation of their trajectories in the atmosphere. The
term “particle” denotes any air pollutant or substance (or multiple substances) in
the volume of air located to certain position of the space. The particles travel with
the wind and the particle trajectory and particle composition reflects natural pheno-
mena such as turbulent diffusion, dry deposition, wet deposition caused by rain and
chemical transformation or radioactive decay. The particles are independent during
all lifetime, which results in independent evolution equations for each particle of the
model that can be computed by a different processor in a parallel implementation.
This makes Lagrangian model well suited for the parallel implementation on the
computer cluster or grid. The concentration distribution is determined by count-
ing the particles in given volume. This way, the model yields non-negative mass
densities and is mass-conserving.

Lagrangian dispersion models simulating real atmosphere work in 3D grid. The
scale depends on the spatial and temporal resolution of meteorological data inputs;
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particle models can be used for modeling regions ranging from 20 m to thousands
kilometers and for the time intervals of 10 minutes up to several weeks. Required in-
puts are meteorological and orographic data. The most usual ones are wind field (ve-
locity and direction), pressure, temperature, humidity, precipitation and orographic
data, e.g. type of the terrain (land or sea) and its roughness. Some parameters, such
as wind fluctuations, could be generated by pre-processors. Diagnostic wind field
models interpolate wind observations in measurement locations to the grid. In this
way, data enter the model as a chronological order of fields. The other necessary
inputs are release parameters of the source and type, molecular weight and diameter
distribution of particles. The model output is a time sequence of the spatial distri-
bution of the concentration of emitted species, its transformation products and the
amount deposited.

3.1 Parallelization

At the beginning the model was a sequential application running on Windows ope-
rating system. In order to run it in the grid infrastructure provided by the int.eu.grid
project, the model had to be ported to the Linux OS, what required a new imple-
mentation of certain library functionalities provided by the Borland C++ Builder –
the development environment used for application development on Windows.

As already said, the particles in the model are simulated independently of each
other and therefore the parallelization was quite straightforward. The particles
are divided into equally sized subsets and simulated independently on individual
computational nodes of the job. OpenMPI [9] flavor of MPI [8] was chosen as the
implementation standard for parallelism, because it is the standard supported by
the project.

Apart from simulating just a subset of the particles, the parallel instances of
the simulation run quite independently. Each one reads the common configuration
files and input files by itself, simulates its share of particles and at the end of each
simulation step sends the particles’ positions to the master process, which collects
them and dumps them to a file. The master process then executes a visualization
task on the file, in order to produce an image showing current state. The image
is used for example in the interactivity scenario described below. After that, the
simulation continues with next simulation step.

3.2 Interactivity

Our application needs just the raw interactive channel. When considering how to
express the state of the simulation to the user we decided to send pictures created
by the application running on the grid that show the map of the simulated area
with particles plotted on it. Such image is sent for each simulation step in the
JPEG format. It is decoded by the plug-in and shown to the user. Each step of the
simulation the user can send two commands back to the application – to split all the
particles or to terminate the application. Particle split results in doubling the count
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of the particles, thus increasing the precision of the simulation from that point on,
but also doubling the computational requirements. Because the interactive channel
takes all the data from the standard output of the application, we had to create
a simple multiplexing protocol that separates the image data and accompanying
metadata from the usual text messages generated by the simulation run. The text
messages are shown in separate window in MD and enable users to monitor the
execution of the application from the technical point of view, i.e. environment
setup, application startup, application progress. This is very convenient especially
during the development stages of the application.

3.3 Experiences

The parallelization of the simulation was expected to provide significant speedup,
which should have been linear in theory, as the particle set is divided into equal
groups and simulated independently. However, in real simulation tests we have
found out that the overhead of reading the input files, especially the files containing
meteorological forecast was quite high and in scenarios with smaller number of
particles (i.e. thousands) the speedup was small.

Fig. 2. Screenshot of the Migrating Desktop showing two windows of the application
plug-in on top
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With the increasing number of particles the speedup was rising compared to
sequential simulation as the overhead of reading input files is constant for the same
scenario regardless of particle count. Because the objective is to run the simulation
with as many particles as possible, the overhead poses no significant problem.

Another problem we have experienced was extreme slowdown of the file opera-
tions on cluster with shared home directories. The application uses a lot of small
files that need to be unpacked at the start and are then accessed during the simu-
lation. It has turned out that such usage of the NFS file system can cause extreme
slowdown (from several second to several minutes). The performance is fine on clus-
ters without shared home directories. The solution for clusters with shared homes
is to use directory located on local disk.

The setup of interactive channel was without a problem. We have experienced
occasional errors in image data, what turned out to be caused by a lack of synchro-
nization of text output from the parallel instances of the application. This has been
solved by making sure there is no writing to standard output by sibling processes
while the image data are being sent to the stream by master process.

