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Abstract. RF-Inhomogeneity Correction (aka bias) artifact is an important re-
search field in Magnetic Resonance Imaging (MRI). Bias corrupts MR images alter-
ing their illumination even though they are acquired with the most recent scanners.
Homomorphic Unsharp Masking (HUM) is a filtering technique aimed at correcting
illumination inhomogeneity, but it produces a halo around the edges as a side effect.
In this paper a novel correction scheme based on HUM is proposed to correct the
artifact mentioned above without introducing the halo. A wide experimentation has
been performed on MR images. The method has been tuned and evaluated using
the simulated Brainweb image database. In this framework, the approach has been
compared successfully against the Guillemaud filter and the SPM2 method. More-
over, the method has been successfully applied on several real MR images of the
brain (0.18 T, 1.5 T and 7 T). The description of the overall technique is reported
along with the experimental results that show its effectiveness in different anatomi-
cal regions and its ability to compensate both underexposed and overexposed areas.
Our approach is also effective on non-radiological images, like retinal ones.

Keywords: RF-inhomogeneity, MRI, magnetic resonance, homomorphic unsharp
masking, bias artifact
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1 INTRODUCTION

Recent advances in medical image processing are oriented to mobile applications [1]
and human-computer interaction [2] during the diagnostic process. RF-Inhomoge-
neity correction represents an interesting open issue in Magnetic Resonance Imaging
(MRI). RF-Inhomogeneity is produced by fluctuations of the radiofrequency (B1)
magnetic field. The corruption, also called bias artifact, alters the brightness with
an unknown law, depending on hardware configuration, scanning sequence, tissue
type, and other complex parameters. Bias is different from the classical noise, since
it corrupts low harmonics. Several methods have been proposed to correct RF-
Inhomogeneity. Existing methods can be divided into

1. pattern recognition methods,

2. polynomial fitting techniques,

3. methods requiring special experimentation, and

4. homomorphic unsharp masking methods (HUM).

HUM is a filtering scheme that is aimed at correcting bias artifact. Unfortunately,
it produces collateral haloes around the image edge. In this paper, a new approach,
called Halo Compensated Homomorphic Unsharp Masking (HC-HUM), is presented.
The proposed approach is a refinement of the classic homomorphic filter, because
it removes over-illumination artifacts along boundary regions. The idea behind the
proposed elaboration pipeline consists in performing a gray level correction on the
highest portion of the image dynamics thanks to a non-linear gray level mapping
and a dynamics recovery process. Starting from the results obtained by some of the
authors in a previous work [30] the contrast stretching block in the Guillemaud’s
scheme [22] has been replaced by a couple of blocks devoted to non-linear gray
levels mapping and dynamics recovery. Such a solution restores the image from the
halo produced by internal edges, while the previous work did not remove internal
haloes. A wide quantitative experimentation of the proposed method has been
performed on the Brainweb simulated MR image database. Next, the method has
been applied successfully to both ultra high-field (7 T) MR images and non-MR
images like retinal ones to assess its effectiveness in different domains.The paper
is organized as follows. Section 2 reports the main related works addressing RF-
Inhomogeneity and halo artifact. Section 3 describes the corruption model where
the homomorphic principle is introduced, while the proposed correction model is
presented in Section 4. A wide experimentation on biomedical images with objective
measures confirming the effectiveness of our approach is presented in Section 5.
Finally, Section 6 reports conclusions.

