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Abstract. Starting from Shannon theory of information, this paper presents the
case of producing information in the form of multisets, and encoding information
using multisets. We review the entropy rate of a multiset information source and
derive a formula for the information content of a multiset. Then we study the
encoder and channel part of the system, obtaining some results about multiset
encoding length and channel capacity.

1 MOTIVATION

The attempt to study information sources which produce multisets instead of strings
and ways to encode information on multisets rather than strings originates in observ-
ing new computational models like membrane systems which employ multisets [5].
Membrane systems have been studied extensively and there exist several results
regarding their computing power, language hierarchies and complexity. However,
while any researcher working with membrane systems (called also P systems) would
agree that P systems are processing information, and that living cells and organisms
do this too, we are unaware of any attempt to precisely describe natural ways to
encode information on multisets or to study sources of information which produce
multisets instead of strings. One could argue that, while some of the information
in a living organism is encoded in a sequential manner, like in DNA for example,
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there might be important molecular information sources which involve multisets (of
molecules) in a non-trivial way.

Let us start with a simple question: given a P system with one membrane and,
say, 2 objects a and 3 objects b from a known vocabulary V' (suppose there are no
evolution rules), how much information is present in such a system? Moreover, many
examples of P systems perform various computational tasks; these systems encode
the input (usually numbers) in various ways, either by superimposing a string-like
structure on the membrane system [1], or by using the natural encoding of unary
numeral system, that is, the natural number n is represented with n objects, for
example, a”. However, just imagine a gland which uses the bloodstream to send
molecules to some tissue which, in turn, sends back some other molecules. There
is an energy and information exchange. How can we describe it? Related questions
are: what are the natural ways to encode numbers (information) on multisets, and
how to measure the encoded information?

If membrane systems, living cells and any other (abstract or concrete) multiset
processing machines are understood as information processing machines, then we
believe that such questions should be investigated. We start from the idea that
a study of multiset information theory might produce useful results at least in sys-
tems biology; if we understand the natural ways to encode information on multisets,
there is a chance that Nature might be using similar mechanisms.

Another way in which this investigation seems interesting to us is that there is
more challenge in efficiently encoding information on multisets (till now they con-
stitute a poorer encoding media compared to strings). Encoding information on
strings or even richer, more organized and complex structures is obviously possible
and has been studied. Removing the symbol order or their position in the repre-
sentation as strings can lead to multisets carrying a certain penalty, which deserves
a precise description. Order or position do not represent essential aspects for in-
formation encoding; symbol multiplicity, a native quality of multisets, is enough
for many purposes. We focus mainly on such “natural” approaches to information
encoding over multisets, and present some advantages they have over approaches
which superimpose a string structure on the multiset. Then we encode information
using multisets in a similar way as it is done using strings.

There is also a connection between this work and the theory of numeral systems.
The study of number encodings using multisets can be seen as a study of a class of
purely non-positional numeral systems.

In Section 2 we derive a formula for the information content of a multiset, and
in Section 3 we compute the multiset channel capacity.

2 ENTROPY RATE OF AN INFORMATION SOURCE

Shannon’s information theory represents one of the great intellectual achievements
of the twentieth century. Information theory has had an important and significant
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influence on probability theory and ergodic theory, and Shannon’s mathematics is
a considerable and profound contribution to pure mathematics.

Shannon’s important contribution comes from the invention of the source—enco-
der—channel-decoder—destination model, and from the elegant and general solution
of the fundamental problems which he was able to pose in terms of this model.
Shannon has provided significant demonstration of the power of coding with delay in
a communication system, the separation of the source and channel coding problems,
and he has established the fundamental natural limits on communication. As time
goes on, the information theoretic concepts introduced by Shannon become more
relevant to the increasingly complex process of communication.

2.1 Short Review of Shannon Information Theory

We use the notions defined in the classical paper [6] where Shannon has formulated
a general model of a communication system which is tractable to a mathematical
treatment.

Consider an information source modelled by a discrete Markov process. For each
possible state i of the source there is a set of probabilities p;(j) associated to the
transitions to state j. Each state transition produces a symbol corresponding to the
destination state, e.g. if there is a transition from state ¢ to state j, the symbol z;
is produced. Each symbol z; has an initial probability p,_1—; corresponding to the
transition probability from the initial state to each state i.