4 INTERACTIVE WORKFLOW MANAGEMENT

The execution of a workflow in grid environment usually means automatic execu-
tion of its tasks by some kind of workflow engine. From the user’s point of view
the whole workflow is processed as one big job and user can at most monitor the
execution of single tasks of the workflow. In this section we describe a dynamic grid
workflow execution and management system, which allows interactive monitoring
and changing of a workflow running in the grid.

The difference between classical grid workflows and the one described here is
that our workflow is submitted to the grid (i.e. to a resource broker [20] managing
job submissions for that particular grid) as one job that will be started on one of
the grid resources and then all the tasks of the workflow are executed internally as
part of that workflow job. The workflow job is connected to the user interface via an
interactive channel that allows the user to monitor and change the workflow and its
properties. The advantage of executing the workflow in this manner is fast startup
of workflow tasks as they do not have to go through the grid resource broker.

The tool is suitable for applications, where the user may adapt their execution
during runtime, according to partial results. If the need arises, another analysis
may be added to process any interesting partial results that were computed; or, if
a simulation provides uninteresting data, the rest of the workflow subtree may be
cancelled, and resources shifted to other parts of the job. Any application, which
currently uses a shell script calling several components (binary modules or other
scripts) may be easily converted to a visually controlled workflow. The workflow
can then be saved, exported to an XML file, and later reused – such reuse is very
simple even for non-experts.
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In following sections 4.1 and 4.2 we describe the original implementation of the
workflow execution engine that was implemented in the KWf-Grid [11, 3] project
and then the re-implementation of the workflow engine to the grid environment of
the int.eu.grid project. Finally, Section 4.3 shows a real use case of the system –
flood forecasting application.

4.1 Interactive Workflow Using K-Wf Grid Middleware

The main component of the Grid Application Control module, and the core of
the architecture of K-Wf Grid (see Figure 3) is the Grid Workflow Execution Ser-
vice (GWES) [13]. This component is a web service, whose main function is to
analyze, process, manage, and execute workflows described in a workflow descrip-
tion language based on Petri nets and called Grid Workflow Description Language
(GWorkflowDL) [14].

Fig. 3. Architecture of components used in the K-Wf Grid project

The GWorkflowDL is a dialect of XML, designed specifically for controlling
workflows of services, programs, grid jobs, or data transfer operations using the
semantics of Petri nets. While the most widely used abstraction for workflows
today is the Direct Acyclic Graph (DAG), Petri nets provide theory which is at
least comparable to the theory supporting DAG operations, and enable to describe
wider range of constructs, including cycles and conditional branches. Moreover, in
Petri nets the data is an integral part of the whole construction (represented by
so-called “tokens”), and so the GWorkflowDL document at any stage describes the
whole state of the system, which is very useful for repeating experiments and doing
parameter studies. It is possible to let the workflow execute to a certain stage, then
take a snapshot of its current structure into a file, and then try several executions
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with different parameters by simply modifying the snapshot GWorkflowDL file. The
GWES engine in K-Wf Grid is implemented as a web service, with operations that
allow to

• initiate a workflow

• start a previously initiated workflow

• suspend a running workflow

• resume a suspended workflow

• abort a running workflow (similar to suspending, but the workflow cannot be
resumed)

• restart a finished workflow

• set and get user-readable workflow description

• query the unique workflow identifier or its status

• store the workflow to a preconfigured XML database

• retrieve a stored workflow from the database

• query any data token in a workflow

• get or set some specific properties of a workflow.

A more detailed description of all capabilities of GWES, as well as a complete
state transition diagram for GWorkflowDL-described workflow can be found in [15].

The GWES is supported by several other services and tools. In the K-Wf Grid
project, it is mainly the Workflow Composition Tool (WCT) and Automated Appli-
cation Builder (AAB). Since GWorkflowDL supports several levels of abstraction for
activities in a workflow, these tools are used to concretize an abstract place. WCT
is responsible for finding an appropriate service class (non-grounded service inter-
face description), or several service classes, for an abstract activity. AAB then finds
all grounded services, which do expose the interface selected by WCT. From these,
one is picked at runtime by the scheduler (scheduling algorithms may be selected
by users). These components are an integral part of the semantic support facility
of the workflow construction and execution process, and they use the information
present in the knowledge base of the infrastructure.

Another tool supporting GWES is the Grid Workflow User Interface
(GWUI) [16]. GWUI is a graphical front-end for GWES, able to visualize a work-
flow handled by GWES. Using GWUI, user may monitor a workflow, and perform
basic interaction with it – execute it, pause, abort, query and modify data tokens
in places of the Petri net. A sample of the visualization can be seen in Figure 4.

