Computing and Informatics, Vol. 44, 2025, 1254-1272, doi: [10.31577/cai_2025_5_1254

BLOCK-JACOBI SVD ALGORITHMS: A REVIEW

Gabriel OKSA, Martin BECKA

Institute of Mathematics

Slovak Academy of Sciences

Stefdnikova 49

814 78 Bratislava, Slovakia

e-mail: {Gabriel.0Oksa, Martin.Becka}@savba.sk

Abstract. We discuss some progress in the design and implementation of block-
Jacobi SVD algorithms in the scope of the last 25 years. Two ideas were crucial
for enhancing the efficiency of two-sided and one-sided serial or parallel block-
Jacobi methods: the so-called dynamic ordering of subproblems solved in each
iteration step, and a suitable preconditioning of an original matrix. These two
ideas led to a substantial decrease of (serial or parallel) iteration steps needed for
the convergence. Consequently, especially the one-sided block-Jacobi SVD algo-
rithm became competitive in speed with some SVD algorithms based on the matrix
bi-diagonalization. We also discuss new theoretical results w.r.t. the asymptotic
quadratic convergence of block-Jacobi SVD algorithms regardless of the distribu-
tion of singular values of the original matrix.

Keywords: Serial and parallel block-Jacobi algorithm, serial and parallel dynamic
ordering, asymptotic quadratic convergence, preconditioning

Mathematics Subject Classification 2010: 65F30

1 INTRODUCTION

The computation of the Singular Value Decomposition (SVD) is an important and
frequently demanding task in the area of scientific computing. The SVD can be
counted among the core tasks of numerical linear algebra with many applications in
science and engineering.

https://doi.org/10.31577/cai_2025_5_1254

Block-Jacobi SVD Algorithms 1255

Given a matrix A € R™" m > n, its SVD is given as the decomposition
A=UXVT, where U € R™*" is the matrix of left singular vectors with orthonormal
columns, > € R™" is the diagonal matrix of non-negative singular values, and
V € R™™ is the orthonormal matrix of right singular vectors.

Basic serial algorithms for the SVD computation have the time complexity
O(mn?) [1]. They are all iterative, work with individual matrix elements and are
based either on zeroing of the off-diagonal matrix elements in some cyclic order, or
on the bi-diagonalization of A first and a subsequent special algorithm used for the
computation of the SVD of a bidiagonal matrix [I].

Among the first group of algorithms, the most important ones are the one-sided
and two-sided element-wise Jacobi SVD algorithms [2, 3, 4, B, [6]. They can deliver
very accurate singular values and vectors in finite arithmetic for certain classes of
matrices [7, 8]. When applied to symmetric matrices, they can compute even the
smallest eigenvalues with high relative accuracy, which is important, for example,
in the computation of smallest energies of various quantum systems.

However, serial element-wise Jacobi algorithms need usually a very large number
of serial steps for the convergence, so they are quite slow. To enhance their per-
formance, one can parallelize them and work with matrix blocks instead of matrix
elements. Both approaches were used since 1980’s for various computer architec-
tures — see, e.g., [9, [10] [T, 12].

Since the year 2000, further progress has been achieved by two basic improve-
ments that were incorporated into two- and one-sided block-Jacobi SVD algorithms.
The first one is so-called dynamic ordering [13), [14] when the zeroed (or orthogonal-
ized) matrix blocks are not chosen according to a prescribed, fixed list, but according
to the actual status of the iterated matrix w.r.t. its off-diagonal Frobenius norm.
The second idea uses some sort of preconditioning [15], [[6] where the block-Jacobi
algorithm is applied to the preconditioned matrix AV (instead of A) with some
orthonormal matrix V. The purpose of both improvements is to substantially de-
crease the number of (serial or parallel) iteration steps needed for the convergence
of block-Jacobi methods.

Besides these practical computational issues, some progress was achieved also
in the theoretical analysis of the convergence behavior of the block-Jacobi SVD
algorithms in exact arithmetic. For the two-sided method with dynamic ordering,
the asymptotic quadratic convergence was proved [I7] regardless of the distribution
of singular values (simple, multiple, clusters) under some acceptable assumptions.
This proof is valid also for the one-sided block-Jacobi SVD algorithm with a special
dynamic ordering (with so-called ezact weights).

The paper is organized as follows. Section [2] contains a short introduction into
the two-sided and one-sided block-Jacobi SVD algorithms with some general order-
ing of block subproblems that are solved in each iteration step. The parallel block
dynamic ordering, that can substantially reduce the number of parallel iteration
steps needed for the convergence, is discussed in Section B] Section [] contains the
description of theoretical results w.r.t. the asymptotic quadratic convergence of the
parallel two-sided block-Jacobi SVD algorithm. These results show that the asymp-

1256 G. Oksa, M. Becka

totic quadratic convergence occurs not only in the element-wise Jacobi algorithms
but also in their block variants. Finally, Section [f]is devoted to the preconditioning
of the one-sided block-Jacobi SVD algorithm by using the eigenvalue decomposition
(EVD) of the Gram matrix A7 A, or the EVD of the Hermitian factor of the polar
decomposition of a given matrix A computed by the cubically convergent Halley’s
iterations. Section [f] concludes the paper.

2 BLOCK-JACOBI SVD ALGORITHMS
2.1 Two-Sided Method

When introducing the block-Jacobi SVD methods, it is sufficient to consider only
square matrices. If an original matrix is of size m X n, m > n, one can initially
compute its thin QR decomposition and then apply the iterative SVD algorithm
to the square factor R of size n. Then, the SVD of the original matrix can be
reconstructed in an obvious way. In this paper, the assumption about a square
matrix A is made only w.r.t. the two-sided block-Jacobi algorithm.

