
Computing and Informatics, Vol. 27, 2008, 453–465

REWRITING P SYSTEMS WITH CONDITIONAL
COMMUNICATION: IMPROVED HIERARCHIES

H. Ramesh, Raghavan Rama

Department of Mathematics

Indian Institute of Technology, Madras

Chennai – 600 036, India

e-mail: {ramesh h, ramar}@iitm.ac.in

Revised manuscript received 3 December 2007

Abstract. We consider here a variant of rewriting P systems [1], where communi-
cation is controlled by the contents of the strings, not by the evolution rules used
for obtaining these strings. Some new characterizations of recursively enumerable
languages are obtained by means of P systems with a small number of membranes,
which improves some of the known results from [1] and [4].

Keywords: Membrane computing, rewriting P systems, recursively enumerable
language

1 INTRODUCTION

P systems are a class of distributed parallel computing models inspired from the
way the living cells process chemical compounds, energy, and information. Many
variants of P systems use string objects and context-free rules for processing them.
Rewriting P systems with string objects were introduced in [5]. Several variants of
P systems with string objects have also been investigated extensively. In this work,
we concentrate on rewriting P systems with conditional communication introduced
in [1].

In this variant of rewriting P systems, the communication is controlled by the
contents of the strings, not by the evolution rules themselves. This is achieved by
considering certain types of permitting and forbidding conditions, based on the sym-
bols or the substrings (arbitrary, or prefixes/suffixes) which appear in a given string.

454 H. Ramesh, R. Rama

Several characterizations of recursively enumerable languages were obtained in [1].
In [4], some of these results were improved. Here we give some new characterizations
of recursively enumerable languages by means of P systems with a small number
of membranes. These results improve some of the results from both [1] and [4].
In [1], there is a characterization of recursively enumerable language by systems,
where both prefixes and suffixes are checked, without a bound on the number of
membranes. It was also conjectured that the characterization holds also for a re-
duced number of membranes. We settle this here in an affirmative way by giving
the characterization with 8 membranes.

2 SOME PREREQUISITES

In this section we introduce some formal language theory notions which will be used
in this paper; for further details, we refer to [7].

For an alphabet V , we denote by V ∗ the set of all strings over V , including the
empty one, denoted by λ. By RE we denote the family of recursively enumerable
languages. The set of symbols appearing in a string x is denoted by alph(x) and
the substrings of x is denoted by Sub(x).

In our proofs in the following sections we need the notion of a matrix grammar

with appearance checking. Such a grammar is a construct G = (N, T, S,M, F),
where N, T are disjoint alphabets, S ∈ N , M is a finite set of sequences of the
form (A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules over N ∪ T , and F is
a set of occurrences of rules in M (N is the nonterminal alphabet, T is the terminal
alphabet, S is the axiom, while the elements of M are called matrices).

For w, z ∈ (N ∪T)∗ we write w ⇒ z if there is a matrix (A1 → x1, . . . , An → xn)
in M and the strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n+1, are such that w = w1, z = wn+1,
and, for all 1 ≤ i ≤ n, either (1) wi = w

′

iAw
′′

i , wi+1 = w
′

ixiw
′′

i , for some w
′

i, w
′′

i ∈
(N ∪ T)∗, or (2) wi = wi+1, Ai does not appear in wi, and the rule Ai → xi appears
in F . (The rules of a matrix are applied in order, possibly skipping the rules in F
if they cannot be applied – one says that these rules are applied in the appearance

checking mode).

The language generated by G is defined by L(G) = {w ∈ T ∗ | S ⇒∗ w}. The
family of languages of this form is denoted by MATac. It is known that MATac =
RE.

