
Computing and Informatics, Vol. 28, 2009, 3–28

RESOURCE AWARE RUN-TIME ADAPTATION
SUPPORT FOR RECOVERY STRATEGIES

Rodica Tirtea

University of Oradea
Universitatii Street, 1
410087, Oradea, Romania
e-mail: rtirtea@uoradea.ro

Geert Deconinck

K.U. Leuven, ESAT/ELECTA
Kasteelpark Arenberg, 10
B-3001, Leuven, Belgium
e-mail: gdec@esat.kuleuven.be

Manuscript received 13 October 2005; revised 1 October 2007

Communicated by Ladislav Hluchý

Abstract. The selection of recovery strategies is often based only on the types and
circumstances of the failures. However, also changes in the environment such as
fewer resources at node levels or degradation of quality-of-service should be con-
sidered before allocating a new process/task to another host or before taking re-
configuration decisions. In this paper we present why and how resource availability
information should be considered for recovery strategiesadaptation. Such resource
aware run-time adaptation of recovery improves the availability and survivability
of a system.

Keywords: Recovery strategy, fault tolerance, adaptation, resource monitoring,
availability

4 R. Tirtea, G. Deconinck

1 INTRODUCTION

Distributed heterogeneous systems involved in the control of infrastructures, such as
electric power infrastructure, need to ensure reliable services regardless of faults and
changes in the environment [1]. At middleware level, fault tolerance architecture
could incorporate mechanisms for adaptation to assure dependable control of the
components of the infrastructure. Recovery strategies are used to allow reconfigu-
ration of the system (e.g. graceful degradation) based on the circumstances of the
failure.

The main purpose of the recovery is to improve dependability of the system.
Recovery uses error detection and reconfiguration to enable the non-failed compo-
nents to deliver acceptable services. As the adaptive fault tolerance mechanisms in
distributed systems are incorporated at middleware level, the detection and recovery
infrastructure is middleware-based (i.e. software).

Recovery strategies in distributed systems include actions such as migration
or restart of processes/tasks on other nodes. Selection of an appropriate recovery
strategy usually depends on the type of failure and the circumstances of the failure
event. The available resources of the future host (for the migrating processes) are
usually not taken into account, neither is the performance of the network. We
consider that those run-time conditions, if neglected, can negatively impact the
reliability of the fault-tolerant systems.

In this paper we present why and how available resources (e.g. memory, CPU)
should be considered together with the type of failure and the circumstances of the
failure in the selection of recovery strategies. This allows adaptation of service and
of the system to the environmental conditions.

After a short presentation of target application, a mathematical model for gene-
rating a composite indicator based on sampled parameters is introduced in this
paper. The mechanism for monitoring resources at the node level is described
and it is presented how this can be used in the selection of a recovery action
(e.g. allocation of processes on/to overloaded nodes should be avoided). Adaptive
fault management techniques can be deployed based on the output of monitoring
mechanisms. The appropriate recovery strategy is selected at run-time and uses
a selection mechanism described in this paper. An example is given, as proof
of concept, to show how monitoring mechanisms can be used in fault manage-
ment.

The fault-tolerant architecture integrating the resource monitoring mechanism
achieves dynamic reconfiguration of the recovery strategies based on the changes in
the environment. Also, the resource monitoring mechanism increases the differentia-
tion between node crash and network problems for failure suspected nodes. Another
advantage of using this mechanism is the dynamic adaptation of resource allocation
for an overall increase in application availability [2].

Resource Aware Run-Time Adaptation Support for Recovery Strategies 5

2 DEPAUDE AND ADAPTATION IN DYNAMIC ENVIRONMENT

Deregulation of the electricity market in Europe, the increased number of players
on the market and the distributed geographical nature of the electrical power in-
frastructure are determining factors in the increasing complexity of the underlying
distributed automation systems. Hence centralized control of those distributed au-
tomation systems is not an option. As such, the need of distributed control raises
need for dependable and survivable communication support between all those dis-
tributed components [3].

2.1 DepAuDE Middleware Architecture

The DepAuDE (Dependability for embedded Automation systems in Dynamic Envi-
ronment with intra-site and inter-site distribution aspects) middleware architecture
integrates fault tolerance support into distributed embedded automation applica-
tions. One of the design purposes of the DepAuDE middleware architecture is to
assure dependable functionality in spite of changes in the environment [4]. One
target application domain for DepAuDE is the control of Primary Substation Au-
tomation System, in the electric power infrastructure.

The target distributed system is composed of a collection of sites that are geo-
graphically distributed. Each site is composed of nodes (hosts). The sites are
interconnected by an intra-site dedicated communication network (see Figure 1).
The sites are interconnected via gateways by an inter-site communication network,
which can be through e.g. Internet or more costly via dedicated channels (e.g. dial-
up, satellite, others). The target application uses heterogeneous machines running
different operating systems, real-time or non real-time systems such as Windows
NT/2000/XP, GNU/Linux and real-time operating system QNX Neutrino [5].

H H H

H

G

G

G

Intra-site

Inter-site
(e.g. internet,

dedicated lines)

Fig. 1. Intra-site and inter-site communication levels (G=gateway, H=host)

A middleware level architecture was chosen as the most suitable solution for
integration of those heterogeneous distributed components. All the heterogeneous
systems can be integrated at middleware level to provide the application with re-
quired services.

6 R. Tirtea, G. Deconinck

2.2 Communication Scenario

Between the nodes of the target distributed system, there are two types of traffic
(Figure 1):

a) between nodes of the same site, intra-site communication and

b) between nodes part of different sites, hence inter-site communication.

In case a), for intra-site communication, relying on a private network, we assume
that communication is reliable (i.e. using reliable protocols) and that the response
time is predictable.

In case of inter-site traffic the gateway decides how to handle the communication
(e.g. based on messages priority, or based on request for confidentiality encrypted
or not). As this inter-site traffic goes through an outside environment with varying
characteristics (e.g. variable delays), the adaptation mechanism has to cope with
these varying characteristics in order to maintain the dependability of the overall
system. Furthermore, the gateways can be made redundant in order to deal with
gateway failures. Similarly, real-time operating systems can be used to handle intra-
site real-time requirements and intra-site node failures can be handled by the fault
tolerance middleware. This makes it a fair assumption that most failures will come
from the inter-site communication system (on which we have no control), because
we can limit the amount of intra-site failures arbitrarily by adding the necessary
redundancy as intra-site network is under our full control.

The communication between the sites of the distributed system is divided from
priority point-of-view in different levels of Quality-of-Service (QoS) [6]. The most
critical traffic is denoted QoS 1 and is dedicated to commands, control, alarms and
recovery messages between systems. The less critical levels are for inter-process traf-
fic, while the lowest priority is dedicated to management and configuration traffic.
QoS 1 traffic requires low delays and high probability of correct transmission. The
amount of inter-site traffic is relatively low with respect to intra-site communication
on one hand and with Internet load on other.

