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Abstract. In this paper we approach the problem of hierarchical clustering through
membrane computing. A specific P system with external output is designed for each
Boolean matrix associated with a finite set of individuals. The computation of the
system allows us to obtain one of the possible classifications in a non-deterministic
way. The amount of resources required in the construction is polynomial in the
number of individuals and of characteristics analyzed.
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1 INTRODUCTION

Many scientific investigations depend on many factors and this makes such inves-
tigations very complex. In order to simplify the problems and make them more
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tractable it is necessary to group individuals with similar characteristics. The indi-
viduals are characterized by a high number of properties so the clustering according
to their degree of similarity is not a simple task.

There are different methods of ranking the groups of individuals. We mention
two types only here, the non-hierarchical and the hierarchical clustering. In non-
hierarchical clustering homogenous groups are formed without establishing relations
among them; in hierarchical clustering the individuals are grouped in levels. The
inferior levels are contained in the superior levels. Hierarchical clustering is mostly
used and it is dealt with in this paper.

Hierarchical clustering refers to the formation of a recursive clustering of the
individuals by means of the partitions P0, P1, . . . , Pm of the set of N individuals
with 1 ≤ m ≤ N − 1. The partition P0 consists of N groups, each one of them
formed by a single individual. The groups that form this partition join progressively
until arriving at the last partition, Pm, that consists of a single group formed by
all the individuals. In each step two most similar groups are joined according to
a previously established criterion.

Researchers use clustering to characterize and to order a vast amount of informa-
tion about variability of population of individuals. These populations are grouped
in more or less homogenous clusters based on their properties. This methodology
has been applied in fields as diverse as medicine, biology, classification of words and
of fingerprints, artificial intelligence, etc. Recently clustering has been applied to
the classification of musical genre [13], to predict essential hypertension [12], in the
classification of material planning and control systems [9], of the ocean color [1], of
the plants gens [14].

The different groups obtained by means of the classification are characterized
by different levels of the measured variables. These values allow us to give common
properties of the individuals belonging to the same group. The fact of having es-
tablished groups allows us to identify the most similar cluster of a new individual.
The characteristics measured of the individuals can be qualitative or quantitative
variables. In most cases we are only interested in the presence or absence of certain
qualitative characteristics. Thus, in this paper we consider the hierarchical clustering
using dichotomizing variables, and this problem is approached within the framework
of cellular computing with membranes. This approach is interesting because it al-
lows us to treat some statistical topics within this new model of computation. The
amount of used resources is polynomial in the number of individuals and the number
of characteristics analyzed.

In the following, we assume that the reader is familiar with the basic notions of
membrane computing; for details, refer to [6, 7, 8, 15].

2 HIERARCHICAL CLUSTERING

In order to obtain a hierarchical clustering we firstly need a set of individuals or
observations.
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Definition 1. A k-set over a metric space (E, d), with d(E × E) ⊆ N is a subset
of Ek.

The elements of a finite k-set, Ω = {ω1, . . . , ωN}, are called individuals. The
components of the individual ωi (called characteristics or variables) is denoted by
ωi1, . . . , ωik. Thus, the set of the individuals can be represented by the matrix
PNk = (ωij)1≤i≤N,1≤j≤k.

The objective of clustering is to gather the individuals in similar groups whose
members are all close to each other with various dimensions being measured. It
will be necessary to establish criteria in order to measure the similarity between
individuals and between groups. Obviously, the clustering that is obtained will
depend on the similarity function that is chosen [10].

Definition 2. A similarity over a finite k–set, Ω = {ω1, . . . , ωN}, is a function s of
Ω× Ω in R+ that verifies

• s is symmetric, that is ∀(ωi, ωj) ∈ Ω× Ω : s(ωi, ωj) = s(ωj, ωi)

• ∀ωi, ωj ∈ Ω with i 6= j : s(ωi, ωi) = s(ωj, ωj) ≥ s(ωi, ωj).

In this paper we work with dichotomizing variables; their values are denoted
by 0 and 1. One of the similarities most used for dichotomizing variables is that
proposed by Sokal and Michener [2] and it is defined by:

s′(ωi, ωj) =
1

k
·

k
∑

r=1

(1− |ωir − ωjr|), for each (ωi, ωj) ∈ Ω× Ω. (1)

In this paper the similarity that we use is a modification of the previous one. It
represents the number of coincidences in the number of total characteristics and it
is defined as follows:

s(ωi, ωj) =
k

∑

r=1

(1− |ωir − ωjr|), for each (ωi, ωj) ∈ Ω× Ω. (2)

We use this similarity because it is easier to implement with P systems and
the result obtained is the same as those obtained with the similarity of Sokal and
Michener.