A matrix grammar G = (N, T, S,M, F) is said to be in the binary normal form

if N = N1 ∪N2 ∪ {S,#}, with these three sets mutually disjoint, and the matrices
in M are in the following forms:

1. (S → XA),with X ∈ N1, A ∈ N2,

2. (X → Y, A → x),with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,

3. (X → Y, A → #),with X, Y ∈ N1, A ∈ N2,

4. (X → λ, A → x),with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Rewriting P Systems with Conditional Communication: Improved Hierarchies 455

Moreover, there is only one matrix of type 1 and F consists exactly of all rules
A → # appearing in matrices of type 3; # is a trap symbol – once introduced, it is
never removed. A matrix of type 4 is used only once, in the last step of derivation.

According to [2], for each matrix grammar there is an equivalent matrix grammar
in the binary normal form.

For an arbitrary matrix grammar G = (N, T, S,M, F), let us denote by ac(G)
the cardinality of the set {A ∈ N | A → α ∈ F}. It was proved that each recursively
enumerable language can be generated by a matrix grammar G such that ac(G) ≤ 2.
Consequently, to the properties of a grammar G in the binary normal form we can
add the fact that ac(G) ≤ 2. We will say that this is the strong binary normal form

for matrix grammars.
There are several normal forms for type 0 grammars. We use the Penttonen

normal form in our proofs. A type 0 grammar G = (N, T, S, P) is said to be
in Penttonen normal form if the rules from P are of one of the following forms:
A → λ, A → a, A → BC, AB → AC, for A,B, C ∈ N and a ∈ T .

3 REWRITING P SYSTEMS WITH CONDITIONAL
COMMUNICATION

An extended rewriting P systems (of degree m ≥ 1) with conditional communication

is a construct

Π = (V, T, µ,M1, . . . ,Mm, R1, P1, F1, . . . , Rm, Pm, Fm),

where:

1. V is the alphabet;

2. T ⊆ V is the terminal alphabet;

3. µ is the membrane structure;

4. M1, . . . ,Mm are finite languages over V , representing the strings intially present
in the m regions;

5. R1, . . . , Rm are finite sets of context-free rules over V present in the regions of
µ;

6. Pi and Fi are permitting and forbidding conditions associated with the regions.

The conditions can be of the following forms:

empty: no restriction is imposed on strings, they either exit the current membrane
or enter any of the directly inner membrane freely (but they cannot remain in the
current membrane); we denote an empty permitting condition by (true,X), X ∈
{in, out}, and an empty forbidding condition by (false, notX), X ∈ {in, out};

symbols checking: each Pi is a set of pairs (a,X), X ∈ {in, out}, for a ∈ V , and
each Fi is a set of pairs (b, notX), X ∈ {in, out}, for b ∈ V ; a string w can go

456 H. Ramesh, R. Rama

to a lower membrane only if there is a pair (a, in) ∈ Pi with a ∈ alph(w) and
for each (b, notin) ∈ Fi we have b /∈ alph(w); similarly for sending the string w
out of membrane i it is necessary to have a ∈ alph(w) for at least one pair
(a, out) ∈ Pi and b /∈ alph(w) for all (b, notout) ∈ Fi;

substring checking: each Pi is a set of pairs (u,X), X ∈ {in, out}, for u ∈ V +,
and each Fi is a set of pairs (v, notX), X ∈ {in, out}, for v ∈ V +; a string w can
go to a lower membrane only if there is a pair (u, in) ∈ Pi with u ∈ Sub(w), and
for each (v, notin) ∈ Fi we have v /∈ Sub(w); similarly for sending the string w
out of membrane i it is necessary to have u ∈ Sub(w) for at least one pair
(u, out) ∈ Pi and v /∈ Sub(w) for all (v, notout) ∈ Fi;

prefix/suffix checking: exactly as in the case of substrings checking, with the
checked string being a prefix or a suffix of the string to be communicated.

We say that we have conditions of the types empty, symb, subk, prefk, suffk, where
k is the length of the longest string in all Pi, Fi.