We define three options for inter-site communication. Each option has advan-
tages and disadvantages:

Internet communication: due to the low cost, this is the most appropriate option
in context of which there is sufficient bandwidth and low delays; used for all levels
of QoS traffic; in case of reduction of bandwidth or higher delays, the lower levels
of traffic have lower priority for delivery;

Multipath routing through internet: multipath routing relies on Redundant
Source-Routing (RSR). RSR consists in sending the same information to the
destination using different and possibly non-overlapping paths. The usage of
more than one path can improve the characteristics of the transmission; delive-
ry probability increases and delivery delay decreases. The main disadvantage of
RSR is given by the increase in traffic, more bandwidth being used for the same

Resource Aware Run-Time Adaptation Support for Recovery Strategies 7

information. So, multipath routing through the Internet should be used only
for QoS 1 traffic in case of delays and absence of response for QoS 1 traffic; the
lower priority levels of traffic are not using this method due to the disadvantages
of redundant source-routing [7];

Dedicated connection: due to high cost, the dedicated connection is used only in
case of insufficient bandwidth or unacceptable delays for QoS 1 traffic for a time
interval ∆t.

2.3 Recovery Scenario

2.3.1 Separation of Recovery Code

The target architecture presented in Section 2.1 uses a recovery language to express
and manage fault tolerance provisions as presented in [8]. In [8], in the recovery
language approach, two distinct parts are available to the programmer, namely
the part dedicated for the application using a service language, i.e. the program-
ming language addressing the functional design concerns, and the second part –
a special-purpose linguistic structure (called recovery language) for the expression
of error recovery and reconfiguration tasks. The recovery language supplies input
for the application service language when an error is detected from an underlying
error detection layer, or when some erroneous condition is signaled by the appli-
cation processes. The two parts can be seen as two flows and they are executed
concurrently, co-operating with each other. This separation both at design and
at run-time brings down the complexity of designing and maintaining distributed
dependable systems. It also allows modifying the error recovery code while the sys-
tem is being executed, which may be used while developing and testing the target
application [8].

Error recovery and reconfiguration are specified as a set of guarded actions, i.e.,
actions that are executed when a pre-condition is fulfilled. These actions are called,
in this paper, recovery actions. If more than one recovery action is used for error
recovery and reconfiguration tasks and those sets of recovery actions are switched
(e.g. based on environmental conditions) then an adaptive recovery mechanism is
supplied, and we call each of those sets recovery set. In this work, each recovery set
(as mentioned above) consists of recovery actions and is described by such a code
for error recovery and reconfiguration.

recovery set RSA

recovery action RA

recovery action RA

...
recovery action RA

1A

2A

nA

Fig. 2. Recovery sets consist of recovery actions

8 R. Tirtea, G. Deconinck

In Figure 2 there is a representation of recovery set, recovery action relationship.
Recovery actions may consist of conditioned actions, e.g. actions are executed only
if certain error/available resources conditions are met.

An example follows describing a 3-and-a-spare system, which is a triple modular
redundancy system with a backup. If one of the three components fails, it is replaced
by the backup. The ‘group1’ contains all 3 triple modular redundancy components
while ‘task4’ represents the backup. ARIEL recovery language is used [8] to describe
the recovery, and, on the right side, the lines are explained. This is an example of
a recovery action within a recovery set.

IF [FAULTY group1] THEN // If error detected in group1

STOP task@1 // stop faulty component

WARN task~1 // warn others

START task4 // start the spare component

FI // end if

2.3.2 Recovery Strategies Adaptation

Different adaptation scenarios can be designed to handle the changes in the environ-
ment, which have impact on communication or on the performance of the system
(e.g. an overloaded system may generate delays). Those scenarios are described,
here in this paper, by e.g. recovery set A (RSA) and recovery set B (RSB).

Those recovery sets are switched at run-time [9] based on the environmental
conditions [10], see loop 1 in Figure 3. The actions within the recovery strategies
are executed in case of error detection (e.g. timeout of the watchdog) or event
notification (e.g. change of conditions), see loop 2 in Figure 3.). The recovery
actions are selected based on the context of the detected errors and on the available
resources of the nodes in case of tasks/processes allocation [10].

Execute appropriate recovery actions from RSI

Switch to appropriate recovery set RSI

environmental conditions

error detection
available resources

loop 1

loop 2

Fig. 3. Two adaptation levels

In this way we have two separate levels of adaptation:

• selection of the recovery action from within a recovery set based on the type of
the error detected and the available resources (see Section 4) and

Resource Aware Run-Time Adaptation Support for Recovery Strategies 9

• switching between available recovery sets based on environmental conditions.

The number of recovery sets can be extended with recovery set C, D etc. ac-
cording to the specific requirements or conditions of the distributed application.
For instance, an additional recovery set for rejuvenation [11] and maintenance (e.g.
software or hardware upgrades) can be added. In this case, for instance, the ex-
hausting resources (e.g. memory leakage, due to aging) will trigger the switch to
this recovery set (executing software rejuvenation [11]). Because rejuvenation ac-
tions include reboot of a node/task, maintenance actions can be coupled to optimize
activity. However, only the actions supported by underlying Basic Services API (see
Section 2.4.1) can be used in the adaptation mechanisms.

Based on communication scenario from Section 2.2, recovery strategies can be
defined. Those recovery strategies consist of recovery sets dedicated on one side
for intra-site level operation and on the other side for inter-site level communi-
cation. Because inter-site level communication can influence the adaptation sce-
nario at intra-site level (e.g. if the site is isolated, a service degradation should
occur) recovery strategies encapsulate adaptation at both inter-site and intra-site
levels.

We are using two major adaptation strategies described by two recovery strate-
gies: normal recovery strategy and the second, “Plan B” recovery strategy, dedicated
for critical situations. Both recovery strategies consist of recovery sets for intra-site
level or inter-site level adaptation. For instance, for the inter-site communication,
the normal recovery strategy is a low cost one, for which the communication via inter-
net is sufficient. On the other side “Plan B” recovery strategy includes at inter-site
level a recovery set describing appropriate actions for switching to a dedicated line
in case that Internet connection is lost or overloaded (e.g. due to denial-of-service
attack).

This switch of recovery sets and strategies helps from two perspectives. First,
this allows a hierarchical view of recovery, improving recovery scalability in dis-
tributed systems (e.g. a more restrictive recovery strategy allows only switching
between recovery sets reflecting restricted conditions). Second, the switch of re-
covery sets (and strategies) allows faster recovery (i.e. some of the conditions are
already verified to switch to appropriate recovery set/strategy, so less time spent in
verification of conditions inside recovery sets).