4.2 Interactive Workflows with GWES in int.eu.grid

In the int.eu.grid project, the infrastructure supporting GWES, as well as GWES
itself is modified to fit into the common grid infrastructure based on LCG [17] and
gLite [7] grid middlewares.
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Fig. 4. A screenshot of a sample workflow visualized in GWUI

Since int.eu.grid applications are not based on SOA architecture, but on more
common grid jobs, GWES has been modified to be part of the core of an executable
module, which is then executed as a grid job in the project’s infrastructure. This job
is then interactively managed by the user via GWUI embedded into the Migrating
Desktop (MD) interface.

The GWES was converted into a stand-alone Java application, executable from
the command line. When the job starts, the first executed application is GWES,
with a parameter pointing to a GWorkflowDL description of the workflow to execute.
Instead of a web service interface, GWES communicates through its standard input
and ouput, which are connected to the interactive channel of int.eu.grid. At the
other end of this channel is the GWUI, working as a visualization plug-in in the
MD. It was also modified to communicate through the interactive channel facilities
of MD instead of accessing a remote web service.

The general capabilities of GWES remain almost the same as in K-Wf Grid.
It has been extended with another job type, so it is now able to execute local
programs, which are referenced by activities in the GWorkflowDL Petri net. GWUI
has received the ability to modify workflows by adding, removing, and reconnecting
activities and places. The possibility to edit data has also remained.

The WCT and AAB components are no longer present in this setup, since the
workflow is not constructed from start automatically. Also, the scheduler has been
replaced by a simpler module, which is able to allocate nodes to the executed acti-
vities. This is now internal part of GWES.

The workflow job is started from MD as a special MPI interactive job. The
number of nodes requested for the job must be equal to or greater than the number
of nodes required by any single task of the workflow, otherwise the workflow would
fail. The allocation of nodes inside the workflow job is performed according to
parameters set by user in the GWorkflowDL document. If there are several activities
ready to fire (execute), those which cannot receive enough computational nodes wait
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until other activities finish and vacate their allocated nodes. If GWES encounters
activity during execution, whose demand for nodes exceeds the total number of nodes
allocated to the interactive job, it signals a fault to the user, and aborts the workflow.

4.3 Flood Forecasting Application

The flood forecasting application itself started its life in the EU project ANFAS [21].
In the beginning, it was an HPC experiment, using a hydraulic simulation model
(FESWMS [24]) to predict water flow in an area hit by a river flood. After ANFAS,
the application has been significantly extended during the CROSSGRID [22, 2]
project, to contain a whole cascade of simulation models, and to use the Globus
Toolkit [26], then in version 2. Since floods usually occur as a result of specific
weather conditions, marked mainly by period of heavy precipitation, the simulations
begin with weather prediction. From this prediction, a hydrological model computes
runoff into the riverbed, and from thus predicted river level, a hydraulic simulation
can predict actual flooding of the target area. With the development of the grid and
incorporation of the service-oriented architecture paradigm [28], the application has
also changed. In the MEDIgRID project [23], it was extended with more simulation
models and visualization tools, and deployed as a set of loosely coupled WSRF [25]
services, using Globus Toolkit [26] version 4.

Fig. 5. Architecture of the flood forecasting application



282 B. Šimo, O. Habala, E. Gatial, L. Hluchý

The new architecture of what was previously called a simulation cascade [22]
can be seen in Figure 5. It is a set of loosely coupled models, with several possible
execution scenarios. Figure 5 contains several entities, each of them having its role
in our application. At the top of the figure our main data provider is depicted, the
Slovak Hydrometeorological Institute (SHMI). SHMI provides us with input data
for the first stage of our application, the Meteorology. The meteorological forecast
is computed by the MM5 model, which operates in three distinct operation modes
(simple, one-way nested and two-way nested). This is the forecasting step of the
whole application. The predicted weather conditions are used in the Watershed
integration stage to compute water runoff into the target river. This result is then
further processed in the Hydrology stage, where two models – HSPF and NLC –
compute river levels for selected geographical points. These levels are then used
to model water flow in the last, Hydraulic stage of the application. All important
results are visualized and displayed to the user – if he/she requires it.

In the current implementation, the interactive workflow management system
described in the previous chapter is used to manage the workflow of this application
inside of a job submitted to the grid.

5 CONCLUSIONS

We have described two different approaches to making use of the MPI and interactive
features provided in the int.eu.grid project. We have shown that parallelization of
a simulation model does not have to be complicated provided it is based on a conve-
nient internal model and it gives significant speedup worth the effort. The addition
of interactivity helped increase the user experience when running in grid environ-
ment by providing more convenient debugging during development and ability to
steer the application. The interactive workflow management of flood forecasting
application gives the user another type of steering capabilities in terms of dynamic
workflow restructuring. The application components running inside this system
have no startup penalty and therefore it is mostly valuable for workflows of short
lived jobs. As the system can be used for any other applications consisting of an
interconnecting components, we expect the real value of the system to be shown in
the future.
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