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Abstract. Catastrophic forgetting is a major challenge for online class-incremental
learning. Existing replay-based methods have achieved a certain degree of effec-
tiveness, but are limited by not considering the quality of the samples and the
key semantic information in a single-pass data stream. To address these issues, we
proposed the framework of Online Class-Incremental Learning Based on Attention
Distillation (ADOCIL), which consists of three parts. A two-stage sampling method
is used in the replay stage to improve the quality of the samples taken. Meanwhile,
we introduced the Attention-based Dual-View Consistency (ADVC), which enables
the model to fully explore the critical semantic information within a single-pass
data stream. In addition, to further mitigate the problem of catastrophic forget-
ting, we introduced attention distillation to map the attentional map of the teacher
model to the student model, thus solving the problem of forgetting historical tasks.

Extensive experiments demonstrated the effectiveness of ADOCIL.
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1 INTRODUCTION

In recent years, deep learning in the field of computer vision has witnessed sig-
nificant development, with deep neural networks achieving remarkable results in
various domains [T}, 2, B]. However, real-world open environments often generate
data in a streaming fashion [, B]. To enable deep learning models to contin-
uously accept and learn new knowledge, class-incremental learning has emerged.
Class-incremental learning aims to address a significant problem that occurs when
models learn new classes — catastrophic forgetting [6] [7, 8, @]. Catastrophic for-
getting refers to the phenomenon where a model may forget previously learned
knowledge when learning new categories or tasks, leading to poor performance on
tasks that it was once proficient in. For example, in Figure [T} we depict the setup
of class-incremental learning, where each new task includes information about old
classes. Our goal is to enable the model to correctly classify both new and old
classes. For instance, in Task 2, we expect the model to accurately recognize the
new classes “lion” and “sheep”, while still being able to identify the old classes
“cat” and “dog”. However, the issue of catastrophic forgetting often results in
a significant drop in the recognition accuracy of the old classes “cat” and “dog”.
This problem hinders the model’s ability to continually accumulate knowledge, lim-
iting the application of deep learning in open environments. Therefore, effectively
fighting catastrophic forgetting becomes a core challenge for class-incremental learn-
ing [0, 1T, 12].

To address the issue of catastrophic forgetting, researchers have proposed vari-
ous methods [13, 14, [T5], including techniques based on replay, parameter isolation,
and regularization. Among these, replay-based methods can be further categorized
into memory-based and generate replay methods. While regularization and param-
eter isolation methods can fight catastrophic forgetting, their effectiveness remains
limited compared to replay-based methods. Replay-based methods store a portion
of previously trained old data in a buffer and, during the learning of new tasks,
select relevant old data from the buffer for replay. In this process, the selection of
valid old data is crucial for success. However, existing replay-based methods tend
to ignore situations where samples have quality issues when selecting samples for
replay.

We have recognized that real-world images often suffer from issues like blurri-
ness, shadows, and low clarity [I6, [I7]. Directly selecting such samples for training
would severely impact the model’s performance. Therefore, we proposed Two-Stage
Sampling to alleviate this problem. In the first stage, we calculate the average
gradient of images in the storage buffer and sort them in descending order based
on their average gradient values. This allows us to prioritize images with higher
average gradients, as they typically contain more details and important informa-
tion. In the second stage, we further select those images that cause the largest
gradient changes to the new samples based on the images selected in the first stage.
These images will have a greater impact on training as they retain key informa-
tion about the old class, benefiting the updated network. By adopting this strat-
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Figure 1. Based on the setup of the class incremental learning environment, data is grad-

ually introduced by category, while the model needs to gradually learn and categorize all
the categories.

egy, we can not only improve the model’s ability to process complex images in
the real world but also enhance its adaptability in various scenarios. Most im-
portantly, the method helps to solve the catastrophic forgetting problem, allowing
the model to better retain useful knowledge previously learned when learning new
tasks. Meanwhile, in order to better transfer the knowledge of selected old cate-
gory samples to the model when a new task arrives, and thus further cope with the
catastrophic forgetting problem, we introduce the technique of attentional distilla~
tion. Specifically, through attentional distillation, we incorporate the predictions
from the teacher’s model as additional guidance during student model training.
This helps to retain important information from past tasks, fighting the forgetting
phenomenon.