A system is said to be non-extended if V = T .
The transitions of the system are defined in the following way. In each region,

each string which can be rewritten is rewritten by a rule from that region. The
rule to be applied and the nonterminal it rewrites are non-deterministically chosen.
The string obtained in this way is checked against the conditions Pi, Fi from that
region. If it fulfills the required conditions, then it will be immediately sent out
of the membrane or to an inner membrane, if any exists; if it fulfills both in and
out conditions, then it is sent to a membrane non-deterministically chosing the
direction – and non-deterministically choosing the inner membrane in the case when
several directly inner membranes exist. If a string does not fulfill any condition, or
it fulfills only in conditions and there is no inner membrane, then the string remains
in the same region. If a string cannot be rewritten, then it is directly checked
against the communication conditions. That is, the rewriting has priority over
communication.

A sequence of transitions form a computation and the result of a halting compu-
tation is the set of strings over T sent out of the system. In the case of non-extended
systems, all strings sent out are accepted. A computation does not yield a result if it
does not halt. A string which remains inside the system or, in the case of extended
systems, which exits but contains nonterminal symbols does not contribute to the
generated language. The language generated by a system Π is denoted by L(Π).

We denote by RPn(rw, α, β), n ≥ 1, α, β ∈ {empty, symb} ∪ {subk | k ≥ 2} ∪
{prefsuffk | k ≥ 2}, the family of languages generated by P system of degree at
most n and with permitting and forbidding conditions of type α and β, respectively.

4 IMPROVED UNIVERSALITY RESULTS

In [1], it was proved that P systems of degree 4 with permitting conditions of type
sub2 and forbidding conditions of type symb are computationally universal. This

Rewriting P Systems with Conditional Communication: Improved Hierarchies 457

result has been improved from 4 to 3 membranes in [4]. We improve this result and
show that universality can be achieved with 2 membranes in this case.

Theorem 1. RE = RP2(rw, sub2, symb).

Proof. Let us consider a type 0 grammar G = (N, T, S, P), in Penttonen normal
form, with the non context-free rules from P labelled in a one-to-one manner and
construct the system

Π = (V, T, [1[2]2]1, {S}, ∅, (R1, P1, F1), (R2, P2, F2)),

with the following components:

V = N ∪ T ∪ {(B, r) | r : AB → AC ∈ P};

R1 = {A → x | A → x ∈ P} ∪

{B → (B, r) | r : AB → AC ∈ P};

P1 = {(A(B, r), in) | r : AB → AC ∈ P} ∪

{(true, out)};

F1 = {(false, notout)};

R2 = {(B, r) → C | r : AB → AC ∈ P};

P2 = {(true, out)};

F2 = {((B, r), notout) | r : AB → AC ∈ P}.

The system works as follows: The initial configuration of the system is [1S[2]2]1.
The context-free rules from P are present in R1 as rewriting rules, hence we can
simulate them without any difficulty. Let us assume that we have a string w1ABw2

in membrane 1. In order to simulate a rule r : AB → AC ∈ P , we apply the rule
B → (B, r) on the string. The string is sent to membrane 2 only if it has a substring
of the form A(B, r) for some r : AB → AC ∈ P . Otherwise, the string is sent out,
but it is not a terminal one. In membrane 2, we replace the symbol (B, r) with C
and send the resulting string to the skin membrane. In this way, we complete the
simulation of the non context-free rule.

The process can be iterated until no nonterminal is present in the sentential
form. Hence, each derivation in G can be simulated in Π and, conversely, all halting
computations in Π correspond to correct derivations in G. Therefore, the compu-
tation in Π can stop only after reaching a terminal string with respect to G. Thus,
we have L(G) = L(Π). 2

In [1], it was proved that P systems of degree 4 with permitting conditions of type
sub2 and forbidding conditions of type empty can characterize recusively enumerable
languages. We improve this result by proving the universality with 3 membranes.

Theorem 2. RE = RP3(rw, sub2, empty).