We can also view this as a random variable X with x; as events with probabili-
ties p;, X = ( oAz o

pr P2 o Pn
There is an entropy H; for each state. The entropy rate of the source is defined as

the average of these H; weighted in accordance with the probability P; of occurrence
of the states:

H(X) = ZPin‘ =— Zpipz‘(j) log pi(7)- (1)

Suppose there are two symbols z;, z; and p(i, j) is the probability of the succes-
sive occurrence of ; and then x;. The entropy of the joint event is

H(i,j) = — Zp(z',j) logp(i, ).

The probability of symbol z; to appear after the symbol z; is the conditional prob-
ability p;(7).

Remark 1. The quantity H(X) is a reasonable measure of choice or information.

String Entropy. Consider an information source X which produces sequences of
symbols selected from a set of n independent symbols x; with probabilities p;. The
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entropy formula for such a source is given in [6]:
- 1
H(X) = Zpilogb o
i=1 ‘

2.2 Multiset Entropy

We consider a discrete information source which produces multiset messages (as
opposed to string messages). A message is a multiset of symbols. The entropy rate
of such a source is proved to be zero in [7]:

1 .
H(Xmultz'set) = lim _H({mL}Lzl) =0.

n—oo N

Information Content. Following [4], the information content of an outcome z is

1
P(z)

h(z) = log (2)

where P(z) is the probability of the multiset .
Let k € N and X = <"”1 T2

a random variable, and = = "'z

pr P2 ... Pn
...z a multiset over symbols from X with Y "  m; = k. The probability of the
outcome z is given by the multinomial distribution My M, 1 ) 1T, pi":

n

(O ey ma)! T
Hi:l ms: i=1

So, the information content of the multiset x is:

Plz = (mi,ma,...,my)] =

my,.m m 1 ?_ mi ! - 7
Mo =aay? . .a)) = logmzlog (U%HE )
=170 =

[T, !
(i ma)! T, P
Remark 2. The results and procedures presented in this paper refer mainly to

deterministic P systems. A deterministic P system has the entropy rate converging
to zero, and the information content of a unique configuration converging to zero.

= log

Example 1. As an example, we consider a P system described by Figure 1. Es-
sentially, a P system is a multiset of objects and a set of rules. By applying the
rules, we can generate all the possible configurations (multisets of objects), and their
probabilities of being generated at each step of the execution.
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Figure 1. An example of a simple P system

Using all the possible configurations, the information content is computed for
each configuration, and then represented in Figure 2. Only the information content
of ¢ goes closer to 0; this means that the probability of this configuration goes closer
to 1. Therefore ¢ has the highest probability of being the final configuration of the
system.

The entropy rate is computed for these configurations at each step of the evolu-
tion, and this is represented in Figure 3.
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Figure 2. Information content

The entropy converges to 0, meaning that the system is deterministic and in
time a configuration will appear with a probability converging to 1. Looking to
Figure 2, we can identify ¢? as the (only possible) final result of the evolution.
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Figure 3. Entropy rate

3 MULTISET ENCODING AND CHANNEL CAPACITY

After exploring the characteristics of a multiset generating information source, we
move to the channel part of the communication system. Properties of previously
developed multiset encodings are analyzed in [2, 3]. The capacity of multiset com-
munication channel is derived based on Shannon’s definition and on the capacity
theorem. We can have a multiset information source, and a usual sequence-based
encoder and channel. All the following combinations are possible:

Source/Encoder | Sequential | Multiset
Sequential [6] this paper
Multiset this paper | this paper

3.1 String Encoding

We shortly review the results concerning the string encoding.

Encoding Length. We have a set of symbols X to be encoded, and an alphabet
A. We consider the uniform encoding. Considering the length [ of the encoding,
then X = {x; = a1az2...q/la; € A}.
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If p; = P(x;) = %, then we have

n

H(X) =Y~ logy(n) = logy () <1

i=1
It follows that n < b'. For n € N, n — b* = 0 implies 7y = logyn and so
I'=Tlxo] = [log,n].
Channel Capacity.
Definition 1 ([6]). The capacity C of a discrete channel is given by

C = lim 22N

T—o0
where N(T) is the number of allowed signals of duration T

Theorem 1 ([6]). Let by be the duration of the s symbol which is allowable in
state ¢ and leads to state j. Then the channel capacity C is equal to log W, where
W is the largest real root of the determinant equation:

) W =g,

S

=0

and where §;; = 1 if i = j, and zero otherwise.