Let us divide a square matrix A of order n into a £ x £ block structure with ¢
blocks in each block row (column). Write the decomposition of n as n = |n/¢]¢ +r
with 0 <r </¢—1. If r =0, ¢ divides n and nothing needs to be done. If » > 0,
border a matrix A by adding ¢ — r zero rows to the bottom of A, ¢ —r zero columns
to the right of A and ¢ — r ones to the lower part of the main diagonal of A. Hence,
a bordered matrix is the direct sum A @ I,_,. of size (|n/¢] + 1)¢, where I,_, is
the identity of order ¢ — r. Note that the SVD of A can be recovered from the
SVD of A® I,_, easily. To keep the following exposition simple, we assume that ¢
divides n.

Denote by A;; the (i,j)™ block of order n/¢. Hence, there are (¢ — 1) off-
diagonal blocks in A. In a given iteration step k, the algorithm proceeds by zeroing
a pair of off-diagonal blocks (Az(f), A;’;)), i # j, where this pair is chosen according
to some ordering. The zeroing is performed by a two-sided unitary transformation

(UENT AWy ®) — g0+

where the n x n orthogonal matrices U*®) and V*) are the matrices of local left and
right singular vectors, respectively, embedded into the identity matrix I, of order
n. Four blocks of U® and V*) each of order n//, that are different from blocks of
1,, can be chosen so that

T
(G Y (4 A0 () - (57). o
(k) k) (k) k) (%) ®) | = (k+1) |
Uji Ujj Aji A.i]' VJZ VH 0 Ajj

where the diagonal blocks Agf) and A;l;ﬂ) are square, diagonal matrices of order
n/¢ with non-negative diagonal elements (local singular values).

Block-Jacobi SVD Algorithms 1257

Let us define

. &) W . k) k)
o = (glfk) g%) L V= (&k) “jf?m) : (2)
i Y g Vi
and
(k) 4(h) (k1)
AR = <AZ&> A’&)) , 2= <A” (19+1>> : (3)
A A 0 A

Because is the SVD of the matrix A®. the matrix U® and V® is the
unitary matrix of left and right singular vectors of A®), respectively.

To prove the global convergence of the serial two-sided block-Jacobi SVD algo-
rithm, let us define the square of the off-diagonal Frobenius norm of A®) by

loff (AM)2. = > | AL|12.
i#j

Let us assume that the off-diagonal blocks Al(f) and A;lf) are zeroed at the iteration
step k + 1. Hence, after the iteration step k + 1, one has

o (A 2 = [loff(AD) 5 — (A3 + AR IE) < lloft(A®) 3.

If, in each iteration step, one chooses the off-diagonal blocks for zeroing in such

a way that the sum ||A,(f) % + ||A§]f) ||%> is mazimal among all pairs of off-diagonal

blocks (Ay;), Ag’ﬁ)), r # s, one can prove the stronger upper bound ([IT]):

oA) < (1= 5o) IofA“) . ()

Hence, under the so-called dynamic ordering of subproblems ([I7]), the sequence
lloff (A®))||2, decreases at least as fast as the geometric sequence with the quotient
q = (w—1)/w, w = £(¢—1)/2, and therefore converges to zero. Consequently,
the iterative algorithm stops when the off-diagonal Frobenius norm of an iterated
matrix A® is ‘sufficiently small’.

The speed of convergence of the two-sided method is equivalent to the speed
of decline of the off-diagonal Frobenius norm. A predefined, static cyclic ordering
of subproblems that are solved in each iteration step of a sweep, is, so to say,
‘blind’ — it just combines some blocks A;; and Aj; that are zeroed according to
a fixed, prescribed list. Hence, the convergence can be very slow, because one can
spend too much time in zeroing matrix off-diagonal blocks with very small Frobenius
norms.

1258 G. Oksa, M. Becka
2.2 One-Sided Method

In the one-sided block-Jacobi algorithm (OSBJA), a matrix A is divided into ¢ block
columns that are mutually orthogonalized during iterations according to some (serial
or parallel) ordering. The OSBJA is listed as Algorithm [I| below for a general real
matrix of size m x n, m > n.

Algorithm 1 One-sided block-Jacobi SVD algorithm
1: Input: A = (44, As, ..., Ay), each block column is m x n/¢
2: Set: V=1,
3: Choose the pair (7, 7) of block columns according to some ordering
4: while maxi,j(HAiTAjHF) > (n/ﬁ) ey do

G ATA; AT A;
v \ATA; AT A;

6: [Xija A’LJ] = EVD(GU)

7. Update of block columns: (4;, 4;) = (A;, A;) * X5

s

9

o

Update of right singular vectors: (Vi, V;) = (Vi, V) * X5
. Choose the pair of block columns (4,)
10: end while
11: o,: norms of columns of A,

12: U, = A, x diag(o, 1)

Concerning the choice of pivot (4, j), we can use any static, cyclic ordering with
a prescribed list of two column blocks that are orthogonalized in a given iteration
step. After computing the local Gram matrix G;;, such an orthogonalization is
achieved by using the EVD of G;; and using its eigenvectors X;; in updating the
chosen pair of block columns (A;, 4;) and the corresponding block columns of the
right singular vectors (V;, V). The iterations continue until the maximal deviation
from orthogonality of any two block columns is sufficiently small. Details can be
found in [T4].

In exact arithmetic, the one-sided block-Jacobi SVD algorithm can be under-
stood as the two-sided block method implicitly applied to the Gram matrix AT A,
which inherits the ¢ x ¢ block structure from the one-sided block method. Hence,
the one-sided block-Jacobi SVD algorithm converges, because the implicit decrease
of the off-diagonal Frobenius norm of the Gram matrix corresponds directly to the
increasing degree of orthogonality between any two block columns of a matrix A.
However, as with the two-sided block method, the convergence can be very slow
when using any cyclic ordering with a prescribed, static list of block columns that
are mutually orthogonalized in each iteration step. The reason is that one can spend
too much computational time in orthogonalizing the block columns that are already
nearly orthogonal.

In the next section, we describe new variants of parallel ordering for both two-
and one-sided block-Jacobi SVD algorithm called the dynamic ordering. The aim is

Block-Jacobi SVD Algorithms 1259

to design an optimal strategy in zeroing the off-diagonal matrix blocks in the two-
sided method, and in mutual orthogonalization of block columns in the one-sided
method.