In the following sections it is shown how those recovery adaptation means fit in
DepAuDE architecture.

2.4 Environmental Change Detector (ECD)

2.4.1 Using ECD in DepAuDE

In DepAuDE, at middleware level (Figure 4), a module called Environmental Change
Detector (ECD) is implemented to gather sampled data supplied by node or network
monitoring mechanisms. The output of the ECD goes to the Recovery Interpreter

10 R. Tirtea, G. Deconinck

(RINT), which interprets the recovery code [8]. As such, it can be used for selection
of recovery actions, switching of recovery sets or recovery strategies.

User application

FTM

Backbone RINT ECD

Basic services API

OS (Windows NT/2000/XP, GNU/Linux, QNX Neutrino)

Fig. 4. ECD in DeAuDE architecture

The Basic Services API, called also Basic Service Library (BSL) in DepAuDE
has as main objective OS-independence and transparent communication. For this
purpose the BSL abstracts the OS and offers the required OS related functionality
to all other system components. The OS-independence comes at a cost. This cost is
the requirement that for each supported OS an implementation of the BSL for this
specific OS is necessary.

One of the industrial applications of BSL in DepAuDE is the Primary Substa-
tion Automation System (PSAS) which consists of embedded hardware and software
located in a substation of electricity distribution [7]. As PSAS has a certain number
nodes (industrial systems requiring real-time operating systems and PCs), the task
allocation is stored in a table which is used by the BSL. The functionality of Basic
Service API consists of startup and shutdown, node control, process and thread
control, communication, time handling, semaphores. Concerning tasks, BSL sup-
ports the following actions: create, restart, isolate, stop task. Each application task
has at least one standby replica on different node (as such reconfiguration does not
involve moving large amount of data; the status/location of tasks is reflected on the
allocation table used by BSL).

FTM (Fault Tolerance Mechanisms) are the set of single-version software fault
tolerance provisions [12] that are adopted within DepAuDE and integrated into
its intra-site architecture. From the point of view of the programmer making use
of these mechanisms, FTM are a set of ready-to-call software components such as
watchdog timers, exception handling tools, etc. From a developing point of view,
FTM are sets of functions that make use of the Basic Service API to communi-
cate, launch tasks, and synchronize and communicate their error detection to the
architectural component that collects and organizes them into a database (in the
DepAuDE backbone).

The Backbone is a distributed application collecting system and application sta-
tus information and coordinating error recovery and reconfiguration. The objectives
of the backbone are: collecting and maintaining event notifications produced by the
FTM, the Basic Service API, and the application; deducing properties of faults pro-
ducing the event notifications; managing error recovery by executing the run-time

Resource Aware Run-Time Adaptation Support for Recovery Strategies 11

executive of the selected recovery strategy. One of the tasks of the backbone is
that of managing the database of event notifications produced by the FTM, the
Basic Service API and the application tasks. Exploiting functionality provided by
monitoring, error detection and the control of the communication flow, another task
of FTM is to detect and recover from communication faults (e.g. using multipath
routing through Internet).

RINT gets the current recovery set, composing queries to the database (from
Backbone) and executing error recovery actions depending on the result of the
queries (see Figure 5). RINT is similar with a stack-based instruction set machine:
results are stored and read from a run-time stack. Current environmental condi-
tions are periodically receiving by RINT from ECD to select the most suited error
recovery strategy based on the hints of a failure detector, and also on the changes
in the environment.

Application Backbone RINT ECD

Error detection

Recovery ends
notification

Push rec. set RS A

Update with RS A

Skip/execute actions

Push rec. set RS B

Skip/execute actions

Update with RS B

Recovery starts

Query

Result

Query

Result

. . .
Recovery ends

New resource status

New resource status

Fig. 5. Switching recovery sets A, B (RS A, RS B). Timing view

ECD sends notification to RINT if certain defined thresholds (as value and/or
as time interval) are reached and/or if monitored data is back in the normal range.
Those notifications from ECD are used by RINT for recovery adaptation. For in-
stance, in Figure 6, based on the notification received by RINT from ECD, the
recovery set is switched (updated) with the current recovery set when RINT is free.
In this simplified example, the recovery set contains the recovery code associated to
the environmental conditions detected by monitors.

2.4.2 Proposed ECD Functionality

A functional representation of Environmental Change Detector is presented in Fi-
gure 7. ECD can incorporate Node monitors (sampling for instance CPU usage,

12 R. Tirtea, G. Deconinck

Monitors

RINT

ECD

Push appropriate recovery set

When free, update with
current recovery set

Values

Fig. 6. Integration of monitored data into recovery set (simplified model)

available memory etc.), Network monitors (i.e. delivering bandwidth availability
data) and Other monitors (e.g. for EMI).

Recovery action selector
(RINT)

ECD

Negotiation

module

Recovery interpretor

Recovery sets selector

CI generator modules
Thresholds

repository

Node monitor(s) Network monitor(s) Other monitor(s)

Estimation

module

Node state database

Fig. 7. General representation of ECD and the adaptation layer

The ECD contains a Thresholds Repository as reference database for compar-
ing the sampled data (data supplied by the monitors) with the threshold values.
The repository allows easy changes/adjustment of the thresholds. Based on the
Threshold Repository values, the input values are compared, and, using a mathe-
matical model, a Composite Indicator (CI) is generated in CI generator module.
The mathematical model for generation of CI is described in detail in Section 3.

For the node state determination, the CI is stored in Node state database, to-
gether with a duration counter used for describing resource state of the node. More
details are presented in Section 3. The state of the nodes can be used by Recovery
action selector module to select/execute given recovery actions at run-time.

Other modules, Estimation module and Negotiation module, could be further
developed in order to estimate future behavior and to negotiate QoS policies.

3 DATA ANALYSIS. INTEGRATING RESOURCE
MONITORING INFORMATION

As already mentioned, we consider that the load of a node can influence the perfor-
mance and the dependability of a system. In this context, there is a need for a quan-
tification of the factors/parameters sampled at node (or network) level. Examples
of such factors/parameters are available memory, CPU usage, etc. for node level or
available bandwidth etc. for network level.

Resource Aware Run-Time Adaptation Support for Recovery Strategies 13

The composite indicator (CI), proposed in this section, encapsulates the sampled
value and also the relevance of each parameter, based on a weight matrix. How this
CI is used for the switch of recovery sets, at intra-site level, is presented in Section 4.

3.1 Mathematical Model for Generation of the Composite Indicator

In this subsection, the general mathematical model for computing the composite
indicator of a component (e.g. node) is given. Different factors can have a higher
or a lower influence/impact on the evaluation of a system performance. In order
to capture the importance of each factor, the best option would be to use a weight
associated for each parameter. A general formula to compute a general CI influ-
enced by n factors f1, . . . , fn with their associated weights w1, . . . , wn is given in
Equation (1).