3.2 Multiset Encoding

We present some results related to the multiset encoding.

Encoding Length. We consider a set X of N symbols, an alphabet A, and the
length of encoding I:

b
X ={z;=al"a3*...a," | an =l,a;€Ai=1.N}.

J=1

Proposition 1. Non-uniform encodings of X over multisets are shorter than uni-
form encodings of X over multisets.

Proof. Over multisets we consider both uniform and non-uniform encodings in [3].
1. For an uniform encoding (where all the encoding representations have the same

— —1)!
length [) we have N < N(b,l) = < b > = (b+l 1) _ btri-1)

! l IS
H(H—z‘) [T+

NCERR If z is the real root of N — Z:(;)_i), =0, then | = [xo].

1
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2. For a non-uniform encoding, N < N(b+ 1,1 —1) = < b+1 > =

-1
eso I
(I +1) (1+1)
b+1-1 b+1—1) i P
( [=1 )_((l+—1)!b!> B :%(b—l)! = fN .

Let {, be the real root of N — ‘:(27' =0. Then I' = [z(].

/ /
From N — N(b,x9) =0 and N — %N(b,m’o) =0 we get N(b,zo) = %N(b, xp).
In order to prove | > I' <= x¢ > x, let suppose that zy < z. We have x/f) > b (for
sufficiently large numbers), and this implies that N (b, zg) < N (b, zf) < %N(b, xp).
Since this is false, it follows that z¢ > z( implies [ > 1. O

Channel Capacity. We consider that a sequence of multisets is transmitted along
the channel. The capacity of such a channel is computed for base 4, then some
properties of it for any base are presented.

Figure 4. Multiset channel capacity

Multiset channel capacity in base 4. In Figure 4 we have a graph G(V, E)
with 4 vertices V' = {51, 52,55, 54} and E = {(i,5) | 4,5 = 1.4, i < j}U{(4,]) |
i=4, j=1.3}

Using the notation of Theorem 1, we have bfg’") = t;, because we consider that the
duration to produce ay, is the same for each (i,j) € E. The determinant equation is
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Wt 1 Wt Jy—ta py—ta
0 Wt _1 et -t
0 0 w1 geu | =0
0 0 0 Wt—1

1\*
If we consider t;, = t, then the equation becomes <1 — W) =0, and Wy.eq = 1.
Therefore C' =log, 1 =0.

Multiset Channel Capacity in Base b.
Theorem 2. The multiset channel capacity is zero, i.e., C' = 0.

Proof.

First approach. The first method for computing the capacity is using the defini-
tion from [6].

C — lim log N(T') ~ lim log N(b,T)
T—o0 T—o0 T
log< b >
R W /A A S Gl el
T—oo T T—oo T T'(b — 1)'

Using Stirling’s approximation

logn! ~ nlogn—mn

we obtain
C = lim 1 (log(b+T —1)! —logT! —log(b— 1)1
T~>ooT
1
= qlim T (b+T—=1)log(b+T —1)—TlogT — (b—1)log(b—1))
—00

L b—1 T . b—1
M, o8 (”m) i, los (”T)

b—1)log(b—1
oy (0= Dlog(b—1)

T—o0 T - 0
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Second approach. Using Theorem 1, the determinant equation for a multiset en-

coder is:
W-t —1 W—te W—ts S Wt
0 Wt — 1 W—ts e W—te
0 0 Wts — 1 e Wt
: : : : : =0.
0 0 Wt 1 b
0 0 0 cee W=t —1

Claim 1. If ¢, = t, then the determinant equation becomes

(1—%)b = 0. (3)

The capacity C is given by C = log, W, where W is the largest real root of the
equation (3). Considering x = W~ then we have

1
Since we need the largest real root W, then we should find the smallest positive root
x of the equation (1 — )* = 0 which is 2 = 1, and so C' = 0. 0

4 CONCLUSION

Based on Shannon’s classical work, we derive a formula for the information content
of a multiset. Using the definition and the determinant capacity formula, we com-
pute the multiset channel capacity. As future work we plan to further explore the
properties of multiset-based communication systems, and compare these to similar
results for string-based communication systems.
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