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Abstract. Automated and intelligent video surveillance systems play an important
role in the modern world. Since the number of various video streams that must be
analyzed concurrently grows, such systems can assist humans in performing tiresome
tasks. In order to be effective, video surveillance systems have to meet several re-
quirements: they must be accurate and able to process the received video stream in
real-time. A robust system should not depend on lighting conditions, illumination
changes and other sources of scene variation. A common component of surveil-
lance systems is a module that performs background estimation and foreground
segmentation. The MoG (Mixture of Gaussians) algorithm is a widely used statis-
tical technique of video segmentation. The estimation process is time-consuming,
especially for complex mixture models containing many components. The work
presented here focuses on the performance evaluation of MoG algorithm aiming
to assess feasibility of OpenCL-based processing of high resolution video on GPU
accelerated platforms.
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1 INTRODUCTION

One of the frequently used algorithms in video-surveillance [3, 5] and multimedia
systems [1] is MoG (Mixture of Gaussians) background modelling [15]. It allows
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to track the evolution of the background and detect foreground objects moving
across a scene. Numerous improvements of the original method have been proposed
to enhance segmentation quality and reduce processing time. Most articles [2, 9]
report implementations able to process consumer video formats in real-time when
accelerated with FPGAs or CUDA framework on GPU. Latest work [6] shows FPGA
and ASIC embedded implementations of GMM (Gaussian mixture model) processing
HD video in real time. These were targeted for various platforms, manufacturing
technologies and optimized for speed or silicon area.

In this paper, we present performance evaluation of MoG algorithm on GPU-
based HPC computing system and commodity PC, aiming to assess feasibility of
OpenCL-based processing of high resolution video.

2 BACKGROUND MODELLING USING MIXTURE OF GAUSSIANS

The MoG video segmentation algorithm belongs to statistical background modelling
methods, where statistical variables are used to classify the pixels as foreground or
background. The history of intensity values per each pixel is modelled as MoG
(Mixture of Gaussians) corresponding to various image content (i.e. background,
moving objects, shadows). In case, when each pixel is characterized by its gray
level intensity or component color space (e.g. RGB, HSV, etc.), the probability of
observing the particular pixel value is considered given by the formulas (1) and (2).

P (Xt) =
K∑
i=1

ωi,tη (Xt, µi,t,Σi,t) , (1)

η (Xt, µ,Σ) =
1

2π
n
2 |Σ|

1
2

e−
1
2

(Xt−µt)TΣ−1(Xt−µt) (2)

where:

• K – number of distributions,

• Xt – pixel value as a function of time t,

• P (Xt) – probability of observing particular pixel value,

• ω – weight,

• η – probability density function,

• µi,t – expectation (mean value) of ith component at time t,

• n – number of Xt image channels: 1 for gray level, 3 for color video,

• Σ – covariance matrix.

Each pixel is characterized by a mixture of K Gaussians. In the original pa-
per [15], authors assumed that RGB color components are independent and have
the same variance, i.e. Σ = σ2I. Every new pixel value, Xt, is then checked against
existing K Gaussian distributions, until a match is found (pixel value is within
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2.5 standard deviations of a distribution). Then, the background model – i.e. the
parameters of the MoG’s (ω, µi,t,Σ) – is updated using modified online EM (Expec-
tation Minimization) algorithm. The original Mixture of Gaussians algorithm has
been improved by many authors. The extended survey of proposed extensions is
presented in [2].

3 GENERAL PURPOSE COMPUTING WITH OPENCL

OpenCL exploits possibility of parallel computing with various processing elements.
Primarily it was implemented for GPU devices. Later, implementations for CPUs
have been added. Recently, its viability on FPGA platforms have been announced [4,
13]. OpenCL Application Programming Interface, data formats and dimensioning of
data parallelism reflect features specific to GPU devices that are already supported
natively by OpenGL standard dedicated to 2D and 3D graphics rendering.

Popular alternative for GPGPU computing is CUDA (Compute Unified Device
Architecture environment) which is dedicated solely to NVidia GPU devices. It
provides rich library of highly optimized procedures for general purpose computing.
This is why it is frequently chosen for accelerating algorithms [7, 11]. Another frame-
work for general purpose computing on GPU devices is DirectCompute library [8]
that uses DirectX environment.