3 DYNAMIC BLOCK ORDERING
3.1 Two-Sided Method

The rate of convergence of the two-sided block-Jacobi SVD algorithm is equivalent to
the rate of decrease of the Frobenius norm of the off-diagonal matrix blocks. In each
iteration step, some blocks are zeroed and other blocks are orthogonally updated.
However, a static, cyclic ordering is ‘blind” with regard to the individual Frobenius
norms of the off-diagonal blocks brought to annihilation. Hence, it can happen
that during a static ordering one zeroes many off-diagonal blocks with relatively
small individual Frobenius norms, and this leads to many sweeps required for the
convergence of the algorithm.

To achieve a faster convergence, we should maximize the off-diagonal norm that
is zeroed in each iteration step. Jacobi’s approach [5] is optimal for the scalar
case, because it annihilates the element with a maximum absolute value in each
serial iteration step. We extended his idea to the parallel, block formulation in
paper [13].

For a given blocking factor ¢, let us find in each serial iteration step a pair of
indices (7,7) that maximizes ||A,||% + ||As|% over all matrix blocks A,s, r # s.
Subsequently, the matrix blocks A;; and A;; are zeroed. If the cost of this search is
reasonably small, one can benefit from the smaller number of iteration steps needed
for the convergence of algorithm. Note that in this dynamic ordering of subproblems
the notion of a sweep is not appropriate anymore. Instead, one is working with the
individual iteration steps.

Technically, the above described search can be realized as follows. Let us keep an
¢ x ¢ matrix of the off-diagonal block norms and denote it by W. It was shown in [I3]
that the update of W after an iteration step takes O(n?/f) steps, and the searching
for an optimal pair (i,), which is given by the maximum element of W + W7,
will take another O(£?) steps. When comparing the complexity of searching with
that of the dominant part of the whole algorithm — namely, with matrix-matrix
multiplications, one can see that the cost of finding the optimal pair of indices (i, 5)
in each iteration step is higher only in the case when ¢ > O(n**). However, such
a large blocking factor is not advisable from the point of view of the convergence of
algorithm (see the statistical arguments in [I3]).

In the parallel computation with p processors, the situation is more complex.
In one parallel iteration step that represents p serial iteration steps, one would
like to decrease the norm of the off-diagonal matrix blocks as much as possible.
This task was formulated in [I3] as the mazimum-weight perfect matching prob-
lem. The numerical experiments have shown that the new approach is better in

1260 G. Oksa, M. Becka

all analyzed parameters than the implementation of the static cyclic ordering. Es-
pecially, the number of iteration steps needed for the convergence was improved
significantly.

Notice that the dynamic ordering has to be found at the beginning of each
parallel iteration step. Therefore, to be efficient w.r.t. the total parallel execution
time, this operation must not occupy a significant portion of the computational
time. Fortunately, the update of the off-diagonal Frobenius norm can be performed,
to a large extent, in parallel so that the computation of dynamic ordering usu-
ally occupies less than 10% of the total parallel execution time of the whole algo-
rithm.

When turning to the one-sided Jacobi variant with approximately one half of
matrix-matrix multiplications as compared to the two-sided method, we would like to
design and implement some variant of dynamic ordering, too. This task is discussed
next.

3.2 One-Sided Method

Having p processors, the OSBJA (see Algorithm [I)) can be parallelized with the
blocking factor ¢ = 2p and, for simplicity, let us assume that n/(2p) is an integer.
Hence, each processor contains two block columns and a parallel dynamic ordering
has to define which pairs of block columns will meet in a given processor in each
parallel iteration step.

The computation can be organized in such a way that after the first parallel
iteration step (initialization), each block column consists of orthogonal columns.
Let us suppose that all n/¢ columns in each block column are normalized to the
unit Euclidean norm, so that each block column is the orthonormal basis of some
subspace of dimension n//.

The main idea is to mutually orthogonalize those block columns first which are
minimally inclined to each other, i.e., their mutual position differs maximally from
the orthogonal one. In [T4], we have described four new variants of dynamic ordering
that are based on estimates of principle angles between two linear subspaces of the
same dimension n/¢. Here we mention the most efficient variant.

Assume that the original matrix A is of full column rank, e = (1,1,...,1)T is
from R**! and for each column block A; define its representative vector,

="l 1<j<Lt (5)

Recall that all block columns of A have linearly independent (orthogonal) columns.
Hence, Aje # 0 for all j throughout the computation. Moreover, assume that the
columns in each A; are orthonormalized so that ||c;|| = 1 for all j. The choice
of e ensures the uniform participation of all n/¢ one-dimensional subspaces, which
constitute span(4;), in the definition of ¢;.

Block-Jacobi SVD Algorithms 1261

The weight w;; describes the mutual position of the whole subspace span(A4;)
with respect to the representative vector ¢; defined by Equation () (see [14 var3]).

Hence,

| AT Aje]|
wi; = | A ;]| = T”J‘ (6)

Notice that the orientation of ¢; with respect to the whole orthonormal basis of
span(4;) is taken into account.
There is a simple upper bound for w;;:

AT Aze
o= It < aray),,
lell
where || - ||2 is the spectral norm of a given matrix. Therefore, if the global Jacobi

process converges with respect to the iteration number r then the positive sequence
{max; j w;;, },>1 converges to zero.

Conversely, if w;; = 0, then the representative c; is perpendicular to all basis
vectors stored in A;, i.e., it is perpendicular to the whole subspace span(A4;). More-
over, since the minimal singular value o (Af A;) = miny, =1 [|A] A;z|| > 0, this also
means that at least the largest principal angle is /2.

Note that the weights w;; are computed (updated) at the beginning of each
iteration step (serial or parallel), so that this part of computation must be efficient.
The clever and fast update of weights was designed and tested in [I8]. It is based on
the matrix-matrix multiplication, i.e. on a BLAS Level 3 operation, which is crucial
for the efficiency of the whole algorithm.