CI = w1 × f1 + w2 × f2 + . . . + wn × fn (1)

As different factors have different ranges, we consider t + 1 sub-domains for
each factor to simplify the representation, so that t thresholds separate those sub-
domains.

As an example in this description, we consider t=2 thresholds for node CI called
alert threshold and alarm threshold and the names for domains separated by those
thresholds are: normal, alert and alarm. From now on, the term ‘above’ will denote
a situation when the sampled value reached a certain threshold to a more critical
sub-domain, and the term ‘below’ will denote a situation when the sampled value
did not reach the threshold. Also, we use ‘first’ threshold as the first comparing
value above the normal state of a parameter, all other thresholds being above this
one.

The thresholds can be adjusted independently of the sampled parameters com-
posing the CI. The thresholds are chosen based on statistical analysis [13].

The number of sampled parameters integrated in computing the CI is denoted
by c. In context of multiple counters and thresholds, the Equation (1) can be
rewritten as a sum of matrix multiplications in Equation (2) with W as a column
matrix of c vectors containing the weights for each sampled parameter.

CI = W1 × F1 + W2 × F2 + . . . + Wc × Fc (2)

On the first positions of the equation are the most important parameters (that
have a higher impact on the behavior of the system) and on the last positions are
the least important ones.

W =











W1

W2
...

Wc











(3)

14 R. Tirtea, G. Deconinck

Fi =













fit
...

fi2

fi1













, where fij =
{

0 if sample value of counter i is < thij ,
1 if sample value of counter i is ≥ thij.

(4)

In Equation (3), vector matrixes Wi are components of the weight matrix W .
The t cells in the column matrix Fi, can have only one of the two values 0 or 1 as
in Equation (4).

Inside the weight matrix W , the weights are powers of 2. We have chosen
those weights for practical reasons. First, in this way the computation of CI can be
reversed and based on the positive integer value of CI (CI will always be a positive
integer) can be identified which parameter was determining a certain composite
threshold passed. Also, using this model for computing CI, we can use (e.g. in case
of C programming) the integer unsigned type and save values for later statistical
analysis. This will use 32 bits for a CI which in this case can be composed for
instance of different combinations of number of thresholds and counters, with the
restriction t × c ≤ 32. (e.g. 16 monitored parameters with 2 thresholds, meaning
3 intervals of values normal, alert and alarm).

The weight matrix is given in Equation (5).

W =

















2t×c−1 2(t−1)×c−1 · · · 22×c−1 2c−1

2t×c−2 2(t−1)×c−2 · · · 22×c−2 2c−2

...
...

. . .
...

...
2t×c+1 2(t−2)×c+1 · · · 2c+1 21

2(t−1)×c 2(t−2)×c · · · 2c 20

















(5)

Based on this model the composite indicator can take values from 0 to 2t×c− 1.
CI has the value 0 when none of the parameters is above any threshold, meaning all
parameters are in normal range. If any of the parameters goes above first threshold
then the CI has a value greater than 0. CI takes value 2t×c − 1 when all the
sampled parameters are in the worst case scenario, above all thresholds, so CI =
20 + 21 + . . . + 2t×c−1.

3.2 CI Definition and Thresholds

The values of CI can be interpreted in different ways. An option would be to
establish general thresholds for CI. For instance, the simplest option would be to
use the following rule: “If any parameter i (1 ≤ i ≤ c) is above its threshold j (thij)
then the CI is above the general thj threshold (with 1 ≤ j ≤ t).”

This is the rule used in this paper. In this case, CI will have t thresholds and
t + 1 sub-domains of values as in Equation (6).

Resource Aware Run-Time Adaptation Support for Recovery Strategies 15

CI =































0, if no parameter is above the first threshold th1;
1 . . . 2c − 1, when ∃ parameter above the threshold th1 and none

is above th2;
...
2(t−1)×c . . . 2t×c − 1, when ∃ parameter above the threshold tht.

(6)
Given the rule introduced above, for a simple case with CPU usage and available

memory as parameters, based on thresholds from references [13], the representation
of the normal/alert/alarm zones and CI alert/alarm thresholds are distributed as in
Figure 8.

As mentioned in [13], the values of CPU usage and available memory thresholds
are determined empirically, i.e. from observations. Further mathematical analysis
work could be carried out to detect the most appropriate thresholds given the appli-
cation, system architecture and the OS installation combination (i.e. those threshold
values would not apply to embedded systems where total memory is smaller than
defined thresholds).

Alarm threshold

Alert threshold

Alert zone

Alarm zone

0 … 75 85 100

% CPU usage

0

 1
0

 5

0

A
v
a

ila
b

le
 m

e
m

o
ry

 (
M

B
)

Fig. 8. 2D representation of available memory vs. CPU usage, and the thresholds

4 RECOVERY ADAPTATION USING CI

4.1 Recovery Action Selection Based on Node Resource Monitoring

As already mentioned, different actions are described inside recovery strategies to
be taken in case of error detection. If the actions require restarting/starting of
processes/tasks on different nodes then the decision should be taken also based on
the available resources of the future host.

16 R. Tirtea, G. Deconinck

In our resource monitoring mechanism for the node we considered counters such
as available memory, CPU usage, and numbers of reboots. In Figure 9 there is
a schematic representation for determining the CI for the node resources based on
three sampled counters (c = 3) and using two thresholds (t = 2).

Each node is sending messages to the Environmental Change Detector with
information on CPU usage, Available memory and Up time. From the value of the
Up time the number of reboots for a given interval of time is computed.

th12

11th

21
th

31th

22
th

32
th

0

0

100

low

max

0

1

8

63

Thresholds

Parameter 1

Parameter 2Parameter 3

% processor time

reboots Available memory (MB)

high

Fig. 9. CI generation based on sampled values for three counters and two thresholds

The CI generator (Figure 9) receives the data structure and compares the values
with the corresponding ones stored in the Thresholds repository. As there are t = 2
thresholds and c = 3 counters, according to the rule presented in the previous
section, the weight matrix has 3 lines and 2 columns. In this case, Equation (2)
(based on Equations (3), (4), (5)) can be written as:

CI =
∑

i=0..2

Wi × Fi

CI = (25 22)
(

f01

f00

)

+ (24 21)
(

f11

f10

)

+ (23 20)
(

f21

f20

)

,

where fij =
{

0 if sampled values of counter i is < thij,
1 if sampled values of counter i is ≥ thij

and thij is the threshold

j of the counter i.
For this case, for CI we have 3 intervals of values (according to Equation (6)) as

presented below:

• CI = 0, when none of the counters reached the alert threshold, and we consider
this as normal state;

• CI > 0 and CI ≤ 7 (≤ 2c − 1), when at least one of the sampled value of
counters is above the alert threshold, but below the alarm threshold, and we
consider that the composite indicator is also above the general alert threshold;

• CI > 7 (> 2c− 1), when at least one of the sampled values of counters is above
the alarm threshold then the composite indicator is considered to be above the

Resource Aware Run-Time Adaptation Support for Recovery Strategies 17

general alarm threshold. (The maximum value for CI in this case is CI = 63
(= 2t×c − 1).)