In addition, in online data streams, the semantic information in the data streams
is often not fully utilized due to the constant changes and rapid emergence of in-
formation thus leading to reduced model performance. To address this issue, we
proposed the ADVC. The core idea of this strategy is to transform the incoming
images into different view pairs, extract the key features by using the attention
mechanism [I8, [19], and then prompt the model to better understand the semantic
content of the images by maximizing the mutual information, so as to improve the
performance of the model in the online data stream.
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In summary, our contributions are as follows:

e To ensure the effectiveness of the replay strategy, we proposed a two-stage sam-
pling method. The goal of this method is to select important and high-quality
samples for replay, thereby significantly improving the model’s performance
while fighting the catastrophic forgetting problem.

e We proposed an ADVC, aiming to explore crucial semantic information in single-
pass data streams and effectively improve the model’s classification performance
and generalization ability.

e By introducing attention distillation, the student model can be guided by the
teacher model to learn similar attention patterns, focusing on important samples
and features for the current task, and reducing the forgetting issue concerning
past tasks.

A preliminary version of this paper is available at [20]. The new contribu-
tions come from two main sources. First, in order to obtain clear and high-quality
samples during replay, we proposed a two-stage sampling method. By calculating
the average gradient of the image, samples with larger average gradients are se-
lected, where larger average gradients represent higher clarity of the image. Then
in the second stage, the sample that causes the largest gradient change to the
new sample is further selected for replay. The two-stage sampling method im-
proves the effectiveness of the replay strategy. Second, we introduced an atten-
tion distillation technique to align the attention of the student model with that
of the teacher model thereby allowing the student model to learn more of the
teacher model’s knowledge to further mitigate the catastrophic forgetting prob-
lem.

2 RELATED WORK

In this section, we first review three typical methods for class-incremental learning
and then present research work related to knowledge distillation.

2.1 Class-Incremental Learning

In the realm of incremental learning, two primary task types are Task- Incremental
Learning (TIL) [21) 22] and Class-Incremental Learning (CIL) [23] 24 25| 26] 27].
In TIL, each task has a separate classification head for learning different tasks. In
contrast, CIL tasks require the model to maintain and update a unified classifica-
tion head, making it more challenging. While CIL allows the model to learn from
continuously changing data streams, there is an unavoidable issue in this process,
namely catastrophic forgetting. To tackle the issue of catastrophic forgetting prob-
lem in CIL, researchers have continuously proposed new methods, which can be
summarized into three main categories: one is the regularization-based methods
[28, 29, B0}, BT[], which involves adding additional rules to prevent the forgetting of



1206 J. Cheng, M. Chen, B. Du, M. Guo

old knowledge, similar to deliberately revisiting and reinforcing previously learned
content when acquiring new knowledge; another is the parameter isolation-based
methods [32, B3, 34, 35, B6], where new and old knowledge are kept in separate
compartments, akin to storing new items in a new drawer rather than overwriting
the old ones; and the last one is the replay-based methods [37, 38, 139, 40, 411, 42],
which continually replays old data, similar to repeatedly revisiting past knowledge
to prevent its loss. These methods help retain old knowledge while learning new
things.