3.2.1 Stopping Criteria

In practical computations, an important question arises: When should we stop
an iterative algorithm? Since the one-sided method uses about half as many matrix-
matrix multiplications per one iteration step compared to the two-sided one, it is
clear that the one-sided variant will be used almost exclusively. Next we discuss the
appropriate stopping criteria for it.

For the matrix A of size m xn, m > n, each weight w;; needs n/¢ scalar products
of length m for its computation. Neglecting the length m, we proposed in [14] the
global stopping criterion as

max wg; < (n/l) e, (7)
i,j

where €, is the machine precision. Locally, two block columns are not mutually
orthogonalized if

Wi < (n/f) EN- (8)

In the case of the inner (local) computation without Gram matrices, i.e., when

the SVD of (A;, 4;) is computed by the one-sided Jacobi procedure DGESVJ from

LAPACK [19], one can use a static or dynamic local stopping criterion inside this

1262 G. Oksa, M. Becka

procedure. Note that the stronger local stopping criterion leads to the longer time
spent inside the local SVD. Therefore, one can accelerate the whole computation if,
at the beginning of the global iteration process, local SVDs will be computed with
less accuracy, but this accuracy will increase towards the end of the global iteration
process. The switch to higher local accuracy can be controlled using the weights
w;;, and we tested this approach in [20].

When the Gram matrices are computed locally, one can use any procedure from
LAPACK designed for the EVD of symmetric matrices. However, in our implemen-
tation we use again the one-sided Jacobi procedure DGESVJ which does not take
into account the matrix symmetry. On the other hand, using the procedure DGESVJ
one has control over the local stopping criterion that can be again either static or
dynamic [19].

Let us denote a local matrix by Bj;, i.e. Bj; = [A;, A;] in the case of direct
computation or B; = [A;, A;]T[A;, A;] in the case of a local Gram matrix. At the
end of a local SVD, the columns of B;; should be orthogonal. Write By; = Bi; D;

where D;; is a diagonal matrix containing the norms of columns in B;;. Hence, B;;
should be orthonormal.

The static local stopping criterion tests the orthogonality of computed columns
of Bij against some fixed value. The local computation is finished if

BIB; —1I
|| ij 2] ||F < @€M~ (9)
nfp T 9

Here, n/p is the order of B};RJ and the identity matrix I, and m is the number of
rows in the original matrix A.

A dynamic version of the local stopping criterion takes into account the maximal
weight encountered in a given parallel iteration step. Denote by RHS the right-hand
side of @D and define

marw = max w;;
J

in each parallel iteration step. Then we have used the following rule for computing
RHS:

if (mazw > 107%) then RHS = 107 x v/m x mazw (10)

else RHS = @ €M-

Hence, when the weights are ‘large’ at the beginning of the OSBJA, RHS depends
only on mazw and some constants but it does not depend on the machine precision
en at all. Conversely, towards the end of computation when the weights converge
to zero, the local stopping criterion becomes ‘rigid” and depends on €, so that the
local SVDs will be computed practically to full machine precision.

Although the two-sided method is not widely used in practice, the theoretical
analysis of its rate of convergence may help to better understand the properties of

Block-Jacobi SVD Algorithms 1263

block-Jacobi algorithms in general and those of the one-sided method in particular.
This issue is discussed in the next section.

4 ASYMPTOTIC QUADRATIC CONVERGENCE

Using the dynamic ordering of subproblems described above, the asymptotic quad-
ratic convergence of the serial and parallel two-sided block-Jacobi SVD algorithm
has been proved in [I7] under some assumptions, regardless of the distribution of
singular values of a matrix A (simple, multiple, clusters). Below we report the results
for the parallel algorithm running on p processors with the greedy implementation of
dynamic ordering (see [I3] for details about the greedy implementation of dynamic
ordering).

4.1 Parallel Two-Sided Block-Jacobi Algorithm

Let us divide a square matrix A of order n into a ¢ x ¢ block structure using the
blocking factor £ = 2p, ¢ > 4, where p is the number of processors. Here we assume
that ¢ divides n. Thus, ¢ denotes the number of blocks in each block row (column)
and each block is square of order n/¢.

At the beginning of a parallel iteration step k, 2p off-diagonal blocks of A®*)
with block indices (Xk,17Yk,1)7 (Y}c,laxk,lL ceey (Xk,pa)/k,p)a (Yk,p7Xk,p)7 Xk,i < Y}W?
for all 7, are annihilated using the greedy implementation of parallel dynamic order-
ing (GIPDO). The pairs of off-diagonal blocks are ordered decreasingly with respect
to their weights wfjk) measured by the sum of squares of their Frobenius norms. Af-
ter choosing the first pair, additional p — 1 pairs are chosen for annihilation with
a decreasing weight in a compatible way, i.e., the block indices of each new pair
must be different from those of all already chosen blocks. This ensures the selec-
tion of p 2 x 2 block sub-problems that can be solved in parallel. More details
about the communication and computational complexity of GIPDO can be found
in [13).

It was shown in [I7] that the algorithm converges globally, because the decrease
of the off-diagonal Frobenius norm in one parallel iteration step has an upper bound

1
[off(A®HD)|12 < (1 — %_3> [[off (A@)|12. (11)

Hence, [[off(A®+1))||2 converges to zero at least as fast as the geometric sequence
with the quotient ¢ =1 —1/(2¢ — 3).
Writing
A® = diag(A®)) 4 off(AK)), (12)

where diag(A®) is the diagonal matrix with diagonal elements of the iterated matrix
A" we can make the following assumptions at some iteration step ki:

1264 G. Oksa, M. Becka

A1. The off-diagonal Frobenius norm of A®1) is small enough:

min(dy, d.
fofi(A) e = [3 Al < 22, (13)
i#]

where the absolute gap d, between r different simple (or multiple) singular values
os,, 1 < i < 1, is defined as d, = mingy; oy, — oy, 1 < 4,5 < 7, and the
absolute gap for g clusters of singular values with centers cy,. .., ¢, is defined by
de =ming;le; —¢], 1 <4,5 <gq.