2 RELATED WORKS

As stated in the previous section, several techniques have been proposed in the lite-
rature to face RF-inhomogeneity correction. Classical statistical pattern recognition
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approaches are useless since typical MR data are corrupted, so that the mean value
of a tissue varies depending on its position. As a result, such methods need to add
new terms to their original objective function in order to address the data fluctua-
tions issue. The objective function of the fuzzy c-means algorithm [3] also considers
the mean value of the pixel neighbors that is weighted by a new parameter and
is used to replace the corrupted image with the value obtained from the degrada-
tion model [4]. A more complex definition of the objective function is introduced
in [5]. The new terms introduce fluctuations to the first and second order finite
differences at each pixel and they are weighted through two parameters. In general,
modified methods require more computational resources than the original ones, since
the centroids and memberships vectors have some new terms. Values for new pa-
rameters are unknown and they can be obtained through empirical considerations
aimed at restoring a particular dataset. A new method described in [6] differs from
the method [5] because the original fuzzy c-means algorithm is used to find initial
values for the centroids and memberships vectors. The Expectation Maximization
has been modified to compensate the RF-Inhomogeneity. The initial assumption is
that the probability function of the data can be represented as a Gaussian mixture,
so that each portion of the total population belongs to a Gaussian with a suitable
mean value and standard deviation. In [7] a modified version is proposed model-
ing the RF-Inhomogeneity as a linear combination of smoothing functions. A new
processing step has been added that requires computing the coefficients of the lin-
ear combination. The work reported in [8] assumes that the tissues and bias classes
are statistically independent. The bias is modeled through a Gaussian function with
zero mean value and the previous assumptions are used to modify the EM steps. The
method has been further modified in [9]. In this work the authors consider a por-
tion of population with a uniform distribution function. The segmentation method
reported in [10] uses a modified version of the Hidden Markov Models to segment an
image corrupted by illumination variation. This approach is called Hidden Markov
Random Field and consists of a stochastic process considering two random families,
while the RF-Inhomogeneity is compensated using a method similar to the method
proposed in [9]. In other works, RF-Inhomogeneity is approximated by an inter-
polating surface whose parameters are determined using statistical methods. In
the PABIC (PArametric BIas Field Correction) method [11, 27] the corruption is
modeled using the Legendre polynomials. The image is thought as composed by
large uniform patches representing each tissue, and it requires a pre-segmentation
phase to determine the mean value, the standard deviation, and a binary mask for
each patch. Legendre polynomials are fitted following an iterative optimization al-
gorithm called (1+1)ES (Evolution Strategy). In [12] image corruption is modeled
using B-Spline surfaces whose parameters are determined using an iterative algo-
rithm. The method stops when the ratio between standard deviation and the mean
value computed on the estimated corruption is less than a fixed threshold. This
method was called N3. The method reported in [13] is an iterative algorithm com-
posed by merging N3 and a gray levels histogram correction model to overcome the
performance of N3 when the artifact is particularly strong. A different strategy to
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estimate the bias artifact starts from the insertion of a special probe (aka phantom)
into the device to acquire an image representing only the bias distribution. Once
the volume representing the artifact has been acquired, it is modeled as a quadratic
3D polynomial using the Singular Value Decomposition [14]. The polynomial can
be used to correct a corrupted volume using a homomorphic-like process. A thin
plate surface model is used in [15] to obtain the correction surface. The method
does not correct volumetric data. The thin plate surface is fitted on some control
points, which are selected manually on the phantom image. Selected points are then
used to train a neural network also using pre-segmented images of the brain. The
technique presented in [34] corrects non-homogenous illumination in retinal images,
and makes use of B-splines to approximate the shading model. The works cited
above are based on the Homomorphic Unsharp Masking (HUM) described in [16].
In this method, a log function is applied to the corrupted image and its blurred
version is subtracted from the previous result. Finally, an exponential function is
applied to the resulting image. In [17] a comparison between mean and median
filters is made to estimate the unsharp mask and it is used to correct brain MR
volumes in [18]. In [28, 29, 30] homomorphic filtering is refined with foreground in-
formation extraction and automatic cut-off frequency selection through the analysis
of the bias entropy curve. In [32] a method to correct intensity inhomogeneity in
MR images subject to strong shading artifact is presented. Strong shading is due
to the presence of phased array RF reception coils such as in vascular imaging of
the neck for atherosclerosis diagnosis. The bias field is modeled with a cubic spline
and the entropy of the corrected image is minimized locally. The authors called
this new method Local Entropy Minimization with cubic Spline model (LEMS).
In [33], LEMS is compared to a modified fuzzy c-means segmentation based method
(mAFCM) and a linear filtering method (LINF). In the physical phantom used by
the authors, LEMS reduced the overall variation in the image to 1.9 %, and to 2.5 %
across the vessel wall region. In [19] some of the methods described above have been
evaluated and compared against a brain MRI dataset. The main problem in HUM
is the introduction of a new artifact along the boundary between two regions with
different intensity. It is known as overshoot or halo artifact. In [18], this problem is
mentioned explicitly but it is solved by surrounding the encephalic region with a gray
uniform background before applying the homomorphic filter. Obviously, this oper-
ation requires an accurate pre-segmentation of the brain area in each slice. A more
detailed description of this process is reported in [20]. In [31] a low-frequency model
is adopted to estimate the bias by means of low-pass filtering. Low-pass filtering
methods denote high speed and low computation complexity but limited efficiency
due to the edge effects related to high image contrasts. The authors use two pre-
processing filters (Wiener and Gaussian filters) to overcome some of the current
limitations of lowpass frequency models for bias correction in MR images. Tests
(qualitative validation) concern high-field (9.4 T) surface coil brain images of the
rat since the bias in such data makes their visual inspection and computer vision
technique analysis very difficult if not impossible. Other HUM based methods do
not mention this problem.
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3 THE CORRUPTION MODEL