Regularization-based methods consist of two methods: One method involves
constraining the impact of parameter updates related to prior tasks by evaluat-
ing the correlation between parameters and the prior tasks. For example, Kirk-
patrick et al. [7] proposed the EWC (Elastic Weight Consolidation) algorithm, which
controls the weight optimization direction by adding regularization to the weights.
IMM [43] found the maximum of the Gaussian posterior mixing with the estimated
Fisher information matrix. Another method utilizes knowledge distillation tech-
niques to regularize data and preserve information related to old classes. The most
representative method of this kind is the Learning without Forgetting (LWF) ap-
proach proposed by Li and Hoiem [44]. It introduces distillation loss from the output
of the new model into the loss function and then fine-tunes the model on the new
task. Parameter isolation-based methods aim to mitigate catastrophic forgetting by
differentially isolating the parameters of the new and old models. This approach
can be divided into two types: one is the Fixed Architecture (FA) [45, 46] which
allows the activation of relevant parameters for each task but does not alter the
model’s overall structure. It is similar to the construction of a house where the
basic structure remains the same, and only the interior decoration is adapted to
different needs. The other type is the Dynamic Architecture (DA) [47, 48], which
introduces new parameters when adding new tasks while keeping the parameters
for old tasks unchanged. On the other hand, replay-based methods allow storing
a portion of old data in a buffer for use during the learning of new tasks. However,
the effectiveness of this method heavily relies on the choice of sampling strategies.
For instance, Chaudhry et al. [49] proposed sampling samples with high predic-
tive entropy and near the decision boundaries, selecting high uncertainty samples
as exemplars. Aljundi et al. [50] introduced a greedy sampling strategy for online
incremental learning, deciding whether to replace samples by comparing the scores
of new samples with candidate replacements. Isele and Cosgun [51] explored the
reservoir sampling process to ensure an equal probability of sample retention in
memory. Although the above methods have achieved some success, they lack con-
sideration of the quality of the stored samples when selecting samples. For example,
although some methods can ensure that the selected samples are representative,
these samples may not contain enough detailed information (or the samples may
contain other disturbing information), which in turn has an impact on the perfor-
mance of the model. In our approach, we particularly emphasize the importance
of sample quality. In the first stage, we focus on selecting those samples with high
clarity through a carefully designed replay mechanism. This selection goes beyond
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simply pursuing image clarity; Rather, it ensures the quality of the selected sam-
ples while preserving as much details and as much information as possible. Such
high-quality samples not only help mitigate the effects of catastrophic forgetting,
but also provide richer and more representative training data for the continuous
learning of the model. In the second stage, we adopt a more refined strategy aimed
at further improving the quality of the selected samples. In this phase, we focus
our attention on those samples that can produce the largest gradient changes to
the new samples. Such a selection approach not only ensures the clarity of the
selected samples, but more importantly captures the key information that has the
greatest impact on model learning. With this sophisticated sampling approach, we
are able to improve the effectiveness of the replay strategy more efficiently and thus
better cope with the catastrophic forgetting problem in class incremental learn-
ing.

2.2 Knowledge Distillation

Knowledge Distillation (KD) [52, b3, B4, b5, 56] is a model compression technique
used to transfer knowledge from a larger or well-trained network (teacher) to a more
compact smaller network (student), allowing the student model to learn knowledge
similar to the teacher. In our example, the student model represents the current
version that is handling the ongoing task, while the teacher model essentially em-
bodies the student’s version based on the achievements and knowledge gained from
previous tasks. This means that the student model can utilize and depend on
previous knowledge when learning something new. The use of feature maps and
attention mechanisms in Knowledge Distillation (KD) has been shown to effectively
help the student model acquire higher-quality intermediate representations, thereby
improving its performance [57]. For instance, Rebuffi et al. [58] proposed iCaRL,
which combines knowledge distillation and representation learning, addressing the
issue of imbalanced samples between new and old classes by training the feature
extractor and classifier separately. Hou et al. [59] introduced three loss functions
to mitigate biases caused by imbalanced new and old samples. Wu et al. [60] pro-
posed BiC, which recalibrates output probabilities before applying distillation loss.
Douillard et al. [61] presented PODNet, a spatial distillation loss-based approach
to counter catastrophic forgetting. Li et al. [62] introduced neural attention dis-
tillation as a method for erasing backdoors. Inspired by knowledge distillation,
we introduce attention distillation techniques to online class-incremental learning.
By distilling the attention maps from the teacher model to the student model, the
student gains more crucial knowledge, thereby helping to alleviate catastrophic for-
getting.

Unlike traditional class-incremental learning methods, our method carries out
multiple considerations. First, critical high-quality samples are selected for replay
through a twice-sampling process to avoid retaining interfering information leading
to model forgetting. Secondly, to further fight catastrophic forgetting, we introduced
attention distillation to enhance the ability of student models to have old knowl-
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edge. Finally, we proposed an ADVC aiming to thoroughly explore the semantic
information.

3 PROPOSED METHOD

In this section, we start by describing the problem definition. Subsequently, we
provide a detailed introduction to our methods, which include two-stage sampling,
ADVC, and attention distillation.