A2. The main diagonal of A®) k > k;, is ordered (e.g., decreasingly) by suitable
row and column permutations so that the diagonal elements of A®1) affiliated
with the same multiple singular value occupy successive positions on the diago-
nal.

A3. The partition of A% k > k. is such that the diagonal elements affiliated with
the same multiple singular value (or cluster) are confined to a single diagonal
block.

Now consider the parallel two-sided block-Jacobi SVD algorithm with the GIPDO
using the blocking factor ¢ = 2p. Let k; be the first integer for which the assumptions
A1.-A3. are met. Then the main result proved in [I7] says that there exists the
integer K, { —1 < K < 2{(log? + 1), such that for all iteration steps k > k; one

has
||Oﬁ‘(A(k+K \/7“0&

with § = v2min(d,,d.)/4. This means that the parallel two-sided block-Jacobi
SVD algorithm with the GIPDO converges quadratically, and this behavior can be
observed after the iteration step k; with the ‘period” K w.r.t. the decrease of the
off-diagonal Frobenius norm of the iterated matrix.

Since the one-sided block-Jacobi SVD algorithm in exact arithmetic with ezact
weights w;; = ||ATA;||% and dynamic ordering is implicitly the two-sided block-
Jacobi SVD algorithm applied to the Gram matrix AT A, its asymptotic quadratic
convergence follows from the above result applied to ATA. It should be noticed,
however, that for approzimate weights, which were defined in Subsection [3.2] the
asymptotic quadratic convergence has not been proved yet.

Besides the asymptotic quadratic convergence, the convergence of the whole
computed singular triplets (i.e., of the left and right singular vector corresponding
to a given singular value) to the exact ones, as well as that of certain computed
left and right subspaces to the given ones, was proved in [21I]. It remains an open
problem if at least some singular triplets can converge quadratically.

The second way of how to decrease the number of (serial or parallel) iteration
steps needed for the convergence is to apply some preconditioning to an original
matrix A before starting the Jacobi process. This issue is discussed in the next
section.

AR ||2
(14)

Block-Jacobi SVD Algorithms 1265

5 PRECONDITIONING

Let us suppose that a matrix A has the SVD decomposition A = ULV, ie.
AV = UX. In other words, the columns of AV are contained in the vector space
arising from the columns of UY. Now imagine that before the computation of the
SVD one multiplies a matrix A with an orthogonal matrix V such that AV, as the
linear vector space of its columns, will be ‘close’ to the range of columns of UX. (If
AV were ezactly in the range of US, no further computation would be required.)
Such a ‘closeness’ means that the subsequent application of any block-Jacobi SVD
algorithm to AV (instead of A) will require substantially less serial or parallel iter-
ation steps for its convergence.

In the following, two methods of preconditioning are described for the serial
one-sided block-Jacobi SVD algorithm with dynamic ordering. They differ in ob-
taining the suitable preconditioner V. Note that the preconditioning can be eas-
ily extended to the parallel algorithm, where one uses the parallel dynamic order-
ing.

5.1 Preconditioning Using the Gram Matrix

In the first approach, one computes the EVD of the Gram matrix B = ATA
and the matrix V is the orthonormal matrix of eigenvectors of B. The precon-
ditioned one-sided block-Jacobi SVD algorithm (POSBJA) is listed below as Algo-
rithm Bl

Algorithm 2 The POSBJA with the Gram matrix and dynamic ordering
Input: A= (A4, Ay, ..., A), each block column is m x n/¢

Compute the Gram matrix: B = ATA

[V,A] = EVD(B)

A=AV

Set: V=V

Compute the weights w;.

Choose the pair (7,) of block columns with the maximum weight mazw
while mazw < (n/l)ep do

o G ATA; AT A;

' N A]-TAZ- AJ-TAJ-

10: [Xija A’LJ] = EVD(GU)

11: (A“AJ) = (A“AJ) *XZ]

12: (V;?V;) = (VHV;) * Xij

13: Update the weights w4

14: Choose the pair of block columns (4, j) with the maximum weight mazw
15: end while

16: o, : norms of columns of A,

17: U, = A, x diag(o, ")

1266 G. Oksa, M. Becka

Algorithm 2] differs from Algorithm [I] in steps 2-5 where the preconditioning of
A takes place, and in using the dynamic ordering that is defined by approximate
weights (see Subsection B-2)).

The price for obtaining the preconditioner V seems to be high, both in its
computation and subsequent application. A necessary condition of its applicability
is its high degree of orthogonality. To be efficient, we need a fast EVD algorithm,
which generates a highly orthogonal of eigenvectors, and then a fast matrix-matrix
multiplication.

The EVD of Gram matrix B at the beginning is computed by the LAPACK
procedure DSYEVD [19], which implements a very fast Divide-and-Conquer algorithm.
During the iteration process we hold the vector of column norms of A. From this
vector we estimate the condition number of the Gram matrix G;;. If it is below one
hundred, the procedure DSYEVD is applied to compute the EVD of G;; otherwise the
procedure DGESVJ is used, which uses the element-wise Jacobi algorithm [19]. Both
methods compute the eigenvectors X;; of the Gram matrix G;; with a sufficiently
high level of orthogonality.

As was shown by the analysis in [I5], if A is very ill-conditioned, the use of the
Gram matrix AT A for the computation of the preconditioner V can be numerically
unreliable. Consequently, the matrix multiplication AV can put the range of AV
very far from the range of UX even for a highly orthogonal matrix V. Therefore,
for a very ill-conditioned matrix A it is not advisable to compute the Gram matrix
AT A, and a different approach is discussed in the next subsection.