In the case of the hierarchical clustering the groupings follow a hierarchy formed
by partitions P0, P1, . . . , Pm that are called clusterings, and verify

P0 ⊆ P1 ⊆ P2 ⊆ . . . ⊆ Pm

with 1 ≤ m ≤ N − 1. The sets that belong to the partitions are called clusters.
The clusterings are constructed in a recursive manner. P0 is formed by as many
clusters as individuals. The following partitions are obtained by joining the two
closest clusters belonging in the previous one. This process is done until we obtain
a partition, Pm, with a single set formed by all the individuals.
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Next we define the necessary mathematical concepts in the hierarchical cluster-
ing [11].

Definition 3. Let Ω = {ω1, . . . , ωN} the k-set of N individuals. A subset H of the
power set P(Ω), is a hierarchy over Ω if it verifies:

• Ω ∈ H

• {ω} ∈ H (∀ω ∈ Ω)

• If h ∩ h′ 6= ∅ ⇒ h ⊆ h′ or h′ ⊆ h (∀h, h′ ∈ H)

•
⋃

{h′ | h′ ∈ H, h′ ( h} ∈ {h, ∅} (∀h ∈ H).

The elements of H are called clusters. If h1, . . . , hp ∈ H with Ω = h1∪ . . .∪hp, then
the set {h1, . . . , hp} is a clustering.

In order to construct a hierarchy it is necessary to have a similarity between
individuals and another function that measures the similarity between clusters. The
second function is called the aggregation index.

Definition 4. A symmetrical and nonnegative application δ from P(Ω) × P(Ω)
to R is called an aggregation index between clusters if:

• δ(h1, h2) ≥ 0, for each h1, h2 ∈ P(Ω).

• δ(h1, h2) = δ(h2, h1), for each h1, h2 ∈ P(Ω).

There are several aggregation indices [4] that depend on the similarity s chosen.
In this paper we use the aggregation index based on the minimum [5], defined by:

δ(h1, h2) = min {s(ωi, ωj) | ωi ∈ h1, ωj ∈ h2} (3)

A hierarchy has associated an index that measures the homogeneity degree between
the individuals belonging to the same cluster, and it is called hierarchical index.
This index is always obtained by means of the aggregation index. In this paper
we define the hierarchical index of a new cluster h obtained from the union of two
clusters h = h1 ∪ h2, by means of f(h) = δ(h1, h2).

2.1 An Algorithm for the Construction of a Hierarchy

The algorithms that are used to obtain a hierarchy have the same structure, the
only differences are the way to compute the similarities between individuals and the
aggregation index between clusters [3].

In this paper we consider an algorithm whose input is a finite k-set Ω, the
similarity s, and the aggregation index δ. The output is an indexed hierarchy (H, f).

1. Place each individual of Ω in its own cluster (singleton), creating the list of
clusters L = P0 = {S1 = {ω1} , S2 = {ω2} , . . . , SN = {ωN}}. In this moment
δ(Si, Sj) = s(ωi, ωj), and f(Si) = k (1 ≤ i < j ≤ N).
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2. Find the two closest clusters Si, Sj (1 ≤ i < j ≤ N), which will form a new class
Si = Si ∪ Sj .

3. Remove Sj from L.

4. Compute the aggregation index between all the pair of clusters in L by using
equation (3).

5. Go to step 2 until there is only one set remaining.

Remark 1. If at step 2 there are more than one possibility, then one of them is
chosen at random. So, the hierarchy obtained is not unique.

3 HIERARCHICAL CLUSTERING BY MEANS

OF MEMBRANE COMPUTING

3.1 Designing a P System

The goal of this paper is to obtain one hierarchical clustering of a finite k-set Ω, of N
different individuals by using P systems. Each individual ωi ∈ Ω ⊆ {0, 1}k is denoted
by ωi = (ωi1, ωi2, . . . , ωik), and we consider the similarity between individuals defined
by (2).

Let PNk = (ωij)1≤i≤N,1≤j≤k be the matrix associated with the N individuals to
classify. We define the P system of degree N with external output,

Π(PNk) = (Γ(PNk), µ(PNk),M1,M2, . . . ,MN−1,MN , R, ρ)

associated with the matrix PNk, as follows:

• Working alphabet:

Γ(PNk) = {ejs, djs : 1 ≤ j ≤ N, 1 ≤ s ≤ k} ∪ {as, bs : 1 ≤ s ≤ k} ∪
{Sij , Cij : 1 ≤ i < j ≤ N} ∪ {βi : 0 ≤ i ≤ k − 2} ∪
{αijt, Xijt : 1 ≤ i < j ≤ N, 1 ≤ t ≤ k − 1} ∪ {γi : 1 ≤ i ≤ N} ∪
{ǫi : 0 ≤ i ≤ 3k − 2} ∪ {ηi : 0 ≤ i ≤ (N − 1)(3k − 1)} ∪ {♯}

• Membrane structure: µ(PNk) = [N [1 ]1 [2 ]2 . . . [N−1 ]N−1 ]N .