3.1 Problem Definition

Based on recent literature [63, 64], we consider a more realistic setting for online
class-incremental learning, where the model continuously learns new classes from
a non-stationary data stream while retaining knowledge of old classes. Given that
the samples within the data stream are encountered only once, it becomes crucial
to thoroughly harness the semantic information embedded within it. Formally, we
denote the data stream as D = {Dj, Ds,..., Dy} over X x Y, where X and YV
represent the samples and their labels, respectively, and N is the number of tasks.
It is important to note that the classes across different tasks do not overlap. Our
objective is to train a new model F; that can accurately classify all the learned
classes. F} represents the deep image classification model when learning task ¢. The
output of F; is defined as follows:

Fi(z) = [Ftl(x), .. A,E""‘l(x),...,Ft”‘(x)} . (1)
3.2 Two-Stage Sampling

In class-incremental learning, replay-based methods have achieved state-of-the-art
performance. These methods store samples from past tasks in a replay buffer. When
new data becomes available, the model performs joint training by sampling from the
replay buffer using a specific sampling strategy. Therefore, the key to the success of
replay methods lies in the design of the sampling strategy. Figure 2] illustrates the
flow of our method. In this paper, we consider a real-world issue where the data
stream contains low-quality samples. These samples have lower clarity and may
contain noise. Once these samples are selected during the sampling process it will
greatly affect the performance of the model. To tackle this problem, we proposed
a two-stage sampling strategy.

Assuming the memory size is M. First, we apply the CutMix [65] data aug-
mentation operation to the data in memory. Then in the first stage, we compute
the average gradients of samples in the memory and rank them in descending or-
der based on their average gradients. The average gradients are used to represent
the image clarity, reflecting the expression capacity of the image details in con-
trast.

g = |8a| + [gs], (2)
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Figure 2. This is the workflow of our method. We will select high-quality samples through
a two-phase sampling method in the Memory Bank, and combine them with samples
from the data stream to feed into the ADVC network for exploring important semantic
information. Then, we use attention distillation to transfer the attention maps from the F}
(current task) to the model for the upcoming new task, enabling it to acquire knowledge
from the old tasks.

where g, denotes the gradient in the horizontal direction and g, denotes the gradient
in the vertical direction. After that, we perform a descending order based on the
average gradient:

I' = argsort(—g), (3)

where argsort is a function that sorts the input vector. I denotes the sorted in-
dex.

In the second stage, we select the first S samples from memory based on the
indexes obtained in the first stage, and for this S samples, we further select the first
K samples that cause the maximum gradient change to the new samples in each
update of the model, where K < S < M. During the training process, z; represents
the new sample, and x, represents the samples in the memory. We use the new
sample z; to update the model with a learning rate denoted by «.

0, =0 —a-Gy(zy), (4)

where Gg(z;) represents the gradient of a new sample x; with respect to the model
parameters 6. Next, we compute the gradient changes using the samples in the
memory bank. Firstly, we calculate the gradients of each sample x, with respect to
the virtual parameters 6,, denoted as Gy, (). Then, we calculate the gradients of
each sample z, with respect to the current parameters 6, denoted as Gy(x,). The
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difference between the two represents the gradient change:

AG(z,) = Gy, (z,) — Go(r), (5)
Score = Sort(AG(x,); desc). (6)

Finally, we choose the top K samples from all the examples as the samples we
want to retrieve. These samples have the largest gradient changes to the model
parameters after the virtual update, and we believe that such samples are useful for
updating the neural network based on back gradient propagation. Therefore, we can
use these samples to guide the training of the model to better utilize the experience
in the memory bank.

3.3 Attention-Based Dual-View Consistency

In the setting of online class-incremental learning, image data in a data stream can
usually be observed by a model only once, which means that there is a large amount
of image information that is underutilized. To overcome this challenge, we proposed
the ADVC, which aims to fully exploit the information in online data streams and
significantly improve model performance.

An efficient attention mechanism, CBAM [19], is used in our method to generate
weights for each input image as a way to guide the model on which regions it should
focus.

Fii=Mc(F,1) @ F,,
w=Ms (Fu) @ Flu.

1 ™

(7)

where F,1 € REHXW g an intermediate feature map of one of the views of F.