OpenCL computing model assumes execution of OpenCL kernel on number of
parallel, so called, computing devices which may be of the following types: GPU,
multicore CPU, multicore DSP or FPGA. OpenCL kernels that use generic data
types and basic features are portable across multiple types of computing devices.
However, there are some dedicated data types and built-in functions supported solely
by GPUs, due to their specific architecture, e.g. texturing units, samplers, etc. that
are not present in generic CPU architectures.

GPU pipeline is well suited for processing rasterized images, both artificial and
real ones. In OpenGL, this final stage of 3D graphics rendering is called pixel
shading. It is worth mentioning, that prior GPGPU computing interfaces were
standarized in form of CUDA, OpenCL or DirectCompute frameworks, GPU shader
units were used for accelerating computer vision [17]. The algorithm functionality
was implemented in a form of pixel shader programs operating on textures containing
image pixels. Both CUDA and OpenCL implement the concept of shaders in a form
of so called kernels executed in concurrent threads by multiple processing elements
of a computing device.

4 IMPLEMENTING VIDEO-SEGMENTATION
ON GPU USING OPENCL

The implementation described in this paper is based on data-oriented OpenCL ker-
nels designed for execution on parallel processing elements of GPU devices. The
software comprises also single-threaded sequential, C++ based implementation able
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to operate on CPU and consumer devices for reference and comparison. In both
implementations, host CPU is responsible for data acquisition, video task control
and measurement. Two diagrams of data processing flows that were used in the
work, are presented in Figure 1. Initial setup (Figure 1 a)) consisted of full data
pipeline that acquired video signal from advanced industrial 5 Mpixel color video
camera via GigaBit Ethernet interface in Bayer pattern format.

a)

b)

Figure 1. Video segmentation – OpenCL data flow and memory usage; a) Full video data
path for PC based system OpenCL-accelerated system, b) OpenCL data path for
performance evaluation

JAI BB500-GE GigaBit Ethernet camera device was used to acquire high res-
olution video in real time for design and initial verification of OpenCL kernel for
data processing in GPU pipeline. Preliminary interpolation of raw video data was
necessary to obtain RGB video data and to produce gray level video signal for
segmenation.
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In order to measure performance of OpenCL kernels on various platforms, dedi-
cated simple data flow has been arranged as shown in Figure 1 b). In this scheme,
video data for testing is stored on the hard drive of the host computer. This solution
enables easy emulation of various video formats: high resolution video cameras and
low cost general purpose imaging devices.

η(xt, µ, σ) =
1

σ
√

(2π)
e−

(xt−µt)
2σ2 . (3)

Sample low resolution video frames (720 × 576) are shown in Figure 2 a)–c).
For the purpose of performance evaluation in this work, gray level videos (n =
1) have been analyzed, thus probability density function (2) was reduced to for-
mula (3).

a) b)

c)

Figure 2. Sample video data: frame No. 1050 – video sequence A [20]; a) Source RGB
image b) Gray level image c) Segmentation results

MoG algorithm is time consuming due to intensive memory transactions nec-
essary to update estimated properties of probability density function (2) for each
of K components assigned to image pixels. Number of mixture parameters, along
with size of input and output image, determine amount of memory needed for video
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segmentation. Each of K declared distributions needs 3 parameters to describe
the Gaussian model (2): weight ωi,t, mean value µi,t, and variance σi,t. All must
be read and written back in order to track changes and update Gaussian mixture
models. Estimate of mixture model size for video frame M × N is about MNK 12
bytes, assuming 4-byte floating point precision. It makes 576 MB (K = 10) or
289 MB (K = 5) for high resolution 2 456 × 2 048 video. Extra buffers are neces-
sary for input, output and gray level conversion. Device-specific OpenCL memory
buffer constraint must be considered in order to avoid allocation and transfer er-
rors.

Sample OpenCL kernel implementing image convertion from RGB to gray level
is presented in source code listing 1. Kernel definition consists of sampler declaration
for image data adressing, constants and kernel body. Listing 2 shows part of kernel
performing video segmentation of gray level video stream. Presented source code
lines compute probability density function in accordance with formula (3) and up-
date MoG matching component. Kernel body is executed concurrently by multiple
GPU processing elements available on OpenCL Device.

c o n s t a n t sample r t smp =
CLK NORMALIZED COORDS FALSE | CLK FILTER NEAREST |
CLK ADDRESS CLAMP TO EDGE;

c o n s t a n t f l o a t 4 c o e f f = { 0 .299 f , 0 .587 f , 0 .114 f , 0 .000 f } ;

k e r n e l void r gb to g ray ( r e a d o n l y image2d t src ,
w r i t e o n l y image2d t dst )