Two main artifacts corrupt the MR image: RF-Inhomogeneity and noise. From
the point of view of the frequency domain, the former alters the low frequency
harmonics, while the latter corrupts the high frequencies. In the spatial domain,
the RF-Inhomogeneity is a multiplicative corruption while the noise is an additive
one [11, 12, 23]. On the basis of the features depicted above, we can write the
following corruption model:

Ic = I ·B +N. (1)

The corrupted image Ic is obtained by the sum of the noise (N) and the artifacts
free image (I) that is multiplied by the RF-Inhomogeneity corruption (B). The noise
can be suppressed using current noise removal filters, such as anisotropic diffusion
filter [21]; moreover, we shall follow a frequency domain approach to restore Ic, so
just the terms I and B will be considered, because only the low frequency harmonics
will be filtered. Computing the natural logarithm of both members in Equation (1),
an additive corruption is obtained:

ln(Ic) = ln(I) + ln(B). (2)

Now the corruption ln(B) can be estimated applying a low-pass (LP ) filter on
ln(Ic):

ln(B) = LP (ln(Ic)). (3)

Substituting the (3) into (2) we obtain:

ln(Ic) = ln(Î) + LP (ln(Ic)). (4)

So we obtain the following estimation of the uncorrupted logarithmic image:

ln(Î) = ln(Ic)− LP (ln(Ic)). (5)

In order to obtain the estimated restored image, the exp(·) function must be
applied to both the members of (5) obtaining:

Î = exp(ln(Ic)− LP (ln(Ic))). (6)

4 HALO COMPENSATED HOMOMORPHIC UNSHARP MASKING

Equation (6) is the basis of the homomorphic filter (hf), whose block diagram is
presented in Figure 1 a). Often a biomedical image is composed by two macro-
regions: a very dark background and a light foreground (see Figure 2 a)–b)). The
image resulting from the application of the homomorphic filter exhibits a halo arti-
fact around the boundaries between the two macro-regions (see Figure 2 c)). This
issue has been faced in [30] using the Guillemaud scheme [22], summarized in the
Figure 1 b) as a block diagram.
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Figure 1. Classic homomorphic unsharp masking scheme a); Guillemaud scheme b); HC-
HUM c).

a) b) c)

Figure 2. A 70 % RF-Inhomogeneity corrupted image of the brain from Brainweb
database a), its false colors version b); the halo arises when a common homo-
morphic filter is applied to the image c).
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a) b) c)

Figure 3. Guillemaud based restoration of the image in Figure 2 a) a); the same image in
false colors: red-shift points out the halo artifact b); the ROI image used for the
Guillemaud scheme c)