• Initial multisets:

Mi =
{

a
(N−i)ωis
s : 1 ≤ s ≤ k ∧ 1 ≤ i ≤ N − 1

}

∪
{

b
(N−i)(1−ωis)
s : 1 ≤ s ≤ k ∧ 1 ≤ i ≤ N − 1

}

∪
{

e
ωjs

js : 1 ≤ s ≤ k ∧ i ≤ j ≤ N
}

∪
{

d
(1−ωjs)
js : 1 ≤ s ≤ k ∧ i ≤ j ≤ N

}

; 1 ≤ i ≤ N − 1

MN = {γN , ǫ0, η0} ;
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• The set R consists of the following rules:

– Rules in the skin membrane:

r0 = {ǫ0 → ǫ1β0} ∪ {ǫi → ǫi+1 : 1 ≤ i ≤ 3k − 2 ∧ i 6= k}∪
{ηi → ηi+1 : 0 ≤ i ≤ (N − 1)(3k − 1)− 1}

ru =
{

βu−1S
k−u
ij → αij(k−u) : 1 ≤ i < j ≤ N

}

1 ≤ u ≤ k − 1
r′u = {βu−1 → βu} 1 ≤ u ≤ k − 1
r′k−1 =

{

η(N−1)(3k−1) → (♯, out)
}

rk = {ǫkγqαijt → ǫk+1X
q−2
ijt γq−1(Xijt, out) : 2 ≤ q ≤ N,

1 ≤ i < j ≤ N, 1 ≤ t ≤ k − 1}
r′k = {ǫk → ǫk+1}
rk+1 = {XijtSipSjp → CipXijt : 1 ≤ i < j < p ≤ N, 1 ≤ t ≤ k − 1}∪

{XijtSipSpj → CipXijt : 1 ≤ i < p < j ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSpiSpj → CpiXijt : 1 ≤ p < i < j ≤ N, 1 ≤ t ≤ k − 1}

rk+2 = {XijtSip → Xijt : 1 ≤ i < p < j ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSjp → Xijt : 1 ≤ i < j < p ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSpi → Xijt : 1 ≤ p < i < j ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSpj → Xijt : 1 ≤ p < i < j ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSpj → Xijt : 1 ≤ i < p < j ≤ N, 1 ≤ t ≤ k − 1}

rk+3 = {Cij → Sij : 1 ≤ i < j ≤ N}∪
{

ǫ3k−1X
q−2
ijt γq−1 → ǫ1β0γq−1 : 1 ≤ i < j ≤ N, 1 ≤ t ≤ k − 1

}

r′k+3 = {ǫ3k−1 → ǫ1β0}

– Rules in the membrane labelled by i {1 ≤ i ≤ N − 1}:

rk+4 = {asejs → (Sij, out) : 1 ≤ s ≤ k, i+ 1 ≤ j ≤ N}
rk+5 = {bsdjs → (Sij, out) : 1 ≤ s ≤ k, i+ 1 ≤ j ≤ N}

• The partial order relation ρ over R consists of the following:

– Priority relation in the membrane labelled by i (1 ≤ i ≤ N − 1): ρi = ∅

– Priority relation in the skin membrane:

ρN =
{

r1 > r′1 > r2 > r′2 > . . . > rk−1 > r′k−1

}

∪ {rk > r′k} ∪
{

rk+1 > rk+2 > rk+3 > r′k+3

}

.

3.2 An Overview of Computations

At the beginning of a computation the membrane labelled by i (1 ≤ i ≤ N − 1)
contains the objects as, bs, ejs, djs (1 ≤ s ≤ k and i + 1 ≤ j ≤ N). In this
membrane the presence or absence of the objects as, bs (or ejs, djs) encodes the
values (0/1) of the individual ωi (or components of the individuals ωj).

Initially, the skin membrane contains the objects γN , ǫ0 and η0. The evolution
of the object γN allows us to know the number of clusters in all configurations of the
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P system: when the object γi appears, then the individuals are grouped in i clusters.
We use the object ǫ0 in order to synchronize the loop in 3k−1 steps, and this allows
us to join two clusters with maximum similarity. The object η0 is a counter used to
stop the P system in the configuration (3k − 1)(N − 1) sending the object ♯ to the
environment .

In the initial configuration the only rules that can be applied in membrane i
(1 ≤ i ≤ N − 1) are the rules of the type rk+4, rk+5 that send the objects Sij(1 ≤
i < j ≤ N) to the skin membrane. The multiplicity of these objects allows us to
know the similarity between individuals of the set Ω. In the skin membrane, the
rule r0 produces the objects ǫ1, β0.