The channel attention map M, € R¢*'! is used to enhance channel features.
M, € R™H*W represents the spatial attention map, which accurately identifies
important regions. F’) represents the final output. The intermediate feature map
of the other view of F, is represented by F,» € RO>W_ Similarly, the output F%
can be determined using Equations @

As shown in Figure [, the attention mechanism plays a crucial role in guid-
ing the model to maximize mutual information for key regions from two different
perspectives. By maximizing mutual information, our method effectively facilitates
information sharing between different views, which helps the model to better under-
stand the correlation between two views in order to utilize the information in the
data flow and adapt to the changing data. By making the co-occurrence of events
similar to their individual occurrences, the mutual information I(X;; X5) can be
approximated as follows:

—_

I(X1; X)) ~ o (H(X1) + H(Xg) + H(Xy, X3)). (8)

w
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Figure 3. This is the ADVC flow. The left image is a new image incoming from the data
stream, and the right image is an old image retrieved from Memory Bank. The two images
are transformed into different perspectives, respectively, and the attention mechanism is
utilized to fully explore the semantic information contained in the images, eventually
improving the consistency of the representations of the image pairs.

For each input image x, we now use the feature F,: after two rounds of attention
transformation, the joint probability matrix P € R€*“ can be calculated as:

BN 1 2\ T

P:EZ;F” (z}) - F" (x2) . (9)

At the time ¢, there is a batch of n images, with each image having undergone
two different transformations, represented as x; and z?.

Our aim is to maximize I(z1; 22), thus the M1 loss can be formulated as follows:

[:M] =7 (Zl;ZQ), (10)
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where z; and 23 are used to represent the feature extraction methods for dual-view
image pairs. In addition, to ensure the consistency of data representations under
different conditions, it is necessary to constrain the difference between the joint
distribution and marginal distribution, we use the following loss terms.

Lpr = L1 (p(21,2),p (1)) + L1 (p (21, 22) ,p (22)) , (11)

where L; denotes Mean Absolute Error (MAE) loss. Through the attention mech-
anism and maximizing the mutual information between view pairs, The model will
effectively explore the critical semantic information within the data stream.

3.4 Attention Distillation

In class-incremental learning, distillation is a commonly used technique that works
like a teacher teaching a student. Specifically, we have an old model (the teacher)
that has already learned a lot. Now, we want to train a new model (the student)
to learn some new things, but we are concerned that the new model might forget
what the old model already knows. So, the distillation technique involves having
the teacher provide the student with some guidance about the old knowledge, rather
than just giving the student the correct answers. This way, the student can learn
new things while retaining and inheriting the knowledge from the teacher, thus
preventing catastrophic forgetting.

To achieve this goal, we introduce attention distillation[62] in the context of
replay-based class-incremental learning to further alleviate forgetting issues. Specif-
ically, in attention distillation, we train a student network by utilizing the spatial at-
tention maps of the teacher network (computed using attention mapping functions).
This allows the student network to extract important information (i.e., neurons that
are crucial for old classes) from the already trained teacher model on old classes,
enabling it to focus on both new and old class information simultaneously.

Attention Representation. In our model F, F'¢ € RE*H*W represents the acti-

vation output of the d* layer, where C', H, and W are the dimensions of chan-
nels, height, and width of the activation maps, respectively. Subsequently, we
define an attention mapping function named A, which transforms an activation
map into an attention representation. Specifically, A takes a three-dimensional
activation map F' as input and then flattens it along the channel dimension,
resulting in a two-dimensional tensor as output.

A ROXHXW _y pHXW (12)

According to [62], we use an efficient attention operation to realize the transfor-
mation of the activation mapping:

C
Aln(Fh = Y|, (13)
i=1
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where F{¢ is the activation map of the i*" channel, and p > 1. The spatial map-
ping method Asum?(F¢) places greater emphasis on areas where neurons have
higher activity levels, which are considered essential for the network. Moreover,
as the parameter p increases, the model increasingly prioritizes regions with the
highest activity, deeming them more crucial for the task.

Attention Distillation Loss. In our method, we utilize a predefined attention
operation formula to calculate the attention representation of the network. The
technique of attention representation reveals the network’s focus on different
parts when processing input data. The teacher network is a network that has
already learned a lot, and its knowledge remains constant throughout the entire
learning process. The distillation loss at the d'™* layer of the network takes into
account the areas that both the teacher and the student pay attention to when
processing data, aiming to assist the student in learning more effectively.