Based on the values of the CI and on the period for which the CI is above a certain
threshold we can define different states for the node:

• a normal state, when CI is below any threshold, and in this case, there are avail-
able resources at node level for new tasks/processes to be restarted/migrated;

• an alarm state when CI is above alarm threshold for a ∆t interval of time
considered to be critical, and in this case, restart/migration on the node of new
tasks/processes should be avoided, and

• one or more transient alert states when CI is above the alarm threshold but the
interval is still shorter than ∆t.

The presence of the transient alert state(s) is required for the stability of the
system, the ∆t interval of time should be sufficient in order to avoid transient
switching back and forth in case of fluctuations in the load of the system. We
use a counter, called Alarm duration counter (ADC), to compare its value with the
∆t interval of time, and in case it is greater to trigger the switch to alarm state.
More detailed explanation about ADC is presented in Section 4.3.

4.2 Local Monitoring. Implementation Considerations

The software monitoring mechanism is hardware and operating system dependent.
Due to the heterogeneous nature of the distributed system of the application, de-
dicated modules had to be implemented for each operating system. Even if there
are tools available for monitoring (see Section 5.1 regarding related work) they have
two major inconveniences, they are not lightweight enough and they are not easy to
integrate in the target application. Because of this, a module was developed for cap-
turing the available resources for operating systems such as Windows NT/2000/XP,
GNU/Linux and real-time operating system QNX Neutrino [5].

Some counters are easily accessible for Windows using PerfMon [14], a Perfor-
mance monitor utility, while on other operating systems (GNU/Linux, QNX Neu-
trino) they are not easy accessible. As such, we limited the number of counters to
CPU usage, available memory and up time for number of reboots.

The data structure supplied to ECD for this implementation running on all
mentioned operating systems is composed of CPU usage, the available memory and
the up time. From the value of the Up time the number of reboots is computed.
The sampled parameters, CPU usage and Available memory values are scaled, for
the interval 0..100. The Up time is given in seconds. The structure used to send
those data contains also a flag (inconsistency flag).

The inconsistency flag is set to 0 if there were no error messages and the output
values are in the normal range. In this case, ECD can make decision based on the
data sent in the structure.

18 R. Tirtea, G. Deconinck

The flag is set to 1 in the other cases: in case of a detected error, or if functions
give inconsistent values. For instance, in absence of a pre-defined function returning
CPU usage %, this can be computed from values of up time and idle time from
hardware counters, at given time interval (e.g. every second). However, if those
values are not expressed on the same units or the sampling frequency is not accurate,
inconsistent values (e.g. negative cpu usage) can be obtained. In case of Linux, kernel
versions before 2.4, running on a system with two microprocessors, perhaps due to
non-atomic reads and updates, the idle time can go backwards. The inconsistent
values are ignored and not shown for instance in case of top command. Also, in
case of the QNX Neutrino RTOS, unexpected values can appear due to the timer
quantization error [15]. This is explained by the 153 nanoseconds discrepancy at
each millisecond between the request and the hardware response, so, the sampling
frequency is not accurate [15]. We have to deal with those situations, and the flag
will be set on 1 if the values are outside the definition domains. In case of the flag
set on 1, the Environmental Change Detector ignores the values received. ECD will
make no decision upon those values.

The implementation has a low performance impact (below 1 % CPU usage),
uses C as programming language and the length of the code varies from about
130 lines in case of Win NT/2000/XP (where dedicated functions are provided), to
almost double in case of Linux. Additional overhead may be required for reliable
communication. This depends on the underlying system particularities, mainly on
the robustness of the underlying BSL and operating system (i.e. if reliable commu-
nication is provided, there will be no additional overhead, otherwise provisions for
reliable communication need to be incorporated in the middleware).

As we already mentioned, the threshold values are taken from references, and
we use the same values independent of the operating system. Performance com-
parison between Windows NT, Linux and QNX as the basis for cluster systems is
presented in [16]. One of the conclusions of the material is that there is no clear-cut
advantage from one operating system over the other. From our perspective this jus-
tifies the use of same thresholds values for same configuration hardware but running
different OS.

4.3 Example of CI Generation and Switch of Recovery Sets

In this subsection an example is given for better understanding of different concepts
introduced in this paper (e.g. CI, ADC etc.).

According with the assumptions and definitions presented already, we use 2 types
of recovery sets: one for the case of node in normal state, from resource point of
view, and one for the case of node in alarm state, from resource point of view.

At node level, few but relevant data should be collected for the performance
evaluation and characterization of resources. Some of the important categories to
monitor are CPU, memory, disk I/O and network. It should be noticed that the
resources are all interdependent. A bottleneck in one will affect the others. For
example, if there is not enough memory then CPU usage will increase, because the

Resource Aware Run-Time Adaptation Support for Recovery Strategies 19

CPU spends more time on page swapping. This helps us determine the order/weight
in the weight matrix of the sampled parameters, i.e. the ones that have higher
influence on others will have a higher weight associated.

In this example, CPU usage, available memory and up time are sampled. The
thresholds from reference [13] are used for CPU usage, alarm threshold at 85 % and
alert threshold at 75 %. For available memory the alarm threshold is at 10 MB and
alert threshold at 50 MB. In this context, with three parameters and two thresholds,
the CI takes values from 0 to 63 (= 2t×c − 1).

Figures 10 and 11 from this section contain values sampled during ten hours of
testing on a system running computation intensive applications (on a double micro-
processor Linux 2.4 machine). Two representative intervals were selected, one for
fluctuating conditions, but not triggering change in recovery sets, in Figure 10 to
show why stability feature (in our case ADC) is required, and in Figure 11 a repre-
sentative situation when recovery sets are changed.

The stability of the system is important. To avoid unnecessary oscillations of
the system (frequent switches of recovery strategies) we use the ADC counter. The
process of incrementing the ADC starts when the composite indicator ‘crosses’ the
alarm threshold (e.g. moment A in Figure 10). If the ADC counter is above the
limit ∆T and the composite indicator is above the alert threshold then the state
changes to alarm state (e.g. moment C in Figure 11).

In our testing environment, the sample values for available memory and the
numbers of reboots were below the alert thresholds for both intervals, therefore
their graphs are omitted. In this context, from the way we defined the composite
indicator, CI can take only 3 values. CI = 0 when CPU usage is below the alert
threshold, CI=2 (21) when is above the alert threshold but below the alarm threshold
and CI = 18 (24 + 21) when the CPU is above the alarm threshold.