After this configuration the computation of the P system is structured into loops
with 3k− 1 steps, each one formed by two stages. The first one takes k steps and it
begins with the object β0. In these steps the object Sij with maximummultiplicity, t,
is selected. In the k-th step of the loop the rule rk creates the objectsXijt in the skin
membrane and sends a copy to the environment, and the object γq is transformed
in the object γq−1, encoding the fact that two clusters have been joined.

The second stage lasts 2k− 1 steps. In the skin membrane there are the objects
Xijt meaning that a new cluster labelled by i is constructed by the union of the
previous clusters i, j. The rules rk+1, rk+2, rk+3 compute the similarities between new
cluster i and the other clusters, and this information is encoded by the multiplicity
of the objects Sip (1 ≤ p ≤ N, p 6= i).

In the (3k − 1)-th step of the loop, the rule rk+3 transforms the object ǫ3k−1

in β0 and ǫ1 that allow us to go to the top of the loop.
The first partition consist of N singletons, and in each loop two clusters are

joined. So, N−1 loops are necessary to obtain the last partition (a cluster containing
all N individuals). For that, the loop is repeated N − 1 times and the rule r′k−1 is
applied in the last step of any computation.

3.3 Formal Verification

In this section we show that the P system Π(PNk) is non-deterministic, and any
computation we will provide a solution of the clustering problem.

First of all, let us list the necessary resources to construct the P system Π(PNk)
from the matrix PNk.

• Size of the alphabet: Θ(N 2 · k).

• Sum of the sizes of initial multisets: Θ(N · k).

• Maximum of rules’ lengths: Θ(N).

• Number of rules: Θ(k ·N 3).

• Number of priority relations: Θ(k2 ·N 6).

• Cost of time: Θ(N · k).

Bearing in mind the recursive description of the rules and that the amount of re-
sources is polynomial in N, k, it is possible to construct the system Π(PNk) from
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the matrix PNk by means of a deterministic Turing machine working in polynomial
time.

Given a computation C of the P system Π(PNk), for each p ∈ N we denote by Cp
the configuration of the P system obtained after the execution of p steps. For each
membrane l ∈ {1, 2, . . . , N}, we denote by Cp(l) the multiset of objects contained in
the membrane labelled by l in Cp.

In what follows, C will denote an arbitrary computation of the P system Π(PNk).
First, we show that in the configuration C1, the multiplicity of the object Sij

(1 ≤ i < j ≤ N) represents the similarity between the individuals ωi and ωj.

Proposition 1. For every i, j, t (1 ≤ i < j ≤ N, 1 ≤ t ≤ k − 1), we denote

t
(1)
ij = max

{

t : St
ij ∈ C1(N)

}

. Then, t
(1)
ij =

∑k

s=1(1− | ωis − ωjs |).

Proof. For every i (1 ≤ i ≤ N − 1) we have:

C0(i) =
{

a(N−i)ωis

s , b(N−i)(1−ωis)
s , e

ωjs

js , d
(1−ωjs)
js | i ≤ j ≤ N, ωis ∈ {0, 1}

}

.

Then, the only rules that can be applied are rk+4 and rk+5. The rule rk+4 (or
rk+5) is only possible to apply when the component s of the individuals ωi and ωj

is equal to 1 (or to 0).
Whenever one of these rules is applied, the object Sij is sent to the skin mem-

brane. Then, the multiplicity of the objects Sij in C1(N) will coincide with the

number of equal components between the individuals ωi and ωj. That is, t
(1)
ij =

∑k

s=1(1− | ωis − ωjs |). �

From now on, we denote by t
(n)
ij = max

{

t : St
ij ∈ C1+(n−1)(3k−1)(N)

}

the maxi-
mum multiplicity of the objects Sij in the first step of the n-th loop of the compu-
tation.

Proposition 2. For each n (0 ≤ n ≤ N − 2), we have:

a) β0 ∈ C1+n(3k−1)(N).

b) If 1 ≤ j ≤ 3k − 1, then ǫj ∈ C1+n(3k−1)+(j−1)(N).

Proof. We prove this proposition by induction on n.

• As ǫ0 ∈ C0(N) we can apply one of the rules r0 producing the objects ǫ1, β0 ∈
C1(N). In the following k − 1 steps the rules r0 will be applied producing
the object ǫk ∈ Ck(N). If αijt, γq ∈ Ck(N), then the rule rk (or the rule r′k)
will be applied. In both cases we obtain that ǫk+1 ∈ Ck+1(N). In successive
configurations the rule r0 transforms the objects ǫj ∈ Cj(N), (k+1 ≤ j ≤ 3k−2)
until we obtain the object ǫ3k−1 ∈ C3k−1(N).