It makes use of a binary image representing the Region of Interest (ROI), shown
in (see Figure 3 c)), to compensate the halo artifact between foreground and back-
ground when a common homomorphic filter is applied to an image with a dark
background. The resulting image is shown in Figure 3 a)–b). The Halo Compen-
sated Homomorphic Unsharp Masking (HC-HUM) restoration scheme proposed in
this work (see Figure 1 c)) tries to compensate the internal haloes without a seg-
mentation task by means of a new halo compensation task, which is placed after the
proper Guillemaud scheme [22]. Indeed, the Guillemaud filter is not able to sup-
press the halo located on the boundaries between a dark tissue and a light one. In
previous works proposed by some of the authors [30] internal haloes did not appear
because the Cerebrospinal Fluid (CSF), which is the darkest tissue of a T1-weighted
MR brain image, was removed by segmentation. As a consequence, a more accu-
rate ROI definition was required in such a way that the ROI had gaps and/or holes
in correspondence to the CSF. In the present work the authors suppose that once
the halo between foreground and background is removed, the most intense halo is
localized on the boundary between the ventricular system, where CSF flows inside,
and the white matter (WM), which is the lightest tissue of the brain. Under this
hypothesis, the halo arising in the WM corrupts the highest part of the image dy-
namics, so an appropriate gray mapping is sufficient to restore the WM intensity.
The non-linear intensity mapping law is expressed by the following equation:

y (x) = x− k · ln

(√
1 +

(
x

xt

)m
)
. (7)

This mapping law is designed to follow the shape of the y = x straight line for
low intensity values, while the output intensity is reduced in the upper part of the
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gray levels range. Such a non linear mapping is applied to the image E obtained
from the exponential function in the HC-HUM scheme (Figure 1 c)). The curve
starts about at 0.1 · xt, because it is quite similar to a pole formula of the Bode
magnitude plot in the Systems Theory. The m exponent characterizes the global
shape of the curve, while the k coefficient is a gain factor acting on its curvature.
The effect of each parameter on the curve is showed in Figure 4.

Let G be the image obtained as the output of the intensity mapping. The
intensity of G is normalized to the original image gray level dynamics, so that the
restored image R is obtained as follows:

R =
G−min(G)

max(G)−min(G)
· max(G)

max(E)
·max(I). (8)

Five parameters have to be set in HC-HUM. The Butterworth lowpass filter
needs the cut-off frequency ft and the order to be tuned, while the intensity map-
ping curve requires tuning k, m, xt. The cut-off frequency can be selected by the
local entropy curve defined in [30] and the filter order can be set to 1. The gain fac-
tor k is usually a value in the interval (0, 1] because the curve cannot attenuate the
intensities dramatically. For the same reasons, acceptable values of the exponent m
are comprised in the interval [2,8] because it could cause an abrupt rotation around
a point as it can be seen in Figure 4. The value of xt must be close to the upper
limit of the dynamics, where the halo intensity is located. The restored image in
Figure 5 is obtained with the following parameters: ft = 0.015, k = 1, xt = 1.38,
m = 4. The method can be extended easily to 3D version, allowing to process entire
volumes, if required, instead of a single image.

5 EXPERIMENTAL RESULTS

Several experiments have been carried out to assess the effectiveness of the proposed
method. HC-HUM has been compared with other state-of-the-art approaches on the
Brainweb simulated database, and quantitative performance measures have been
extracted in this case because such a database also provides the segmented tissues
for each slice. As a consequence, we were able to make an explicit estimation of the
amount of correction.

HC-HUM has been also tested on several real datasets coming from MR devices
with varying coil arrangement and different magnetic field strength. In this case we
did not have segmented slices and a global correction measure is useless to assess
the effectiveness of the method as RF-Inhomogeneity produces unpredictable spatial
fluctuations in image intensity. Moreover, haloes are located in each slice along
the boundaries between tissues so a global measure does not take into account
the compensation effect discussed in this work. Direct inspection by a team of
radiologists has been used in these cases to achieve a qualitative evaluation.
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Figure 4. The effect of each parameter on the curve in Equation (7): a) xt is varying,
k = 1, m = 2; b) k is varying, xt = 1, m = 2; c) m is varying, k = 1, xt = 1

Finally, we tested the method on a retinal images dataset as well to gain hints
about its generality as regards the image source, that is not only MRI. The following
subsections deal with each experiment separately.

5.1 Brainweb Simulated Database

Brainweb [24, 25] is a simulated brain database freely available online. It provides
RF-Inhomogeneity corrupted image whose amount of corruption can be set by the
user. It also provides a correct segmentation of the macro tissues: white matter,
gray matter, and cerebrospinal fluid. We used this database to validate the method.
Three T1-weighted volumes with 20 %, 40 %, and 70 % of RF-Inhomogeneity corrup-
tion and 1 % of noise have been downloaded. The scanning parameters have been set
to the default values: spoiled FLASH sequence, repetition time: 18 ms, echo time:
10 ms, flip angle: 30◦, spatial resolution: 217× 181 pixels, slice thickness: 1 mm.