5.2 Preconditioning Using the Halley Iterations

Another way, how to find a preconditioner V such that AV will be close to U
in the sense of linear subspaces, is to compute the polar decomposition of A, take
its symmetric factor, compute its EVD and use the matrix of eigenvectors as V.
Note that each matrix A € R™*", m > n, has the polar decomposition A = U,H,
where U, € R™*" has orthonormal columns and H € R"*" is symmetric and pos-
itive semidefinite. Let us write A = UXV7T, the ‘thin’ SVD of A, where U is of
size m x n with orthonormal columns (the matrix of left singular vectors), ¥ is
the diagonal square matrix of order n with real nonnegative elements (singular val-
ues) and V' is the unitary matrix of order n (right singular vectors). Then using
the EVD of Hermitian factor, H = VAVT, it follows immediately that, in ezact
arithmetic, A = (U,V)AVT is the SVD of A with U = U,V, S =Aand V = V.
In other words, AV = UX, so that the preconditioning with exact V' should lead
to exact (scaled) U. However, in finite arithmetic, we can only hope for some de-
gree of orthogonality of AV and the ‘closeness’ of range(AV) to range(U) in the
sense of a ‘small’ distance between these two linear subspaces, so that the OSBJA
applied to AV will need substantially less iteration steps for convergence than in
the case of no preconditioning. Note that the preconditioner V is computed di-
rectly from A without using the Gram matrix. Hence, one can also hope that this
approach will give a good preconditioner for an ill-conditioned matrix A, because

Block-Jacobi SVD Algorithms 1267

its large 2-norm condition number x(A) is never squared during the computation
of V.

The main task is to efficiently compute the polar decomposition of A using
some numerically stable and fast algorithm. In [22, 23, 24], the authors analyzed
the behavior and performance of the Halley iterations for computing the polar de-
composition. Hence, we have implemented and tested the subroutine [U,, H] =
Halley(A) in [I6], and the matrix of eigenvectors of the symmetric factor H was
used as the preconditioner. The corresponding POSBJA is listed below as Algo-
rithm B

Algorithm 3 The POSBJA with Halley’s iterations and dynamic ordering
Input: ¢, A= (Ay, As, ..., Ay), each block column is m X n/¢
[Up, H] = Halley(A) (polar decomposition of A)
[V,A] = EVD(H) (EVD of the Hermitian factor)
A = AV (preconditioning)
Set: V =V (initial matrix of right singular vectors)
Compute the weights w4
Choose block columns (7, 7) with the maximum weight mazw
iter =0
while (mazw > (n/f)ey) do

iter = ater + 1

-
e

ATA; AT A;
ATA; AT A;
13: (AZ,A]) = (A“AJ) Xij

i (Vi V) = (Vi Vy) X

15: Update the weights w4

16: Choose block columns (i, j) with the maximum weight mazw
17: end while

18: 0, = |A(;,7) |2, 1 < r <n (Euclidean norm)

19: U = Adiag(o, ') (left singular vectors of A)

—_
—

Compute: Gy; =) (local Gram matrix)

Its subroutine Halley(A) is given below as Algorithm [

It begins with a matrix normalization (step 2) and finding the upper bound for
the minimal singular value o, (A) (steps 3-5). We take the largest square submatrix
of A and estimate its 2-norm condition number. Then the upper bound for oy, (A)
is given by Ao (see [22, p. 2711]), and this bound is needed for the (sub)optimal
behavior of the algorithm w.r.t. its rate of convergence ([22, 23]). It is known that
the algorithm converges cubically ([24, p. A1328]), so that the number of needed
iterations can be fixed to 6 (step 6) in finite arithmetic with ey &~ 2.22 x 10716,
Each iteration starts with computation of some auxiliary variables that serve for the
evaluation of dynamic parameters ay, by and ¢ in step 12. Then a special, 2 x 1
block matrix is formed using the ‘old’ scaled iterate X;_; and the identity I,, of order
n, and its QR decomposition is computed (step 13). Computationally, this is the

1268 G. Oksa, M. Becka

Algorithm 4 [U,, H] = Halley(A): Halley’s iterations for polar decomposition

1: Input: A € R™"™ m >n

2 a=||4||r, Xo=a"'A (matrix normalization)

3: C'=A(1:n,1:n) (largest square submatrix of A)

12 = condest(C)/||Alls, 3 = 1/(v/n)

5. Ao = B/a (lower bound for the smallest singular value of A)
6: iter = 6 (fixed number due to the cubic convergence)

7. k=0

8: while k < iter and || X}, — Xy—1||Fr > 611\{3 do

9: k=k+1

10 y=4(1- /\%—1)//\i—1

1 e =82-X_ /(N vVI+7),0=8-47+¢

12: ak:\/1+’y+0.5\/3,bk:(akfl)2/4,ck:akerkfl
13: Form the matrix \/CTC]Xk_l of size (m +n) x n, and compute its ‘thin’ QR

decomposition: (ﬁXk_l) = (Ql
]n Q2
14: Xy = (br/cx) Xp—1 + [ar, — (b /cx)) 0;1/2 Q1QI (new iterated matrix)
15: end while
16: U, = X}, (polar factor with orthonormal columns of size m x n)
17 H =05 (UFA+ (UFA)") (Hermitian factor of size n x n)

) R, where @ is of size m x n.

most demanding operation in each iteration step, and its efficient implementation
is crucial for the efficiency of the whole preconditioning. Finally, new iterate X
is computed in step 14 using only the partitioned Q-factor. After convergence,
the newest iterate is equal to the polar factor U,, while the Hermitian factor H is
computed using one matrix multiplication U,A and matrix addition (steps 16-17).
Note that the EVD of H provides the unitary matrix of eigenvectors V which is
used in the preconditioning of the OSBJA (steps 3—4 of Algorithm [2)).

The numerical results show [I6] that the use of the partial polar decomposition
consisting of only one iteration step in Algorithm @ (instead of fixed 6 iteration
steps due to its cubic convergence) can be efficient for very ill-conditioned matrices
A. In this case, the computation of the Gram matrix A7 A would lead to numerical
difficulties that would destroy the reliability of subsequent steps in preconditioning.
For well-conditioned matrices A, the use of the preconditioner coming from the
Gram matrix A”A can be recommended.