• Let us suppose the hypothesis holds for 0 ≤ n < N − 2. Then, ǫ3k−1 ∈
C1+n(3k−1)+(3k−1−1)(N) = C(n+1)(3k−1)(N). If there is some object Xijt in that
configuration, then the rules from rk+3 will be applied, and in the opposite case,
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the rule r′k+3 will be applied. In both cases the object ǫ3k−1 is transformed
in ǫ1, β0 ∈ C1+(n+1)(3k−1)(N). Applying k − 1 times the rules from r0 we ob-
tain that ǫj ∈ C1+(n+1)(3k−1)+(j−1)(N) (1 ≤ j ≤ k). In C1+(n+1)(3k−1)+(k−1)(N)
the object ǫk produces ǫk+1 ∈ C1+(n+1)(3k−1)+k(N) by means of one rule from
rk or r′k. Then, applying the rules from r0 successively we obtain that ǫj ∈
C1+(n+1)(3k−1)+(j−1)(N) (k + 1 ≤ j ≤ 3k − 1). �

Corollary 1. The objects Xijt only can be sent to the environment at the moments
1 + n(3k − 1) + k (0 ≤ n ≤ N − 2).

Proof. The rule rk is the only one that sends objects Xijt to the environment, and
from Proposition 2 we have ǫk ∈ C1+n(3k−1)+k−1(N) (0 ≤ n ≤ N − 2). �

Corollary 2. There exists n (0 ≤ n ≤ N − 2) and there are objects Xijt such that
Xijt ∈ C1+n(3k−1)+k(N).

Proposition 3. The configuration C(N−1)(3k−1) sends the halting object ♯ to the
environment.

Proof. Applying (N − 1)(3k − 1) times the rules from r0, the object η0 ∈ C0(N)
produces η(N−1)(3k−1) ∈ C(N−1)(3k−1)(N). In this configuration the rule r′k−1 sends
the halting object ♯ to the environment. �

Next, we show that it is only possible to modify the environment in the kth step
of the loop.

Corollary 3. For every n (0 ≤ n ≤ N − 2) the following assertions hold:

a) For every r, (1 + n(3k − 1) < r < 1 + n(3k − 1) + k) we have:

Cr(env) = C1+n(3k−1)(env).

b) For every r, (1 + n(3k − 1) + k < r < 1 + n(3k − 1) + 3k − 1) we have:

Cr(env) = C1+n(3k−1)+k(env).

Proof. The rule rk is the only one sending objects to the environment before the
halting configuration. From Corollary 1 we have Xijt ∈ C1+n(3k−1)+k(env). Thus, for
every r (1 + n(3k− 1) < r < 1 + n(3k− 1) + k) we have Cr(env) = C1+n(3k−1)(env),
and for every r (1 + n(3k− 1) + k < r < 1 + n(3k− 1) + 3k − 1 we have Cr(env) =
C1+n(3k−1)+k(env). �

In the following, we will show that in each loop one object Xijt is sent to the
environment and eventually there exists a loop which sends no object Xijt to the
environment. In this case, in next loops no further objects are sent to the environ-
ment.

Firstly we prove that if in the k-th step of the loop the rule rk is not applicable,
then also it is not applicable in the next loop.
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Proposition 4. For every n (0 ≤ n ≤ N − 2) if the rule rk cannot be applied in
C1+n(3k−1)+k−1, then it cannot be applied in C1+(n+1)(3k−1)+k−1.

Proof. According to Proposition 2, for each n (0 ≤ n ≤ N − 2) we have ǫk ∈
C1+n(3k−1)+k−1(N). The objects γq always appear in the skin membrane. As the rule
rk is not applicable in C1+n(3k−1)+k−1, we have αijt /∈ C1+n(3k−1)+k−1(N).

Having in mind that objects βu appear in C1+n(3k−1)+u(N) (1 ≤ u ≤ k − 1)
we deduce that Sij /∈ C1+n(3k−1)+u(N). Hence the rule rk cannot be applied to the
configuration C1+n(3k−1)+k.

From step 1 + n(3k− 1) + k − 1 to step 1 + (n+ 1)(3k− 1) + k − 1, any object
Sij is produced. Then, the rule rk is not applicable to C1+(n+1)(3k−1)+k−1. �

Corollary 4. Let n be such that 0 ≤ n ≤ N − 2. If C1+n(3k−1)+k(env) is equal to
C1+(n+1)(3k−1)+k(env), then for each n′ (n ≤ n′ ≤ N − 2) we have

C1+n(3k−1)+k(env) = C1+n′(3k−1)+k(env).