The amount of removed RF-Inhomogeneity is measured by the coefficient of
variation (cv). It is computed for each tissue and it consists in the ratio between its
standard deviation σ and mean intensity µ:

cv =
σ

µ
.
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a) b)

Figure 5. The restored image using HC-HUM a) and its false color version b). The absence
of the red-shift in the colored image implies the absence of the halo.

The performance of the 3D version of the HC-HUM has been compared to both
the Guillemaud filtering scheme and the SPM2 algorithm. The cv values computed
on the whole volumes are reported in Table 1. Figure 6 plots the cv computed for
each 2D slice in the original (corrupted) case, after applying the Guillemaud filter,
and after processing the slice with HC-HUM. The cv values of the proposed method
are lower than the others.

5.2 0.18T MRI Dataset

In this study we used 5 subjects acquisitions on an ESAOTE ARTOSCAN C,
0.18 Tesla. MR imaging was performed with the following key settings: spin echo
sequence, repetition time: 980 ms, echo time: 26 ms, slice thickness: 4 mm, flip an-
gle: 90◦. The parameters used to restore the image: ft = 0.01, k = 1.2, xt = 2.4,
m = 8. A visual example is shown in Figure 7.

5.3 1.5T MRI Dataset

In this study we used 3 volunteer acquisitions on a Philips ECLIPSE 1.5 T. The
pelvis and spinal cord dataset consists of images acquired with the following param-
eters: spoiled gradient echo sequence (steady state), repetition time: 10 ms, echo
time: 3 ms, slice thickness: 10 mm, flip angle = 20 degrees. The parameters used to
restore the images: ft = 0.03, k1 = 0.5, xt = 1.5, m = 4. A visual example is shown
in Figure 8.
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Figure 6. The cv plotted for each Brainweb T1-weighted dataset corrupted by RF-
Inhomogeneity a) 20 %, b) 40 %, c) 70 %. The 2D version of HC-HUM has been
applied with the following parameters: (20 %) ft = 0.006, k = 0.35, xt = 1.45,
m = 4; (40 %) ft = 0.008, k = 0.4, xt = 1.45, m = 4; (70 %) ft = 0.015, k = 1,
xt = 1.38, m = 4.
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Brainweb T1-weighted RF-Inhomogeneity (20 %)

White Matter Gray Matter CSF

Guillemaud 0.0477 0.0933 0.2094
SPM2 0.0428 0.0915 0.2278

HC-HUM 0.0225 0.0784 0.2083

Brainweb T1-weighted RF-Inhomogeneity (40 %)

White Matter Gray Matter CSF

Guillemaud 0.0472 0.0932 0.2089
SPM2 0.043 0.0917 0.2291

HC-HUM 0.0223 0.0785 0.2078

Brainweb T1-weighted RF-Inhomogeneity (70 %)

White Matter Gray Matter CSF

Guillemaud 0.0505 0.0965 0.2121
SPM2 0.0454 0.0945 0.2352

HC-HUM 0.024 0.0813 0.211

Table 1. Values of the cv measure obtained for the Guillemaud filter, SPM2, and HC-HUM
applied to an entire Brainweb volume with varying amount of RF-Inhomogeneity

5.4 7T MRI Dataset

7 T ultra-high field MR images are strongly affected by radio-frequency (B1) mag-
netic field inhomogeneity. As a result, images are very noisy, even if they appear
to be an outstanding clinical application. In this initial feasibility study we used
a healthy volunteer acquisition on a Philips 7 T Achieva system to assess effec-

a) b) c)

Figure 7. A restoration example from the 0.18 T dataset: a) original image of a knee; b)
image restoration using Guillemaud filtering; c) image restoration performed by
HC-HUM
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a) b) c)