{
const i n t 2 g id = { g e t g l o b a l i d ( 0 ) , g e t g l o b a l i d ( 1 ) } ;
const i n t 2 s i z e = { get image width ( s r c ) ,

g e t image he i ght ( s r c ) } ;

f l o a t 4 rgb = read image f ( src , smp , g id ) ;
f loat gray = dot ( c o e f f , rgb ) ;

wr i t e image f ( dst , gid , ( f l o a t 4 ) gray ) ;
}

Listing 1. Color RGB to gray level conversion kernel

Several optimization techniques were applied and OpenCL specific constructs
were used to obtain results presented in the following Section 5. Amongst all, com-
pilation level optimisation based on loop unrolling pragma should be mentioned as
it reduced kernel execution time significantly. Moreover, private local memory was
used to replicate parameters ωi,t, µi,t, σi,t (weight, mean, var) of each of K Gaus-
sian processes assigned to particular pixel of video frame. Time of data transfer
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c o n s t a n t sample r t smp =
CLK NORMALIZED COORDS FALSE | CLK FILTER NEAREST |
CLK ADDRESS CLAMP TO EDGE;

k e r n e l void mog segment ( r e a d o n l y image2d t frame ,
w r i t e o n l y image2d t dst , g l o b a l f loat ∗ mog buf ,
c o n s t a n t MogParams∗ params , const f loat alpha )

{
const i n t 2 g i d = { g e t g l o b a l i d ( 0 ) , g e t g l o b a l i d (1 ) } ;
const i n t 2 s i z e = { get image width ( frame ) ,

g e t image he i ght ( frame ) } ;

f loat pix = read image f ( frame , smp , g i d ) . x ∗ 255 .0 f ;
int pdf match = −1;

// . . . i n i t i a l i z e k e r n e l and read MoG parameters
// . . . f i n d matching MoG component

#pragma u n r o l l nmixtures
for ( int i = 0 ; i < K; ++i )
{

i f ( i == pdf match )
{

f loat d = pix − mean [ i ] ;
f loat r = a/ n a t i v e s q r t (2 PI∗var [ i ] )
∗ nat ive exp (−0.5 f ∗d∗d/ var [ i ] ) ;

weight [ i ] = weight [ i ] + a ∗ ( 1 . 0 f − weight [ i ] ) ;
mean [ i ] = mean [ i ] + r ∗ d i f f ;
var [ i ] = max( params−>minVar ,

var [ i ] + rho ∗(d∗d − var [ i ] ) ) ;
}
else
{

weight [ i ] = ( 1 . 0 f − a )∗weight [ i ] ;
}

}

// . . . normalize , s o r t and save MoG parameters
// . . . compute r e s u l t p i x e l

wr i t e image f ( dst , g id , ( f l o a t 4 ) r e s u l t ) ;
}

Listing 2. MoG kernel – probability density calculus
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from global GPU memory to local memory and back was still significant, but much
less than subsequent transaction to global memory whilst searching for matching
distribution and sorting after parameter update.

Also image2d data structure, instead of initial 1D buffer object, was used to
store and access input and output image pixels. This made kernel code compact and
allowed to avoid excessive computations of 2D image coordinates. The important
feature of this method of video data access was usage of samplers that are specific to
GPU architectures. As samplers are not supported by OpenCL drivers for multicore
CPU, designed kernel cannot be executed on CPU based system.

5 RESULTS

The experimental part of the work is comprised of two tests. Parallel OpenCL
module was evaluated on GPU devices: MoG and conversion of RGB video to
gray level were both implemented in form of two separate OpenCL kernels (see
Figure 1). C++ implementation was executed by CPUs of the same computers
for reference and comparison. In the CPU part, dedicated functions for gray-level
conversion and MoG algorithm from OpenCV v2.4 library [19] have been used in
single-threaded version. For each configuration, single core of single CPU was used
for sequential processing. Performance tests were executed on two hardware config-
urations:

hw1: HPC cluster node, Nvidia Tesla M2090, Intel Xeon E5645 running at 2.4 GHz,

hw2: PC workstation, Nvidia GeForce GTX670, Intel i5 3570 running at 3.4 GHz.