Corollary 5. For each computation C there exists an unique νC (1 ≤ νC ≤ N − 2)
such that the rule rk is applicable to C1+(νC−1)(3k−1)+k−1, but it is not applicable to
C1+νC(3k−1)+k−1.

Proof. It follows from Corollary 2, Proposition 4, and Corollary 4. �

The following result allows us to give a meaning to the value t associated with
the object Xijt.

Proposition 5. Let X
injnt

(n)
injn

be the object that is sent to the environment by

applying the rule rk to the configuration C(k+1)+n(3k−1)−1. Then, we have

t
(n)
injn

= max
{

t | St
ij ∈ C1+n(3k−1)(N), 1 ≤ i < j ≤ N

}

.

Proof. As the rule rk is applicable to C(k+1)+n(3k−1)−1, we have the object α
injnt

(n)
injn

belongs to C(k+1)+n(3k−1)−1. That object is obtained from the application of one of the

rules r
k−t

(n)
injn

over the object S
t
(n)
injn

ij , where t
(n)
injn

is the maximum of the multiplicities

of the objects Sij . If there exists t
′ > t

(n)
injn

such that St′

ij ∈ C1+n(3k−1)(N), then rules
from rk−t′ have been applied. So, rules from r

k−t
(n)
injn

will not be applicable. �

Next, we show that the maximum multiplicity of the objects Sij belonging to
the skin membrane in any loop n is always greater than or equal to the multiplicity
of the objects Sij of the following loop n+ 1.

Proposition 6. Let wn = max
{

t : St
ij ∈ C1+n(3k−1)(N), 1 ≤ i < j ≤ N

}

, with 0 ≤
n ≤ N − 2. Then wn ≥ wn+1, for each n.
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Proof. From step 1+n(3k−1)+1 to step 1+n(3k−1)+wn, the rules r0, r
′
1, . . . , r

′
wn−1,

rwn
are applied in the skin membrane. So, the objects Sij do not evolve, and

ǫk ∈ C1+n(3k−1)+wn
(N). From Proposition 5 we deduce that

wn ≥ max
{

t : St
ij ∈ C1+n(3k−1)+wn

(N)
}

.

• If wn 6= 0, then the multiplicity of the objects Sij only can decrease by applying
the rules rk+1, rk+2 and rk+3. After that, the rule r0 is applied until reaching the
configuration C1+(n+1)(3k−1). Hence, wn+1 = max

{

t : St
ij ∈ C1+(n+1)(3k−1)(N)

}

≤
wn.

• If wn = 0, the objects Sij do not belong to the skin membrane and by Proposi-
tion 4 it is not possible to produce any object Sij.

Hence, wn+1 = max
{

t : St
ij ∈ C1+(n+1)(3k−1)(N)

}

= 0. �

Remark 2. According to Proposition 6 we obtain t1 ≥ t2 ≥ . . . ≥ tn.

Next, we show that if a loop sends an object Xijt to the environment, then in the
next loop the objects Sij, Si′j , Sji′ (i

′ /∈ {i, j}) disappear from the skin membrane.
That is, at the moment that two clusters {i, j} are joined a new class i is formed
and all the objects Si′j′ that have subscript j disappear.

Proposition 7. Let X
i1j1t

(1)
i1j1

, X
i2j2t

(2)
i2j2

, . . . , X
injnt

(n)
injn

∈ C1+n(3k−1)(env), with 1 ≤

n ≤ νC . If Sij ∈ C1+n(3k−1)(N), then (i, j) /∈ {(i1, j1), . . . , (in, jn)}, and {i, j} ∈
{1, . . . , N} − {j1, . . . , jn}.

Proof. We prove the result by induction on n.

• Let us suppose that the rule rk sends the object X
i1j1t

(1)
i1j1

to the environment in

step k. From Proposition 6 we deduce that if Sij ∈ C1+(3k−1)(N), then (i, j) /∈
{(i1, j1)}. In the next steps, applying the rules rk+1, rk+2 and rk+3 we obtain that
the objects Sij ∈ C1+(3k−1) verify (i, j) /∈ {(i1j1)} , {i, j} ∈ {1, . . . , N} − {j1}.

• Let us suppose the proposition holds for 1 ≤ n < νC. From Proposition 6,
if X

in+1jn+1t
(n+1)
in+1jn+1

∈ Ck+n(3k−1)(env) and Sij ∈ C1+(n+1)(3k−1)(N), then (i, j) /∈

{(in+1, jn+1)}. So, we have (i, j) /∈ {(i1, j1), . . . , (in, jn)} by the induction hy-
pothesis. Then, (i, j) /∈ {(i1, j1), . . . , (in+1, jn+1)}. In the next steps, applying
the rules rk+1, rk+2 and rk+3 we obtain that the objects Sij ∈ C1+(n+1)(3k−1)(N)
verify (i, j) /∈ {(in+1jn+1)} , {i, j} ∈ {1, . . . , N} − {jn+1}. The proof concludes
by using the induction hypothesis. �

In the following proposition we study how the multiplicities of the objects Sij

change when two clusters are joined.