For the QR decomposition in Halley’s iterations, the special matrix structure
can be exploited by using either the Householder vectors of the constant length n+1
or a composition of Householder reflections and Givens rotations. Two new variants
were proposed and both of them require less flops for computing the R- and Q-factor
than the standard QR decomposition of the whole 2n x n matrix using Householder
vectors. The minimal computation times both in the QR decomposition as well

Block-Jacobi SVD Algorithms 1269

as in the OSBJA for very ill-conditioned matrices were achieved by exploiting the
special structure of a matrix Xj, in each iteration step as well as the blocking in
application of Householder vectors. It is interesting to note that even one iteration
step of Halley’s iterations delivers such a Hermitian factor H that its eigenvector
matrix V is a good preconditioner, i.e., the matrix AV is quite close to UX in the
sense of column vector spaces. More detallb can be found in [16].

6 CONCLUSIONS

The above mentioned ideas of dynamic ordering and preconditioning have substan-
tially enhanced the efficiency of the block-Jacobi SVD algorithms, so that espe-
cially the parallel one-sided block-Jacobi method with the dynamic ordering and
preconditioning became competitive with the SVD algorithms based on the matrix
bi-diagonalization [25]. For well-conditioned matrices, our implementation of the
POSBJA outperforms the fastest serial algorithm from the LAPACK library, which
is based on the Divide-And-Conquer algorithm [I8]. In the parallel environment, the
POSBJA is faster than the ScaLAPACK routine PDGESVD regardless of the condition
number of A [I5]. Together with their excellent numerical properties in computing
the singular triplets with high relative accuracy for certain classes of matrices, the
block-Jacobi SVD algorithms can be used on modern computer architectures also
in processing (compressing) the higher dimensional data sets that are given in the
form of tensors.

Acknowledgment

The authors were supported by the VEGA grant No. 2/0001/23.

REFERENCES

[1] GoLuB, G. H.—VaAN LoaN, C. F.: Matrix Computations. Johns Hopkins University
Press, 2013.

[2] DEMMEL, J. W.—VESELIC, K.: Jacobi’s Method Is More Accurate Than QR. STAM
Journal on Matrix Analysis and Applications, Vol. 13, 1992, No. 4, pp. 1204-1245,
doi: 10.1137/0613074.

[3] DRMAC, Z.: Implementation of Jacobi Rotations for Accurate Singular Value Compu-
tation in Floating-Point Arithmetic. STAM Journal on Scientific Computing, Vol. 18,
1997, No. 4, pp. 1200-1222, doi: 10.1137/S1064827594265095.

[4] DRMAC, Z.: A Posteriori Computation of the Singular Vectors in a Preconditioned
Jacobi SVD Algorithm. IMA Journal of Numerical Analysis, Vol. 19, 1999, No. 2,
pp. 191-213, doi: [10.1093 /imanum,/19.2.191.

[5] JacoBl, C.G.J.: Uber ein Leichtes Verfahren die in der Theorie der
Sécularstorungen Vorkommenden Gleichungen Numerisch Aufzuldsen. Journal fiir die

https://doi.org/10.1137/0613074
https://doi.org/10.1137/S1064827594265095
https://doi.org/10.1093/imanum/19.2.191

1270 G. Oksa, M. Becka

[6]

(7l

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Reine und Angewandte Mathematik, Vol. 30, 1846, pp. 51-94, http://eudml.org/
doc/147275 (in German).

MATEJAS, J.—HARI, V.: Accuracy of the Kogbetliantz Method for Scaled Di-
agonally Dominant Triangular Matrices. Applied Mathematics and Computation,
Vol. 217, 2010, No. 8, pp. 3726-3746, doi: [10.1016/j.amc.2010.09.020.

DRMAC, Z.—VESELIC, K.: New Fast and Accurate Jacobi SVD Algorithm. I. STAM
Journal on Matrix Analysis and Applications, Vol. 29, 2008, No. 4, pp. 1322-1342,
doi: 10.1137/050639193.

DRMAC, Z.—VESELIC, K.: New Fast and Accurate Jacobi SVD Algorithm. II. SITAM
Journal on Matrix Analysis and Applications, Vol. 29, 2008, No. 4, pp. 1343-1362,
doi: 10.1137/05063920X.

BECKA, M.—VAJTERSIC, M.: Block-Jacobi SVD Algorithms for Distributed Mem-
ory Systems I: Hypercubes and Rings. Parallel Algorithms and Applications, Vol. 13,
1999, No. 3, pp. 265-287, doi: 10.1080/10637199808947370.

BECKA, M.—VAJTERSIC, M.: Block-Jacobi SVD Algorithms for Distributed Mem-
ory Systems II: Meshes. Parallel Algorithms and Applications, Vol. 14, 1999, No. 1,
pp. 37-56, doi: [10.1080/10637199808947377.

Biscuor, C.H.: Computing the Singular Value Decomposition on a Distributed
System of Vector Processors. Parallel Computing, Vol. 11, 1989, No. 2, pp. 171-186,
doi: 10.1016/0167-8191(89)90027-6.

BrEMT, R.P.—LUK, F.T.: The Solution of Singular-Value and Symmetric Eigen-
value Problems on Multiprocessor Arrays. SIAM Journal on Scientific and Statistical
Computing, Vol. 6, 1985, No. 1, pp. 69-84, doi: [10.1137/0906007.

BECKA, M.—OKkSA, G.—VAJTERSIC, M.: Dynamic Ordering for a Parallel Block-
Jacobi SVD Algorithm. Parallel Computing, Vol. 28, 2002, No. 2, pp. 243-262, doi:
10.1016/S0167-8191(01)00138-7.

BECKA, M.—OKSA, G.—VAJTERSIC, M.: New Dynamic Orderings for the Parallel
One-Sided Block-Jacobi SVD Algorithm. Parallel Processing Letters, Vol. 25, 2015,
No. 2, Art. No. 1550003, doi: [10.1142/S0129626415500036.