CI = (25 22)
(

f01

f00

)

+ (24 21)
(

f11

f10

)

+ (23 20)
(

f21

f20

)

,

where f00, f01, f21, f22 = 0.
The same equation could be represented as in Table 1. Also here, the parameters

have different impact in the composition of CI due to their importance (weight) and
value. The importance of a certain parameter in CI is reflected in the table by its
position between the columns. In this case, we assign available memory a higher
importance because it does not change rapidly (if there is little available memory
this can impact also the CPU usage), CPU usage is on the second position and the
number of reboots on the last position.

Thresholds Alarm threshold passed Alert threshold passed

Parameters memory CPU reboot memory CPU reboot

Weight 25 24 23 22 21 20

Value 0 1 0 0 1 0

Table 1. An example of composite indicator computation

20 R. Tirtea, G. Deconinck

0

10

20

30

40

50

60

70

80

90

100

time (s)

C
P

U
u

s
a
g

e

CPU usage Alert threshold Alarm threshold

0

5

10

15

20

time (s)

C
I

CI CI alert threshold CI alarm threshold

A B
r1

r0

Fig. 10. Case a. Alarm duration counter is not triggering alarm recovery set: any interval
AB is smaller than ∆T

Also in Table 1 it can be noticed that the columns are repeated as many
thresholds we have. In this way, the group of columns on the left side reflects
the higher values of the sampled parameters (a value of ‘1’ reflects the fact that
the values of the parameters are above the higher threshold). After sampling, in
case the sampled value is below any threshold, ‘0’ is filled in both positions of the
counters (e.g. Reboot and Memory columns in the table). If the alert threshold is
passed, ‘0’ is filled in Alarm column of the counter and ‘1’ in the Alert column. In
case that the sampled value is above the Alarm threshold then in both positions of
the counter ‘1’ is filled (e.g. CPU columns) in this case.

We consider the values from the table in binary representation, MSB on the left
(corresponding to weight 25) and LSB on the right side (corresponding to weight 20).
Converting from binary to decimal we obtain the CI. In the case represented in
Table 1 the CI takes the value of 18. Based on this model, it can be noticed that the
integer value of CI can be easily converted to binary and determine which parameter
was above which threshold.

Resource Aware Run-Time Adaptation Support for Recovery Strategies 21

Figure 10 presents a case with CPU usage passing the thresholds for short inter-
vals of time: alarm threshold is reached at the moment denoted with A, determining
initialization and incrementing of the ADC counter. The situations presented in
Figure 10 will trigger no recovery/adaptation actions, because those intervals are
shorter then ∆T (ADC < ∆T) where ∆T is a reasonable interval of time (e.g. mi-
nutes). The ADC counter is reset at moments B, when the CI gets below the alert
threshold. It can be noticed in Figure 11 that this situation repeats (CI reaches the
value of 18 again, but for few seconds only). So, based on this, recovery code is not
changed, (r0 being further used).

Figure 11 presents the case in which the alarm recovery strategy is triggered due
to a longer low resource circumstance. AB interval is larger than ∆T . At moment C
there is a change in recovery sets from normal to alarm and at the moment B there
is a change from alarm recovery sets to normal one.

0

20

40

60

80

100

120

C
P

U
u

s
a
g

e
(%

)

CPU usage Alert threshold Alarm threshold

0

2

4

6

8

10

12

14

16

18

20

time

C
I

CI CI alert threshold CI alarm threshold

A C B
r1

r0
DT

Fig. 11. Case b. Alarm duration counter triggers another recovery set (r1) at time C =
A+ ∆T . When the CI goes below the alert threshold, at moment B, the recovery set
used will switch to r0.

22 R. Tirtea, G. Deconinck

Figure 12 presents the state diagram for two thresholds (alert and alarm) and
with 3 parameters monitored. So CI has three domains of values: 0, 1, . . . , 7 and
8, . . . , 63.

normal state
transient

alert state

transient

alarm state
alarm state

CI=0

CI=0

CI=0

CI=0

CI=1..7

CI=1..7

CI=1..7
CI=1..7

CI>7 CI>7

CI>7

CI>7 and ADC>DT

CI>7 and ADC>DT

Fig. 12. State diagram. CI = composite indicator, ADC = alarm duration counter, DT =
∆T .

In Table 2 there is the transition table of the finite state machine. In the table
the output and the operations/actions are indicated based on the current state of
the node and the inputs (CI, ADC). Inside the cell, the first information is the next
state, the second is the recovery set to which there is a switch and the third is the
operation done in the context given by the current state and the inputs: CI and
ADC.

Current Alarm duration Normal Transient alert Transient alarm Alarm
state/Input counter state (NS) state (TATS) state (TAMS) state (AS)

CI = 0 ADC ≤ DT NS/-/- NS/-/ADC← 0 NS/-/ADC← 0 ∗

ADC > DT ∗ NS/rs0/ADC← 0 NS/rs0/ADC← 0 NS/rs0/ADC← 0
CI = 1..7 ADC ≤ DT TATS/-/- TATS/-/- TATS/-/ADC++ ∗

ADC > DT ∗ TATS/-/ADC++ TATS/-/ADC++ TATS/-/ADC++
CI > 7 ADC ≤ DT TAMS/-/- TAMS/-/ADC++ TAMS/-/ADC++ ∗

ADC > DT ∗ TAMS/-/ADC++ AS/rs1/ADC++ AS/-/ADC++

Table 2. Transition table (next state/output/operation)

In Table 2, “*” means impossible case (for instance it is impossible to be in
the alarm state and the ADC counter to be smaller than ∆T , denoted with DT),
“ ” that there is no operation or no output. ADC← 0 means that alarm duration
counter takes the value of zero and ADC++ means that ADC is incremented. “rs1”
means selection of recovery sets with recovery actions dedicated to the alarm state
of the given node and “rs0” means selection of recovery sets with actions for normal
state.

We used two thresholds in this model: alert and alarm threshold. Even if this
allows the use of three domains, we use only two for recovery. The alert threshold is
used to avoid oscillations in recovery decisions, together with ADC. The switch of
the state from normal to alarm is triggered by ADC reaching a certain value, and

Resource Aware Run-Time Adaptation Support for Recovery Strategies 23

the switch from alarm state to normal state is triggered (together with setting ADC
on zero) by CI reaching a value below alert threshold.