Proposition 8. Let us suppose that X
i1j1t

(1)
i1j1

, . . . , X
injnt

(n)
injn

∈ C1+n(3k−1)(env) with

1 ≤ n ≤ νC , and t
(n)
ij = max

{

t : St
ij ∈ C1+n(3k−1)(N)

}

. Then,
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• If in /∈ {i, j}, then t
(n+1)
ij = t

(n)
ij .

• If 1 ≤ in < jn < p ≤ N , then t
(n+1)
inp

= min
{

t
(n)
inp

, t
(n)
jnp

}

.

• If 1 ≤ in < p < jn ≤ N , then t
(n+1)
inp

= min
{

t
(n)
inp

, t
(n)
pjn

}

.

• If 1 ≤ p < in < jn ≤ N , then t
(n+1)
pin

= min
{

t
(n)
pin

, t
(n)
pjn

}

.

Proof. The pairs (Sinp, Sjnp), (Sinp, Spjn), (Spin, Spjn) are transformed in the ob-
jects Cinp, Cinp, Cpin, respectively, by applying the rule rk+1 to Ck+(n−1)(3k−1). After
that, the rule rk+2 removes the objects Sinp, Sjnp, Spin, Spjn. Thus, the multiplic-

ity of the objects Cinp, Cinp, Cpin is equal to min
{

t
(n)
inp

, t
(n)
jnp

}

,min
{

t
(n)
inp

, t
(n)
pjn

}

, and

min
{

t
(n)
pin

, t
(n)
pjn

}

, respectively. Finally, we note that the objects Sij are produced

from the objects Cij by applying the rule rk+3. �

Let us consider a C a computation of the P system Π(PNk). We recursively
construct a sequence of partitions ∆C

0 , ∆
C
1 , . . . ,∆

C
νC

of the set of the individuals, as
follows:

• ∆C
0 =

{

B0
q10
, . . . , B0

qN0

}

with qi0 = i and B0
i = {ωi} ≡ {i} (1 ≤ i ≤ N).

• The partition ∆C
1 is constructed from the object X

i1j1t
(1)
i1j1

∈ Ck+1(env) with

1 ≤ i1 < j1 ≤ N , as follows:

– We have {i1, j1} ⊆
{

q10, . . . , q
N
0

}

. If i1 = qu0 and j1 = qs0, with 1 ≤ u < s ≤ N ,
then the new cluster is B1

qu1
= B0

qu0
∪B0

qs0
with qu1 = qu0 , B

0
qs0

/∈ ∆C
1 , and B1

l = B0
l

for l ∈
{

q10, . . . , q
N
0

}

− {qu0 , q
s
0}.

Then ∆C
1 =

{

B1
q11
, . . . , B1

q
N−1
1

}

.

• We construct ∆C
n+1 from ∆C

n =
{

Bn
q1n
, . . . , Bn

q
N−n
n

}

and X
in+1jn+1t

(n+1)
in+1jn+1

, as fol-

lows:

– From Proposition 7, we deduce that {in+1, jn+1} ⊆
{

q1n, . . . , q
N−n
n

}

. If in+1 =
qun and jn+1 = qsn, with 1 ≤ u < s ≤ N , then the new cluster is Bn+1

qun+1
= Bn

qun
∪

Bn
qsn

with qun+1 = qun, B
n
qsn

/∈ ∆C
n+1, and Bn+1

l = Bn
l for l ∈

{

q1n, . . . , q
N−n
n

}

−
{qun, q

s
n}.

Then ∆C
n+1 =

{

Bn+1
q1n+1

, . . . , Bn+1

q
N−n−1
n+1

}

.

Next, we show that t
(n)
ij is the aggregation index between clusters.
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Theorem 1. For every i, j, n (1 ≤ i < j ≤ N, 1 ≤ n ≤ νC), t
(n)
ij is the minimum

similarity between any pair of individuals belonging to Bn−1
i ∪ Bn−1

j . That is,

t
(n)
ij = min

{

t
(1)
i′j′ : i′, j ′ ∈ Bn−1

i ∪ Bn−1
j

}

= δ(Bn−1
i , Bn−1

j ).

Proof. By induction on n.

• From Proposition 1, if S
t
(1)
ij

ij ∈ C1(N), then t
(1)
ij corresponds to the similarity

between individuals i, j.