Figure 8. A restoration example from the 1.5 T dataset: a) original image of a knee; b) im-
age restoration using Guillemaud filtering; c) image restoration performed by HC-
HUM

tiveness of the proposed filter. 7 T MR imaging was performed with the following
key settings: 2D multi-slice; 60 slices; slice thickness = 1.5 mm; repetition time
[TR,ms] = 7.74; echo time [TE,ms] = 3.50. The parameters used to restore the
images: ft = 0.02, k1 = 0.3, xt = 1.15, m = 5. In Figure 9 a sample of a 7 T T1-
weighted MR image of the brain is depicted along with its Guillemaud and HC-HUM
restorations.

a) b) c) d) e)

Figure 9. A restoration example from the 7 T T1-weighted brain MR dataset: a) the origi-
nal slice; b) the resulting image obtained applying the Guillemaud filter; c) restored
image obtained applying HC-HUM; d) Figure 9 b) in false color; e) Figure 9 c) in
false color. The red-shift (i.e. the halo color gamut) results to be more attenuated
when using HC-HUM than in the Guillemaud case.

5.5 Retina Dataset

The DRIVE database has been established to enable studies on segmentation of
blood vessels in retinal images. The images were acquired using a Canon CR5 non-
mydriatic 3CCD camera with a 45 degree field of view (FOV). Each image was
captured using 8 bits per color plane at 768 by 584 pixels. The FOV of each image
is circular with a diameter of approximately 540 pixels. The parameter used to
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restore the images are ft = 0.02, k = 0.55, xt = 1.28, m = 8. A visual example is
shown in Figure 10.

a) b) c)

Figure 10. A restoration example from the DRIVE retinal dataset: a) original image of
a retina; b) the restored image using Guillemaud filtering; c) the restored image
obtained by applying HC-HUM

6 DISCUSSIONS AND CONCLUSION

The HC-HUM filtering scheme presented in this paper is an image processing method
which allows for compensating haloes in bias removal tasks. It can be used as
an image enhancement CAD to help physicians findings. The method has been
validated using the Brainweb image database, which is the international standard
de facto for research in the field of MRI. The method has been applied successfully
on several MR datasets with different magnetic field intensity (0.18 T, 1.5 T, and
7 T) as well as on retina images. HC-HUM requires very few parameters to be set.
Some indications about their values and behavior are outlined in the paper. The
method does not require any a priori information about processed images, tissues,
and organs under investigation. Moreover, no a priori model of either the bias or the
halo is required so that our method can be referred as a general purpose one. HC-
HUM can work on a single image but it can be easily extended to volumetric data
processing. This important feature has allowed for comparing the method against
other techniques in the literature such as SPM2 [26], which operates only on volumes.
Unlike other approaches, HC-HUM does not require complex iterative modules such
as image registration, image segmentation, and artifact model estimation, so it does
not require any specialized high computational intensive infrastructure. Moreover,
HC-HUM does not require any normalization in the Talairach-Tourneaux reference
system as well as any information about the spatial displacement, the orientation,
and the geometry of the brain image under investigation. As stated before, the
method has been first tested using the Brainweb image database. The achieved
results show that the coefficient of variation resulting from HC-HUM application is
the lowest among all the other methods. This implies that the brightness variation
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inside a tissue (gray matter, white matter, and CSF) is low, so that bias and halo
artifact are significantly reduced. As shown in the presented results, HC-HUM is
more effective on the white matter, since it has the highest intensity level and the
gray level mapping is designed to compensate the highest intensity levels in the
dynamics. The same performance level is maintained when the method is applied
on brain volumes.

Results show that HC-HUM reduces the corruption measured by the cv value
on the WM by about 53 % when compared to the Guillemaud filter and by about
48 % when compared to the SPM2, while the reduction is about 16 % for the gray
matter, and there is no reduction for the CSF. This is due to the method sensibility
to the brightness of each region.

HC-HUM has been tuned on the Brainweb dataset, and tested against the real
datasets described in the previous section. Applying HC-HUM to MR images results
in a more uniform illumination distribution compensating both underexposed and
overexposed areas that are due to the magnetic field inhomogeneity caused by the
surface coils. Finally, retinal images exhibit brightness attenuation on the optical
disk without any halo around the vessels. At the same time, the fovea results more
illuminated. The features mentioned above result in a more effective application of
the standard retina image segmentation and analysis algorithms.
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