458 H. Ramesh, R. Rama

Proof. We start again from a type 0 grammarG = (N, T, S, P) in Penttonen normal
form, with the non context-free rules in P labelled in a one-to-one manner, and we
construct the P system

Π = (V, T, [1[2]2[3]3]1, ∅, {S}, ∅, (R1, P1, F1), . . . , (R3, P3, F3)),

with the following components:

V = N ∪ T ∪ {(B, r) | r : AB → AC ∈ P} ∪

{A′, A′′ | A ∈ N} ∪ {f, Z};

R1 = {f → λ, C ′′ → Z} ∪

{C ′ → C ′′ | C ∈ N};

P1 = {(λ, out)} ∪ {(C ′′, in) | C ∈ N} ∪

{(A(B, r), in) | r : AB → AC ∈ P};

R2 = {B → (B, r) | r : AB → AC ∈ P} ∪

{A → x, A → xf | A → x ∈ P} ∪

{C ′′ → C | C ∈ N};

P2 = {(f, out)} ∪

{((B, r), out) | r : AB → AC ∈ P};

R3 = {(B, r) → C ′ | r : AB → AC ∈ P} ∪

{C ′′ → Z | C ∈ N};

P3 = {(C ′, out) | C ∈ N}.

All sets of forbidding conditions consist of the pairs (false, notin), (false, notout).

This system works as follows. We start in membrane 2 with the axiom of G.
The context-free rules of G can be simulated here. If a terminal rule A → xf is
used in membrane 2, then the string goes to membrane 1 and from here out of the
system. If it is not terminal, it is not accepted in the generated language. If the
string is terminal, then it is introduced in L(Π).

Suppose that a string w is rewritten in membrane 2 by a rule B → (B, r)
associated with a rule r : AB → AC ∈ P . It exits; if the symbols A and (B, r)
are not associated with the same rule from P , then the string is sent out, but it is
not a terminal one. Assume that the string is of the form w1A(B, r)w2, for some
r : AB → AC ∈ P . No rule can be applied in membrane 1, but the string can be
sent to a lower membrane. If it arrives back in membrane 2, then it will exit either
unchanged or after introducing one more symbol of the form (B, r). The process
is repeated; eventually, the string will arrive in membrane 3 (otherwise we either
continue between membrane 1 and 2 or we send the string out of the system and it is
not a terminal one). Here in membrane 3 we replace the symbol (B, r) with C ′ and
the string is sent back to the skin membrane. In the skin membrane, the symbol C ′

is replaced with C ′′.

Rewriting P Systems with Conditional Communication: Improved Hierarchies 459

Now there are two cases. If we had at least two symbols of the form (B, r) and
(B1, r1) in the string, then before finishing the simulation of the rule r, we can start
the simulation of the rule r1; but then the trap symbol Z will be introduced. So
we have to finish the simulation of the rule r first. In the other case, the string
can be sent to one of membranes 2 and 3. If the string arrives back to 3, then the
trap symbol will be introduced. Thus, we have to send the string to membrane 2.
We have two cases here. If in membrane 2 we use the rule C ′′ → C, then we have
again a string (N ∪ T)∗, and the process can be iterated. If before using the rule
C ′′ → C, we use a rule B → (B, r), then the string should go to membrane 1 where
we introduce the trap symbol Z by the rule C ′′ → Z. Thus L(G) = L(Π). 2

The universality result for P systems with both permitting and forbidding con-
ditions of type symb has been improved from 6 [1] to 5 membranes in [4]. Here we
give a universality result with only 3 membranes. We use the same idea as in [3].

Theorem 3. RE = RP3(rw, symb, symb).

Proof. Consider a matrix grammar with appearance checking G = (N, T, S,M, F)
in the strong binary normal form withN = N1∪N2∪{S,#}. Assume that ac(G) = 2,
and let B(1) and B(2) be the two objects in N2 for which we have rules B(j) → #
in matrices of M . Let us assume that we have k matrices of the form mi : (X →
α,A → x), X ∈ N1, α ∈ N1 ∪ {λ}, A ∈ N2, and x ∈ (N2 ∪ T)∗. We replace each
matrix of the form (X → λ, A → x) by (X → f, A → x) where f is a new symbol.
We continue to lable the obtained matrices in the same way as the original one.
The matrices of the form (X → Y, B(j) → #), are labeled by mi with i ∈ labj, for
j = 1, 2 such that lab1, lab2 and lab0 = {1, 2, . . . , k} are mutually disjoint sets.