Two video sequences (each containing 1000 frames) were used for benchmarking
both implementations on the two paltforms:

A. Low resolution (720× 576) color video sequence [20],

B. High resolution (2 456× 2 048) color video sequence captured with JAI BB500-
GE camera.

All software modules, including data acquisition, visualization and time mea-
surement were written in C++ language with use of OpenCL SDK, custom inter-
mediate level OpenCL wrapper [16] and OpenCV library compiled without parallel
processing support. Detailed analysis of output data and functional verification was
performed with MATLAB tool. Platform specific executable files were compiled
from the same source files for target operating systems of PC workstation and HPC
cluster.

Summary of results collected when processing selected video data sets on both
platforms hw1 and hw2 were presented in Table 1 and in Figure 3. Speedup S of
GPU over CPU on HPC platform exceeded value of 8 for regular mixture K = 5
and low resolution video sequence A. It reached value of 5 for high resolution video
sequence B. Average GPU computing time and CPU computing time were used for
speedup estimation S = TCPU

TGPU
. TCPU corresponds to average CPU processing time,
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TGPU consists of two components: execution of OpenCL kernels (MoG algorithm
and color to gray level conversion) and video data transfers from host device to
global memory of GPU device and vice versa.

HW
Config.

Frame
Size

K TGPU TCPU S
Theoretical Throughput
of GPU Implementation

ms ms FPS Mpixel/s

hw1
720× 576

5 2.01 17.67 8.8 498 197
10 3.91 24.84 6.4 256 101

2 456× 2 048
5 27.03 212.19 7.9 37 177

10 53.19 265.18 5.0 19 90

hw2
720× 576

5 1.79 9.23 5.2 559 221
10 3.36 12.03 3.6 298 118

2 456× 2 048
5 27.11 103.48 3.8 37 177

10 47.32 137.97 2.9 21 101

Table 1. Performance evaluation results (per 1 video frame)

Theoretical throughput was derived directly from GPU computing time without
considering video acquisition, foreground post-processing, UI procedures nor other
CPU overhead that make effective FPS (frame per second) rate. Throughput ex-
pressed in Mega-pixels allows to estimate number of pixels processed within a second
assuming 1 Mpixel = 1 024× 1 024 pixels.

An impact of data transfers on average computing time on GPU devices and
CPU processing times is presented in Figure 3. For low resolution video and K = 5,
writing color video to GPU buffer and reading foreground segmentation results takes
in average about 14 % of overall TGPU computing time on hw1 HPC platform con-
figuration and about 10 % on hw2 commodity PC. This fractions are reduced to
halves for extended mixtures K = 10, since kernel execution time is proportional
to K, thus amount of data to be transferred is constant.

Usually, in practical applications, number of mixtures K does not exceed value
of 4. Some implementations adjust number of mixtures automatically in order to
reduce computational complexity and memory usage. In most cases, no significant
change in segmentation result can be observed for large number of mixtures. The
value K = 10 was selected in our experiments to measure impact of calculus com-
plexity on video processing time.

Other related research reported in the recent articles usually provide quantitative
results of processing widely used HD video format, i.e. resolution 1 920 × 1 080.
In [6] authors proposed the FPGA implementation of the GMM algorithm which
is able to process HD video stream in real-time. The implementations on Virtex6
and Virtex5 without pipeline levels were able to process 41 and 38 FPS, respectively.
Using one level of pipeline, both the Virtex5 and Virtex6 implementations are able to
process more than 60 FPS. In [18] CUDA-based GPU implementation of background
subtraction MoG algorithm is presented that surpasses real-time processing for full
HD (1080p 60 Hz). Our OpenCL MoG implementation is also able to process video
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Figure 3. Comparison of average processing times; a) Average processing and transfer
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stream in real-time. For video resolution higher than HD (2 456×2 048) and typical
MoG parameters (that is K = 5), the average FPS is about 37. For lower resolutions,
corresponding to SD (720× 576), the throughput of our OpenCL implementation is
larger than 400 FPS.

When comparing our video sequence B to HD format one can notice that number
of pixels is about 2.4 times larger. Therefore, when discussing results, throughput
expressed in Mpixel/s unit should be used instead of number of frames per second
(FPS). The lowest frame rate we obtained in OpenCL implementation was measured
for sequence B with regular parameter K = 5: 177 Mpixel/s (37 FPS). Correspond-
ing value for reference [6] is 81 Mpixel/s (38 FPS) and 119 Mpixel/s (60 FPS) for
reference [18].