The composite indicator, as defined in Section 3 and used in Section 4, integrates
three parameters (memory usage, CPU usage and number of reboots) together with
two thresholds for each parameter, all in one integer. The same information can
be also represented as a tuple of three values, one for each parameter. However,
our integrated CI has some advantages compared with a tuple. First, it is easy to
compare an integer with an integer threshold (for comparison of tuples, each value
is compared separately). Then, CI is less demanding from memory perspective, be-
cause it can be stored as an integer. Also, the model presented can be extended
easily for more parameters/thresholds (e.g. a 32 bit integer can encapsulate all com-
binations of t number of thresholds, c number of parameters, as long as t× c ≤ 32).
The model proposed in this section allows reverse computation. From the integer
value describing a node, the domains of values for all parameters can be determined
(e.g. a value of 31 can be written 0× 25 + 1× 24 + 1× 23 + 1× 22 + 1× 21 + 1× 20

which means that the first parameter (available memory) is above alert threshold
but below alarm threshold and the other two (CPU usage and numbers of reboots)
are above alarm threshold).

The value of ADC influences the speed of reaction. A small value for ADC is
useful in case of bottlenecks so that they are quickly detected. However, a system
can function correctly even if it is using most of its resources for a certain time
interval, for example if a system is running computationally intensive applications
(e.g. simulations which can last tens of minutes with CPU usage above 85 %). Our
mechanisms will consider the system in ‘alarm state’ even if this is not an indication
of a faulty condition. In such a case the system is not going to receive new tasks, so all
the resources are going to be used by the computation intensive application. Another
special case are applications which show periodicity from resources consumption
point of view (such a profile must be considered in order to avoid oscillations). As
such, identifying the profile of resource usage for the applications running on the
target system is useful before setting the ADC or other thresholds. Nevertheless,
for real-time applications the designer should also make sure that under the worst
execution time (e.g. due to reconfiguration), the timing constraints are met.

However, the systems addressed in this paper are running distributed applica-
tions, with intra- and inter-site aspects, and so appropriate but different mechanisms
can exist for intra-site and inter-site levels.

5 RELATED WORK

This section presents material on two topics. First, performance monitoring me-
chanisms and their relevance for our target operating systems are analyzed in first
section and then, in the second section, we identify the research work related on
fault tolerance adaptation based monitoring in middleware architectures.

24 R. Tirtea, G. Deconinck

5.1 Monitoring Tools

The Environmental Change Detector receives data from monitors. For the node
level monitoring we needed a lightweight software module running on the different
OS (Windows NT/2000/XP, GNU/Linux and QNX Neutrino) used in the target
application distributed system and easy to integrate in the entire DepAuDE archi-
tecture.

For some of the operating systems (e.g. GNU/Linux) a lot of applications are
available for capturing the status of the resources in general and per process. They
were not useful because they are mostly dedicated to capture all the possible data
especially for visualization, so too much information, and not lightweight enough
(e.g. 4 % CPU usage just for monitoring and visualization). We are not going to
give extensive references for those monitoring tools, but only for the ones relevant
in for our application.

In case of Windows NT/2000/XP, the Windows’ Perfmon utility is available, as
well as other dedicated functions for reading the values from the registry [14]. Those
functions can be easily integrated in any application.

In case of QNX Neutrino, although the status of the system is displayed on
the desktop on Photon session, we could not access these data for our monitor-
ing module. However, an application called SPIN is available which monitors the
performance of the QNX/Neutrino system [17]. This application, as the ones men-
tioned for GNU/Linux, is not lightweight and cannot be easily integrated in our
architecture.

As we mentioned above, all those applications on all the operating systems are
increasing the load of the systems. Also it is difficult to integrate them with the rest
of our work. In this context the best option was to write a software module using
the available functions for each operating system.

Distributed monitoring systems are not suitable for our target application. In
our architecture “I’m alive” notifications were sent, and this allowed adding load
related information (i.e. node CI) to those notification messages. Given the context
in which the mathematical model was developed and ECD integrated, if we want to
extend to other applications, other solutions could be applied for gathering moni-
toring data, and those could use distributed monitoring. Applications which are not
using “I’m alive” notification mechanism for availability detection could take advan-
tage of such distributed monitoring tools. Tools such as SNMP (Simple Network
Management Protocol) [18] can be used to collect resource information and using
a centralized CI generator to use the same model for describing the resources of the
different nodes interconnected at site level. SNMP has also disadvantages due to
initial setting and access rights.

5.2 Other Adaptation Approaches Based on Monitoring

An adaptive architecture that provides dependable distributed objects is developed
in the AQuA project [19]. In AQuA, an object factory is implemented on each host.

Resource Aware Run-Time Adaptation Support for Recovery Strategies 25

The function of each object factory is to kill processes, to start processes, and to
measure the host load, in order to provide information to the advisor to be used in
deciding which hosts to start objects on [19]. It is shown in [19] that the factory
periodically sends the load of its host to the dependability manager which decides
how to assign replicas to hosts. However, there is no further information how the
load of the host is influencing the decision of the dependability manager. Our work
proposes, compared with the above mentioned architecture, a module for captur-
ing different parameters in three different operating systems and a mathematical
model for computing a quantitative value characterizing the available resources of
the node. Also, a method for adapting recovery actions based on this information
is given.

ROAFTS middleware allows configuration management and adaptation deci-
sion based on monitoring [20]. ROAFTS considers the availability of the nodes
(availability detected based on heartbeat messages) for allocation of resources to
active applications. The local resources are not considered. The messages between
nodes are sent in two copies, using two paths, to secure reception of the messages
at destination in a timely manner (ROAFTS supplies real-time support). Our work
adds load information to “I’m alive” messages (similar with heartbeats messages in
ROAFTS). Also, messages are sent using multiple paths (redundant source-routing)
in our work, not for real-time reasons, but for recovery and adaptation purposes,
and to guarantee quality-of-service support.

6 CONCLUSIONS AND FUTURE WORK

This paper presents the integration of an Environmental Change Detector into
a fault-tolerant middleware architecture developed in DepAuDE project. The objec-
tive of the ECD is to supply an automated selection of recovery strategies based on
the run time environment conditions. ECD is proposed as solution for integrating
the external, dynamic aspects (e.g. load of nodes and network, and other information
such temperature, EMI) in the fault tolerance and adaptation decisions.

A monitoring mechanism was designed and implemented. A monitoring mo-
dule running on Win NT/2000/XP, GNU/Linux, QNX Neutrino was developed to
capture the resources of the nodes of the distributed system. The requirements of
the monitoring mechanism at network level were presented and a mechanism for
integrating those resource monitoring information in the adaptation of recovery was
introduced.

The output of the monitoring mechanism is used into the Environmental Change
Detector. A method to convert the metrics supplied by monitors into a composite
indicator reflecting the environment conditions is proposed. The advantages of this
method are shown.

Based on the values of the composite indicator recovery strategies can be dy-
namically switched and recovery actions can be selected based on the available
resources.