We construct the P system (of degree 3)

Π = (V, T, µ,M1, . . . ,M3, R1, P1, F1, . . . , R3, P3, F3),

with the following components:

V = N1 ∪N2 ∪ T ∪ {Xi,j | X ∈ N1, 1 ≤ i ≤ k, 0 ≤ j ≤ k} ∪

{Ai, Ai,j | A ∈ N2, 1 ≤ i ≤ k, 0 ≤ j ≤ k} ∪

{X ′, X ′′, X(1), X(2) | X ∈ N1 ∪ {f}},

µ = [1[2[3]3]2]1,

M1 = {XA}, for (S → XA) being the initial matrix of G,

M2 = M3 = ∅,

and with the following triples (Ri, Pi, Fi), 1 ≤ i ≤ 3:

R1 = {X → Y (1) | mi : (X → Y, B(1) → #} ∪

{X → Y (2) | mi : (X → Y, B(2) → #} ∪

{A → Ai,0 | mi : (X → α,A → x), 1 ≤ i ≤ k, α ∈ N1 ∪ {f}} ∪

460 H. Ramesh, R. Rama

{Ai,j → # | 1 ≤ j < i ≤ k} ∪

{Ai → x | mi : (X → α,A → x), 1 ≤ i ≤ k, α ∈ N1 ∪ {f}} ∪

{α′ → α | α ∈ N1} ∪ {f ′ → λ};

P1 = {(Ai,0, in) | i ≤ i ≤ k} =

{(X(1), in), (X(2), in) | X ∈ N1} =

{(a, out) | a ∈ T};

F1 = {(X, notout) | X ∈ N1 ∪N2} ∪

{(Ai, notin) | A ∈ N2, 1 ≤ i ≤ k} ∪

{(Ai,j , notout) | A ∈ N2, 1 ≤ i, j ≤ k} ∪

{(α′, notin) | α ∈ N1 ∪ {f}};

R2 = {X → Xi,0 | mi : (X → α,A → x), 1 ≤ i ≤ k, α ∈ N1 ∪ {f}} ∪

{B(1) → #, # → #} ∪

{Y (1) → Y, Y ′′ → Y | Y ∈ N1} ∪

{Xi,j → Xi,j+1 | X ∈ N1, 1 ≤ j < i ≤ k} ∪

{Xi,i → α′ | mi : (X → α,A → x), 1 ≤ i ≤ k, α ∈ N1 ∪ {f}};

P2 = {(Y, out), (Y (2), in) | Y ∈ N1} ∪

{(Xi,j , in) | 1 ≤ j < i ≤ k} ∪

{(α′, out) | α ∈ N1 ∪ {f}};

F2 = {(B(1), notout) | B ∈ N2} ∪

{(α′′, notin) | α ∈ N1 ∪ {f}};

R3 = {Y (2) → Y ′′} ∪ {B(2) → #,# → #} ∪

{Ai,j → Ai,j+1 | A ∈ N2, 1 ≤ j < i ≤ k} ∪

{Ai,i → Ai, Ai → # | 1 ≤ i ≤ k};

P3 = {(Y ′, out) | Y ∈ N1} ∪

{(Ai,j , out) | 1 ≤ j < i ≤ k} ∪

{(Ai, out) | 1 ≤ i ≤ k};

F3 = {(B(2), notout) | B ∈ N2}.

Only strings over T are accepted in the generated language; # is a trap symbol.
From the skin membrane in any moment we can send out a string if it contains at
least one terminal symbol, but the string is not accepted in the generated language
if it contains any symbol not in T .