BECKA, M.—OKSA, G.: Preconditioned Jacobi SVD Algorithm Outperforms
PDGESVD. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (Eds.):
Parallel Processing and Applied Mathematics (PPAM 2019). Springer, Cham, Lecture
Notes in Computer Science, Vol. 12043, 2020, pp. 555566, doi: |10.1007/978-3-030-
43229-4_47.

BECKA, M.—OKSA, G.: Preconditioning of the One-Sided Block-Jacobi SVD Al-
gorithm by Polar Decomposition. In: Wyrzykowski, R., Dongarra, J., Deelman, E.,
Karczewski, K. (Eds.): Parallel Processing and Applied Mathematics (PPAM 2024).
Springer, Cham, Lecture Notes in Computer Science, Vol. 15581, 2025, pp. 205-216,
doi: 10.1007/978-3-031-85703-4_14.

OxkSA, G.—YAMAMOTO, Y.—BECKA, M.—VAJTERSIC, M.: Asymptotic Quadratic
Convergence of the Two-Sided Serial and Parallel Block-Jacobi SVD Algorithm.
SIAM Journal on Matrix Analysis and Applications, Vol. 40, 2019, No. 2, pp. 639-671,
doi: 10.1137/18M1222727.

BECKA, M.—OKSA, G.—VIDLICKOVA, E.: New Preconditioning for the One-Sided

http://eudml.org/doc/147275
http://eudml.org/doc/147275
https://doi.org/10.1016/j.amc.2010.09.020
https://doi.org/10.1137/050639193
https://doi.org/10.1137/05063920X
https://doi.org/10.1080/10637199808947370
https://doi.org/10.1080/10637199808947377
https://doi.org/10.1016/0167-8191(89)90027-6
https://doi.org/10.1137/0906007
https://doi.org/10.1016/S0167-8191(01)00138-7
https://doi.org/10.1142/S0129626415500036
https://doi.org/10.1007/978-3-030-43229-4_47
https://doi.org/10.1007/978-3-030-43229-4_47
https://doi.org/10.1007/978-3-031-85703-4_14
https://doi.org/10.1137/18M1222727

Block-Jacobi SVD Algorithms 1271

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Block-Jacobi SVD Algorithm. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Kar-
czewski, K. (Eds.): Parallel Processing and Applied Mathematics (PPAM 2017).
Springer, Cham, Lecture Notes in Computer Science, Vol. 10777, 2018, pp. 590-599,
doi: 10.1007/978-3-319-78024-5 _51.

ANDERSON, E.—BA1, Z.—BiscHor, C.—BLACKFORD, L.S.—DEMMEL, J.—
DONGARRA, J. et al.: LAPACK Users’ Guide. STAM, 1999.

BECKA, M.—OKSA, G.: New Approach to Local Computations in the Parallel One-
Sided Jacobi SVD Algorithm. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Kar-
czewski, K., Kitowski, J., Wiatr, K. (Eds.): Parallel Processing and Applied Mathe-
matics (PPAM 2015). Springer, Cham, Lecture Notes in Computer Science, Vol. 9573,
2016, pp. 605-617, doi: [10.1007/978-3-319-32149-3_56.

OkSA, G.—YAMAMOTO, Y.—VAJTERSIC, M.: Convergence to Singular Triplets in
the Two-Sided Block-Jacobi SVD Algorithm with Dynamic Ordering. SIAM Jour-
nal on Matrix Analysis and Applications, Vol. 43, 2022, No. 3, pp. 1238-1262, doi:
10.1137/21M1411895.

NAKATSUKASA, Y.—BAI1, Z.—Gva1, F.: Optimizing Halley’s Iteration for Com-
puting the Matrix Polar Decomposition. STAM Journal on Matrix Analysis and Ap-
plications, Vol. 31, 2010, No. 5, pp. 2700-2720, doi: 10.1137/090774999.
NAKATSUKASA, Y.—HicaaMm, N. J.: Backward Stability of Iterations for Comput-
ing the Polar Decomposition. SIAM Journal on Matrix Analysis and Applications,
Vol. 33, 2012, No. 2, pp. 460-479, doi: [10.1137/110857544.

NAKATSUKASA, Y.—HIiGHAM, N. J.: Stable and Efficient Spectral Divide and Con-
quer Algorithms for the Symmetric Eigenvalue Decomposition and the SVD. STAM
Journal on Scientific Computing, Vol. 35, 2013, No. 3, pp. A1325-A1349, doi:
10.1137/120876605.

DONGARRA, J.—GATES, M.—HAaAmAR, A.—KURzAk, J.—LUSZCZEK, P.—
Tomov, S.—YAMAZAKI, I.: The Singular Value Decomposition: Anatomy of Op-
timizing an Algorithm for Extreme Scale. STAM Review, Vol. 60, 2018, No. 4,
pp. 808-865, doi: [10.1137/17M1117732.

https://doi.org/10.1007/978-3-319-78024-5_51
https://doi.org/10.1007/978-3-319-32149-3_56
https://doi.org/10.1137/21M1411895
https://doi.org/10.1137/090774999
https://doi.org/10.1137/110857544
https://doi.org/10.1137/120876605
https://doi.org/10.1137/17M1117732

G. Oksa, M. Becka

Gabriel Ok$A works in the Mathematical Institute of the Slo-
vak Academy of Sciences as the Head of Department of Infor-
matics. In the year 1995 he received the Royal Society Fellow-
ship and spent one year at the Loughborough University, United
Kingdom, as the researcher in the field of parallel numerical algo-
rithms. He is interested in the numerical properties and efficient
implementation of serial and parallel algorithms for the eigen-
value and singular value decomposition of large, dense matrices.

Martin BECKA works at the Mathematical Institute of the Slo-
vak Academy of Sciencesin the Department of Informatics as a
Senior Researcher. In the years 2003-2005, he completed a two-
year postdoctoral study at ETH Zurich, Switzerland, at the De-
partment of Computer Science. His main interest is the efficient
parallelization and implementation of algorithms for the eigen-
value and singular value decomposition of large, dense matrices.