5.1 Video-Frame Processing Time Analysis

Video processing algorithms, in order to reach technology readiness level, must at
least meet real-time constraints that are usually defined by data rate of input video
or camera, expressed in frames per second (FPS). The system that conforms this
requirements should not drop any video frames. For video segementation studied
in this work it is crucial because it impacts segmentation result quality. Loosing
particular video frame does not only cause the lack of segmentation result but it
also might introduce severe noise into statistical models of pixels that would produce
artifacts in forthcoming frames.

At protocol and systems levels, particularly in complex parallel systems, fulfill-
ment of this requirement can be guaranteed by an appropriate value of QoS (Quality
of Service) metrics [14]. In this work however, we only focus on low level perfor-
mance evaluation. Hardware applications (ASIC or FPGA) (e.g. [6, 9]) that use
fine and medium grain pipelining, usually exhibit fixed latency and throughput, so
frame processing time in most cases does not depend on frame data content or other
factors.

In software solutions, based on general purpose CPU (also accelerated by GPU),
under control of multitasking operating system, frame processing time can be im-
pacted by several factors, e.g. system workload, hardware configuration, operating
system configuration, etc. In such system it should be treated as random. Outliers
exceeding inter-frame delay can introduce severe disturbance, therefore, average
processing time is not good estimate for performance evaluation for real-time ap-
plication. This applies to real-time video surveillance systems and also to advanced
algorithms used for modeling 3D environment. For example, in realistic modeling of
sound waves propagation [12], excessive computing time can result in noticable arte-
facts once data frames are not provided within proper period of time for rendering.
In video-surveillance system, loss of input data may result in false detection.

Both CPU-based sequential reference model of background estimation and par-
allel GPU-accelerated implementation are prone to variations of frame processing
time. Therefore, when measuring efficiency of presented video processing systems,
beside computing average FPS already presented in Table 1, we took into considera-
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tion also variations of processing time that can disturb mixture model through loss of
input data. Figures 4 a)–b) and 4 e)–f) show diagrams of processing time, each con-
sisting of 1 000 samples, one per single frame of examined video sequences. The same
set of data was used to render box-plot charts (Figure 4) and contributed to average
processing time Tmean values and also to standard deviation σT presented in Table 2.
Additionally, minimum processing time Tmin, maximum processing time Tmax and
variability factor defined as follows, has been appended: V = 100 % Tmax−Tmin

Tmean
.

On each of box-plots, the central marks correspond to median values, the edges
of boxes are the 25th and 75th percentiles, the whiskers extend to the most extreme
data points that are not considered outliers. Outliers are plotted individually. The
most distant outliers Tmin and Tmax contribute to V which was 16 % and 134 %
for GPU and CPU, accordingly for low resolution video and K = 5. The same
metric applied to GPU transfer time rendered variability V in range 15 %–68 %.
It is negligible, however, due to low contribution of data transfer time to overall
computing time (Figure 3). It should be noticed that values of V do not follow
changes of σT which is the metrics usually applied for analysis of statistical data.

It is worth mentioning that no specific configuration of cluster node has been
applied. This means that processing times of particular frames may be treated as
random, due to CPU load introduced by other tasks executed. Activity of host CPU
during execution of OpenCL Kernels is limited mainly to dispatching transfers to
Direct Memory Access subsystem and collecting measurement data. Therefore in
this case, the influence of other tasks can be considered lower.

HW
Config.

Frame
Size

K Tmean Tmin Tmax σT V

ms ms ms % Device

hw1
720× 576

5 17.67 17.18 19.94 0.20 16

sequential:

10 24.84 21.54 38.24 5.50 67

1 CPU core

2 456× 2 048
5 212.19 209.70 233.73 1.51 11

10 265.18 262.69 300.96 3.63 14

hw2
720× 576

5 9.23 8.56 20.93 1.59 134
10 12.03 11.28 26.31 1.66 125

2 456× 2 048
5 103.48 101.94 141.93 1.41 39

10 137.97 136.13 178.05 1.74 30

hw1
720× 576

5 1.75 1.73 2.01 0.01 16

parallel:

10 3.65 3.60 3.91 0.02 80

OpenCL

2 456× 2 048
5 23.21 23.06 25.84 0.15 12

GPU device

10 49.37 49.16 51.91 0.16 60

hw2
720× 576

5 1.62 1.60 1.65 0.01 3
10 3.19 3.14 3.23 0.01 3

2 456× 2 048
5 24.41 24.15 26.97 0.10 12

10 44.62 44.32 45.55 0.09 30

Table 2. MoG execution time and variability
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Figure 4. Boxplots: MoG execution and transfer time; a) OpenCL, low resolution video
sequence A, b) OpenCL, high resolution video sequence B, c) GPU transfer, low
resolution video sequence A, d) GPU transfer, high resolution video sequence B,
e) CPU, low resolution video sequence A, f) CPU, high resolution video sequence B
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5.2 Functional Verification

GPU implementation is slightly different functionally from sequential OpenCV CPU
implementation, therefore comparison of segmentation results has been performed.
Figure 5 a)–b) shows normalized sum of absolute differences between GPU and CPU
for each output video frame. Maximum value of normalized SAD = 1 % was ob-
served for video sequence A. Segmentation output and absolute difference image of
GPU and CPU result is presented in Figure 6. Mismatching output pixels (Fig-
ure 6 c)) appear mainly on boundaries of moving objects and in area of casted
shadows. Another difference between the two implementations, that one should
be aware of, is video frame latency introduced by GPU pipeline architecture. The
first output video frame should be dropped as it does not contain valid data. For
CPU implementations no frame latency is observed because execution should be
treated asynchronous when compared to OpenCL application programming inter-
face.

6 CONCLUSIONS AND FUTURE WORK

Presented OpenCL implementation enables high-resolution and high-frame rate seg-
mentation on GPU devices. Speedup versus sequential implementation was in range:
2.9–8.8. However, the more important advantage is that GPU acceleration reduced
computing time variability for both platforms – workstation and HPC cluster node.
This parameter impacts system robustness, particularly when multiple video streems
must be processed in real-time.

Obtained throughput, expressed in Mpixel/s unit was larger than in reffered
FPGA [6] and GPU [18] implementations. Another advantage of presented imple-
mentation is that, in general, OpenCL kernels can be executed on GPU devices
produced by various vendors and also on multicore-CPUs and parallel computers.
CPUs however do not support all OpenCL extensions utilized in presented kernels.

In order to reduce impact of data transfer overhead between CPU and GPU,
it is planned to extend video processing flow executed on GPU by adding more
pre-processing and post-processing operators. These would be used for input data
conditioning (e.g. [10]) and further stages of event detection and recognition. In this
case qualitative verification is also inevitable, so it is planned to compare results of
presented solution with reference implementations for various data sets and wider
range of MoG parameters (number of Gaussian models K and other parameters,
etc.).

Evaluation of 1-channel MoG segmentation algorithm was presented in this ar-
ticle. It is planned in the further research to implement and evaluate 3-channel
MoG operating on RGB or other color spaces. The increase of throughput is also
expected after optimizations and executing kernels on multiple GPU boards.

Further gains can be achieved after thorough kernel profiling and optimizations
that would allow to reduce data transfers between GPU and its global memory.
Small kernels corresponding to simple image processing operators (e.g. conversion
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Figure 5. Comparison of segmentation results – sequential CPU versus parallel OpenCL:
normalized sum of absolute differences in binary output image frames; a) Low
resolution video sequence A, platform hw1, b) High resolution video sequence B,
platform hw1
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Figure 6. Functional comparison: GPU OpenCL versus CPU OpenCV implementation,
frame No. 280 – video sequence A [20]; a) Source RGB image, b) CPU segmentation
result, c) CPU – GPU: differences

to gray level) can be merged into more sophisticated ones (i.e. MoG operator), thus
they would share memory access units of processing elements. This expectation
is justified by the observation collected in this research during kernel development
and testing. It has been noticed that oposite to transfer versus computing time
statistics presented in Figure 3, transfer time between OpenCL processing element
and global GPU memory contributes to overall GPU excution time significantly.
Thus low complexity computation may be performed “on the fly” without schedul-
ing dedicated kernel, extra memory transcation nor dedicated memory buffer object.
This, however, requires careful dealing, as possibly kernel size extension may also
impact overall execution time. There is also a field for optimization in evalution
of costly expression (2) that contains inverted square root. It can be replaced
by equivalent multiplication of component obtained with built-in OpenCL func-
tions.

OpenCL 1.1 library has been used in the software modules, however OpenCL 1.2
and 2.0 specifications have been already published [21] and are being implemented
by GPU vendors. These introduce new functionalities, e.g. memory access adequate
for image data handling and utilisation of GPU specific hardware.
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