Simulation of the matrix mi : (X → α,A → x), 1 ≤ i ≤ k: We start the simula-
tion by the rule A → Ai,0. The string can be sent to membrane 2 where we
apply the rule X → Xj,0. The obtained string is sent to membrane 3. From
now on, the string will go back and forth between membranes 2 and 3, and the
second subscript of the symbols Xi,s and Yj,t is alternatively increased. Now we
have three cases here:

Rewriting P Systems with Conditional Communication: Improved Hierarchies 461

Case 1: i < j. This means that at some step in membrane 3 we have a string
of the form Xj,iw1Ai,i−1w2. We replace Ai,i−1 with Ai,i and no communica-
tion is possible. So we use the rule Ai,i → Ai and the string is sent out. In
membrane 2, we replace Xj,i with Xj,i+1 and send the string back to mem-
brane 3, where the trap symbol # is introduced (the rewriting has priority
over communication).

Case 2: i > j. At some moment we have a string of the form Xj,jw1Ai,j−1w2

in membrane 2 which is sent to membrane 3. Here we replace Ai,j−1 with
Ai,j and send the string out. In membrane 2 we replace Xj,j with α′, and
the string is sent out. In the skin membrane, we can apply Ai,j → #, hence
the string will never lead to a terminal one.

Case 3: i = j. At some moment we pass from membrane 2 to membrane 3
a string Xi,iw1Ai,i−1w2. In membrane 3, we replace Ai,i−1 with Ai,i and,
because we cannot exit, we replace Ai,i with Ai and send out the string.
Here in membrane 2 we replace Xi,i with α′ and send the string to the skin
membrane. In the skin membrane we have to replace α′ with α and Ai with
x before starting the simulation of the next matrix.

Simulation of the matices (X → Y, B(j) → #), j = 1, 2: The simulation of
a matrix of this form starts by a rule X → Y (1) or X → Y (2) in the skin
membrane. If we are simulating a rule (X → Y, B(1) → #), then in membrane
2 we use the rule Y (1) → Y . Now the string can be sent to the skin membrane
only if B(1) is not present. Similarly, if we are simulating (X → Y, B(2) → #),
then in membrane 2 there is no rule we can apply. So we send the string to
membrane 3, where we replace Y (2) with Y ′′ and the resulting string can be sent
out if B(2) is not present. Back in membrane 2, we replace Y ′′ with Y and send
the string to the skin membrane.

If at any moment we get a string of the form f ′w, for w ∈ T ∗, in the skin membrane,
then we remove f ′ and send the string out. Consequently, L(G) = L(Π). 2

There is a characterization of recursively enumerable languages by P systems
with permitting conditions of type prefsuff2 and forbidding conditions of type
empty in [1] without a bound on the number of membranes. It was conjectured that
such a characterization holds also for a reduced number of membranes. We settle
this conjecture in the positive here and show that eight membranes are enough for
achieving the universality.

Theorem 4. RE = RP8(rw, prefsuff2, empty).

Proof. Let us consider a type 0 grammar G = (N, T, S, P) in Penttonen normal
form, with the non context-free rules in P labelled in an injective manner, and
assume that N ∪ T ∪ {$} = {E1, E2, . . . , En}. We construct the P system Π, of
degree 8, with the following components:

462 H. Ramesh, R. Rama

V = N ∪ T ∪ {A′ | A ∈ N} ∪

{X, Y, Y ′, Z, $} ∪

{Xi, Yi, Xi,j , Yi,j | 1 ≤ i ≤ n, 0 ≤ j ≤ n} ∪

{(B, r) | r : AB → AC ∈ P},

µ = [1[2[3[4[5[6]6]5]4]3[7[8]8]7]2]1,

Mi = ∅, 1 ≤ i ≤ 8, i 6= 2,

M2 = X$SY,

and with the following sets of rules and associated permitting conditions. All for-
bidding condition sets are of the form {(false, notin), (false, notout)}:

R1 = {X → λ, Y → λ, $ → λ};

P1 = {(a, out) | a ∈ T};

R2 = {Ei → E ′

i, Y → Yi,0 | 1 ≤ i ≤ n} ∪

{B → (B, r) | r : AB → AC ∈ P} ∪

{A → x | A → x ∈ P} ∪

{(B, r) → Z | r : AB → AC ∈ P} ∪

{E ′

i → Z, Yi,0 → Z | 1 ≤ i ≤ n};

P2 = {($Y, out)} ∪

{(E ′

iYi,0, in) | r : AB → AC ∈ P, 1 ≤ i ≤ n} ∪

{((B, r)Y, in) | r : AB → AC ∈ P};∪

R3 = {E ′

i → λ, Yi → Y | 1 ≤ i ≤ n} ∪

{(B, r) → Z | r : AB → AC ∈ P};

P3 = {(Yi,0, in) | 1 ≤ i ≤ n} ∪

{(Y, out)};

R4 = {X → Xi,0Ei, Xi → X | 1 ≤ i ≤ n} ∪

{Yi,j → Z | 1 ≤ j < i ≤ n};

P4 = {(Xi,0, in) | 1 ≤ i ≤ n} ∪

{(X, out)};

R5 = {Xi,j → Xi,j+1 | 0 ≤ j < i ≤ n} ∪

{Xi,i → Xi | 1 ≤ i ≤ n};

P5 = {(Xi,j , in) | 1 ≤ j < i ≤ n} ∪

{(Xi, out) | 1 ≤ i ≤ n};

R6 = {Yi,j → Yi,j+1 | 0 ≤ j < i ≤ n} ∪

{Yi,i → Yi, Yi → Z | 1 ≤ i ≤ n};

P6 = {(Yi,j , out) | 1 ≤ j < i ≤ n} ∪

{(Yi, out) | 1 ≤ i ≤ n};

Rewriting P Systems with Conditional Communication: Improved Hierarchies 463

R7 = {Y → λ, Y ′ → Y } ∪

{Yi,0 → Z | 1 ≤ i ≤ n};

P7 = {(A(B, r), in), (CY, out) | r : AB → AC ∈ P};

R8 = {(B, r) → CY ′ | r : AB → AC ∈ P};

P8 = {(CY ′, out)}.

We start from the stringX$SY , intially present in membrane 2. We plan to simulate
the non context-free rules from P in the right end ofthe strings of Π and to this aim
we use the so-called rotate-and-simulate technique much used in the DNA computing
area. If Xw1$w2Y is a sentential form of Π, then w2w1 is a sentential form of G. The
symbol $ indicates the actual beginning of strings from G. Z is a trap symbol, once
introduced, it cannot be removed, hence the string will never become a terminal
one.

In membrane 2, we can simulate any context-free rule from P and the string
will remain in the same region. We start the procedure of circularly permuting
the string with one symbol by using the rules Ei → E ′

i and Y → Yi,0. If the
primed symbol is the rightmost one, then the condition to send the string to a lower
membrane is fulfilled. If we did not use both the rules or the primed symbol is not
the rightmost one, then the trap symbol is introduced. Now we can either send the
string to membrane 7 or 3. If it enters membrane 7, then we introduce the trap
symbol.

In membrane 3, we remove E ′

i and send the string to membrane 4. In mem-
brane 4, we replace X with Xi,0Ei and send the string to membrane 5. From now
on, the string will go back and forth between membranes 5 and 6, and the second
subscript of the symbols Xi,s and Yj,t is alternatively increased. Now there are three
cases:

Case 1: i < j. This means that at some step in membrane 6 we have a string
Xj,iwYi,i−1. We replace Yi,i−1 with Yi,i and no communication is possible, hence
one more rewriting is necessary. We replace Yi,i with Yi and the string is sent
out. In membrane 5 we replace Xj,i with Xj,i+1 and the string is sent back to
membrane 6, where we introduce the trap symbol.