• Let us suppose that the result holds for n with 1 ≤ n < νC . Let X
injnt

(n)
injn

(1 ≤ in < jn ≤ N) be the object sent to the environment in the configuration

C1+n(3k−1)+k, and let ∆C
n−1 =

{

Bn−1
q1n−1

, . . . , Bn−1

q
N−n+1
n−1

}

.

– If in /∈ {i, j}, then from Proposition 8 we have t
(n+1)
ij = t

(n)
ij . The result

follows from the construction of ∆C
n and the induction hypothesis.

– If 1 ≤ i < in < jn, then from Proposition 8 we deduce that t
(n+1)
iin

=

min
{

t
(n)
iin

, t
(n)
ijn

}

. The result follows from the construction of ∆C
n and the

induction hypothesis.

– The proof is similar in the remaining cases. �

Proposition 9. For each n (0 ≤ n ≤ νC − 1), let us suppose that the partition

∆C
n =

{

Bn
q1n
, . . . , Bn

q
N−n
n

}

is constructed from the object X
injnt

(n)
injn

. If we denote by f

the hierarchical index function, then f(Bn
in
) = t

(n)
injn

, and for each B ∈ ∆C
n −

{

Bn
in

}

,

we have f(B) ≥ t
(n)
injn

.

Proof. By induction on n.

• Let us recall that ∆C
0 = {{ω1} , . . . , {ωN}} and f({ωi}) = k (1 ≤ i ≤ N).

• From construction, ∆C
1 =

{

B1
q11
, . . . , B1

q
N−1
1

}

with B1
i1

= {ωi1, ωj1} and B1
j =

{ωj} (∀j 6= i1). Then f(B1
j ) = k with j 6= i1 and f(B1

i1
) = t

(1)
i1j1

(because

s(ωi1, ωj1) = t
(1)
i1j1

≤ k − 1).

• Let us suppose that the result holds for n (1 ≤ n < νC). We have t
(n+1)
in+1jn+1

≤ t
(n)
injn

.

Let ∆C
n+1 =

{

Bn+1
q1n+1

, . . . , Bn+1

q
N−n−1
n+1

}

.

– If in+1, jn+1 ∈ Bn
qln
, then Bn+1

qln+1
= Bn

qln
. From the induction hypothesis we

deduce that f(Bn+1
qln+1

) = t
(n)
injn

≥ t
(n+1)
in+1jn+1

.

– If Bn+1
in+1

= Bn
in+1

∪ Bn
jn+1

and δ(Bn
in+1

, Bn
jn+1

) = t
(n+1)
in+1jn+1

, then f(Bn+1
in+1

) =

t
(n+1)
in+1jn+1

. �
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Proposition 10. The P system Π(PNk) allows us to construct a hierarchical clus-
tering associated with any computation of the P system.

Proof. Let C be a computation of the P system Π(PNk). Let ∆
C
0 , ∆C

1 , . . . ,∆C
νC

be
the partition associated with it. By Proposition 9 all the clusters of the partition ∆C

n

have a hierarchical index greater than or equal to t
(n)
injn

(denoted by tn in advance).
We construct the partition of the hierarchy P0, P1, . . . , Pm as follows:

– P0 = ∆0 = {{ω1} , {ω2} , . . . , {ωN}}.

– If the partitions ∆1,∆2, . . . ,∆p1 have associated the same hierarchical index,
then P1 = ∆p1.

– If the partitions ∆p1+1,∆p1+2, . . . ,∆p2 have associated the same hierarchical in-
dex, then P2 = ∆p2.

– We continue in this way until we have one of the following situations:

– if ∆νC has a hierarchical index tνC = k − 1, then Pm = ∆νC = Ω.

– if ∆νC has a hierarchical index tνC < k − 1, then Pm−1 = ∆νC and Pm = Ω.

�

4 CONCLUSIONS

One of the central issues when we have a set of individuals, each of them characte-
rized by a k-tuple, is to obtain a cluster that allows us to group similar individuals.

In this paper we propose a non-deterministic P system with external output to
obtain a hierarchical clustering. This P system gives one of the possible solutions
to the problem. We present an efficient (semi-uniform) solution to the problem of
clustering in the framework of the cellular computing with membranes. The solution
is semi-uniform because for each matrix formed by the values of the individuals,
a specific P system with external output is designed. The solution is efficient,
because it is polynomial in order of the number N of individuals and of the number k
of characteristics. The amount of resources initially required to construct the system
is polynomial in N and k.

The mechanisms of the formal verification of P systems are often a very hard
task. Therefore, to have new examples where this task is accomplished is always
interesting, in order to find systematic processes of formal verification in a model
of computation oriented to machines, like the P systems. The paper provides such
a new example of formal verification of P systems designed to solve a problem,
following a specific methodology valid in cases as that considered in the paper.
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