26 R. Tirtea, G. Deconinck

Further work can be carried out. For instance, the threshold values for com-
puting CI were taken from literature. Statistical analysis could be carried out to
identify the most appropriate thresholds for given system (hardware configuration)
and application. Also, based on the mathematical model presented in Section 3
analysis of more parameters sampled can be considered for a more realistic view
(e.g. for industrial applications, external parameters such as temperature, EMI can
be considered). Another path can be implementation of network monitoring and
adaptation mechanisms using recovery adaptation at network level.

REFERENCES

[1] Hauser, C.H.—Bakken, D.E.—Bose, A.: A Failure to Communicate. IEEE
Power&Energy Magazine, Vol. 3, No. 2, March 2005, pp. 47–55.

[2] Tirtea, R.—Deconinck, G.—Belmans, R.: Cost Analysis of Adaptive Fault
Management. Proc. Of Annual Reliability& Maintainability Symposium (RAMS) on
CD Rom, Alexandria, Virginia, USA, Jan. 24–27, 2005; 7 pages.

[3] Dondossola, G.—Lamquet, O.—Masera, M.: Emerging Standards and
Methodological Issues for the Security Analysis of Power System Information Infras-
tructures. Proc. of 2nd Int. Conf. on Critical Infrastructures (CRIS 2004) on CDROM,
Grenoble, France, Oct. 25–27, 2004; 6 pages.

[4] Deconinck, G.—De Florio, V.—Belmans, R.: Dependable Distributed Au-
tomation Systems within an Open Communication Infrastructure. Proc. CRIS Int.
Conf. on Power Systems and Communication Systems Infrastructure for the Future,
Beijing, P.R. China, Sep. 2002; 6 pages.

[5] QNX Software Systems web site. Availaible on: http://www.qnx.com/.

[6] DepAuDE project web site. Availaible on: www.depaude.org.

[7] Deconinck, G.—de Florio, V.—Belmans, R.—Dondossola, G.—Szanto,

J.: Integrating Recovery Strategies Into a Primary Substation Automation System.
Proc. Int. Conf. on Dependable Systems and Networks, June 2003, pp. 80–85.

[8] Deconinck, G.—de Florio, V.—Botti, O.: Software-Implemented Fault-
Tolerance and Separate Recovery Strategies Enhance Maintainability. IEEE Trans.
on Reliability, Vol. 51, June 2002, pp. 158–165.

[9] Deconinck, G.—de Florio, V.—Botti, O.: Separating Recovery Strategies
from Application Functionality: Experiences with a Framework Approach. Proc. Ann.
Reliability& Maintainability Symp., Philadelphia, PA, USA, Jan. 2001, pp. 246–251.

[10] Tirtea, R.—Deconinck, G.—de Florio, V.—Belmans, R.: QoS Monitoring at
Middleware Level for Dependable Distributed Automation Systems. Proc. of 13th Int.

Symp. on Software Reliability Engineering, Nov. 2002, pp. 217–218.

[11] Vaidyanathan, K.—Trivedi, K. S.: A Comprehensive Model for Software Reju-
venation. IEEE Trans. on Dependable and Secure Computing, Vol. 2, 2005, No. 2,
pp. 124–137.

[12] Lyu, M.R.: Design, Testing, and Evaluation Techniques for Software Reliability
Engineering. Proc. of 24th Euromicro Conf. on Engineering Systems and Software

Resource Aware Run-Time Adaptation Support for Recovery Strategies 27

for the Next Decade (Euromicro ’98), Workshop on Dependable Computing Systems,

Vasteraas, Sweden, pp. xxxix–xlvi.

[13] Murray, H.: Performance Perspectives. Rules-of-Thumb for Monitoring Win-
dows NT/2000 and Domino Statistics. June 2002, available on SUN web site:

http://www-10.lotus.com/ldd/today.nsf/perf?OpenView.

[14] Anderson, R.: Finding Leaks and Bottlenecks with a Windows NT PerfMon
COM Object. January 1999, available on: msdn.microsoft.com/library/en-us/

dnperfmo/html/perfmon.asp.

[15] Stecher, B.—Charest, M.: Tick-Tock – Understanding the Neu-
trino Microkernel’s Concept of Time. Part I. Available on: http://www.

qnx.com/developer/articles/oct2300a/, Part II. available on: http://www.qnx.

com/developer/articles/oct3100c/.

[16] Kavas, A.—Feitelson, D.G.: Comparing Windows NT, Linux, and QNX as the
Basis for Cluster Systems. Concurrency and Computation: Practice and Experience,

Vol. 13, 2001, No. 15, pp. 1303–1332.

[17] Kovalenko, I.: SPIN – System Performance Monitor for Neutrino. Available on:
http://home.attbi.com/ kovalenko/qnx/spin/, 2001.

[18] Simple Network Management Protocol (SNMP) Web Site. Available on: http://www.
cisco.com/univercd/cc/td/doc/cisintwk/ito doc/snmp.htm.

[19] Ren, Y.—Bakken, D.E.—Courtney, T.—Cukier, M.—Karr, D.A.—

Rubel, P.—Sabnis, C.—Sanders, W.H.—Schantz, R. E.—Seri, M.: AQuA:
An Adaptive Architecture that Provides Dependable Distributed Objects. IEEE
Trans. on Computers, Vol. 52, No. 1, January 2003, pp. 31–50.

[20] Kim, K.H.—Subbaraman, C.: Dynamic Configuration Management in Reliable
Distributed Real-Time Information Systems. IEEE Trans. on Knowledge and Data
Engr., Vol. 11, No. 1, Jan./Feb. 1999, pp. 239–254.

Rodica Tirtea is university lecturer (lector) in the Computer
Science Department, Faculty of Electrical Engineering and In-
formation Technology, University of Oradea (Romania). She
received her engineering degree in 1998, her M. Sc. in computer
science in 1999 from University of Oradea and her Ph.D. in en-
gineering in 2005 from K. U. Leuven (Belgium). Her research
interests include dependability and security in distributed sys-
tems.

28 R. Tirtea, G. Deconinck

Geert De
onin
k is full professor (hoogleraar) at K. U. Leu-

ven (Belgium). As staff member of ESAT/ELECTA (Electri-
cal Energy and Computing Architectures), he performs research
on designing dependable system architectures for industrial au-
tomation and control, assessing their dependability attributes
and characterizing infrastructure interdependencies. He received
his M.Sc. in electrical engineering (1991) and his Ph.D. in engi-
neering (1996) from K.U. Leuven, and was postdoctoral fellow
of the Fund for Scientific Research – Flanders (1997–2003). He
is chairman of the TI society BIRA on industrial automation

and a member of the IEEE SMC TC on Infrastructure Systems and Services, a member
of the Royal Flemish Engineering Society and a senior member of the IEEE (Reliability,
Computer and Power Engineering Societies).