Case 2: i > j. At some moment we have a string of the form Xj,jwYi,j−1 in mem-
brane 5, which is sent to membrane 6. We replace Yi,j−1 with Yi,j in membrane 6
and the string exits. In membrane 5 we replace Xj,j with Xj and the string is
sent out. Back in membrane 4 we can apply Yi,j → Z, hence the string will
never lead to a terminal one.

Case 3: i = j. At some moment we pass from membrane 5 to membrane 6 a
string Xi,iwYi,i−1. In membrane 6 we replace Yi,i−1 with Yi,i and, because we
cannot exit, we replace Yi,i with Yi and sent the string out. In membrane
5 we replace Xi,i with Xi and the string is sent out. We replace the sym-
bols Xi and Yi with X and Y , respectively in membrane 4 and 5 and the
string is sent to membrane 2. The process of circularly permuting the sym-

464 H. Ramesh, R. Rama

bol will end successful if we add the symbol Ei in the left end of the string
corresponding to the symbol E ′

i which was removed from the right end of the
string

We simulate the non context-free rules r : AB → AC in the following way.
A symbol B is replaced by (B, r) in membrane 2, if this is not done in the rightmost
position, then the symbol Z is introduced. If the string is of the form Xw(B, r)Y ,
then it has to go to membrane 7. In membrane 7 we replace the symbol Y and send
the string to membrane 8, if the string is of the form Xw1A(B, r) corresponding to
some rule r : AB → AC ∈ P . In membrane 8 we replace (B, r) with CY ′ and send
out the resulting string. In membrane 7 we replace Y ′ with Y and send the string
to membrane 2.

The process can be iterated. Consequently, L(G) = L(Π). 2

5 CONCLUSION

In this paper we gave some improved results about rewriting P systems with condi-
tional communication. We believe that the result of Theorem 3 cannot be improved
further. It is an open problem whether or not the result of Theorem 4 can be
improved.

REFERENCES

[1] Bottoni, P.—Labella, A.—Martin Vide, C.—Păun, Gh.: Rewriting
P Systems with Conditional Communication. LNCS, Springer, Vol. 2300, 2002,
pp. 325–353.

[2] Dassow, J.—Păun, Gh.: Regulated Rewriting in Formal Language Theory.
Springer-Verlag, 1989.

[3] Krishna, S. N.—Rama, R.—Ramesh, H.: Further Results on Contextual and
Rewriting P Systems. Fundamenta Informaticae, Vol. 64, 2005, No. 1–4, pp. 241–253.

[4] Madhu, M.: Rewriting P Systems: Improved Hierarchies. Theoretical Computer
Science, Vol. 334, 2005, pp. 161–175.

[5] Păun, Gh.: Computing with Membranes. Journal of Computer and System Sciences,
Vol. 61, 2000, No. 1, pp. 108–143.

[6] Păun, Gh.: Membrane Computing: An Introduction. Springer-Verlag, Berlin, 2002.

[7] Rozenberg, G.—Salomaa, A. (Eds.): Handbook of Formal Languages (3 Vo-
lumes). Springer, 1997.

Rewriting P Systems with Conditional Communication: Improved Hierarchies 465

H. Ramesh is a Ph.D. student in the Department of Mathe-

matics at Indian Institute of Technology in Madras, India. He
is currently working with Prof. R. Rama. His research interests
are formal languages and automata theory, DNA computing and
membrane computing.

Raghavan Rama is professor in the Department of Mathemat-

ics at Indian Institute of Technology in Madras, India. Her
main research fields are formal language theory, automata the-
ory, DNA computing and membrane computing. She has
(co)authored more than 40 research papers in conference pro-
ceedings and journals such as Theoretical Computer Science,
International Journal of Computer Mathematics, Journal of Au-
tomata Languages and Combinatorics, International Journal of
Pattern Recognition and Artificial Intelligence, Fundamenta In-
formaticae.