)| AEAr
[AED],  AEDI,

Lap (Ff, F§ (14)

2
where F{ represents the activation of the teacher model (old model) at the d*®
layer, and F¢ represents the activation of the student model (new model) at
the d' layer. A() is the function used to compute the attention maps, and
I - |2 denotes the Ly norm. The attention distillation loss drives the student
network to learn similar attention patterns as the teacher network. The attention
information from the teacher model reflects its understanding of the old classes.
By learning this attention information, the student model can acquire memories
of the old classes, thereby mitigating catastrophic forgetting issues. The overall
loss function L can be expressed as follows:

L=MLcg+ NoLyr+N3Lpr+ 5 Lap, (15)

where Log represents the cross-entropy loss, and A1, Ay, and A3 are the balancing
coefficients for the four types of losses. [ is a hyperparameter controlling the
strength of the attention distillation.

4 EXPERIMENT RESULTS AND DISCUSSIONS

In this section, we first review the benchmark datasets used in the study. Three
representative datasets were carefully selected for meaningful comparisons. Subse-
quently, we present the evaluation metrics used. In our experiments, we use average
accuracy and average forgetting rate as evaluation metrics to objectively assess the
performance of the various methods. Subsequently, we present the baseline meth-
ods adopted for comparison with our method. Finally, we not only comprehensively
showcase the experimental and ablation study results but also conduct in-depth
analyses of these results.
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4.1 Datasets

In our research, we selected three widely used datasets in the field of class incremen-
tal learning to ensure the generality and comparability of our experimental results.

e The Split CIFAR-10 dataset provides us with a relatively simple scenario, con-
sisting of 10 classes with 5000 training samples and 1000 test samples per class.
By splitting the CIFAR-10 [66] dataset into 5 small datasets, each involving
2 classes, we can simulate relatively straightforward class-incremental learning
situations commonly encountered in real-world applications.

e The CIFAR-100 dataset presents higher challenges, as it includes 100 classes,
with each class containing 600 images. By dividing the CIFAR-100 [66] dataset
into 10 tasks, each containing 10 disjoint sub-datasets representing individual
classes, we effectively simulate class-incremental learning processes on complex
tasks.

e The Mini-ImageNet dataset serves as a large-scale dataset, encompassing 100
classes with a total of 60000 color images, and 600 samples per class. By di-
viding the Mini-ImageNet [67] dataset into 10 subsets, each containing 10 non-
overlapping classes, we face the more challenging task of large-scale incremental
class learning.

4.2 Metrics

When evaluating the performance of online class-incremental learning models, com-
mon metrics mainly include the average accuracy rate and the rate of forgetting old
tasks.

Average accuracy is a metric used to reflect the overall performance of the
incremental learning model. One common method for estimating average accuracy
was proposed by [68], denoted as A;. Specifically, when the model completes training
on task i and performs classification on the test set of task j, it is represented as
a;; € [0,1]. The formula for calculating the average accuracy A; for task ¢ is as
follows:

Average Accuracy (A4;) = Z atj. (16)

Another important evaluation metric is the average forgetting rate, which is
used to measure how much the model forgets about old tasks. [46] introduced the
forgetting rate F; to measure how well the model forgets previous tasks on task t.
The formula for calculating the average forgetting rate is as follows:

Average Forgetting (F}) = —— Z fts (17)
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where f;; = le{{na?:_l}aw —a;;.

4.3 Baselines

In our experiments, we selected several popular class-incremental learning methods
as our baselines to comprehensively compare with the proposed method. These
baseline methods include:

e ER (Experience Replay) [68]: This method adopts the reservoir sampling strat-
egy in Memory Retrieval to randomly sample and update the memory. During
the learning process, it mitigates the forgetting problem in class-incremental
learning by saving historical experiences and training the model with randomly
sampled samples from the memory.

e MIR (Maximally Interfered Retrieval) [69]: The MIR method selects old sam-
ples that contribute the most to the increase in loss according to the estimated
parameters of the current task. The purpose of this method is to prevent the
model from excessively focusing on new tasks and forgetting knowledge of old
tasks.

e GDumb (Greedy sampler and Dumb learner) [70]: GDumb is a simple yet effi-
cient online incremental learning model. Its key feature is to update the cache
in a greedy manner and train the model from scratch using the data inside the
cache.

o DER++ (Dark Experience Replay) [71]: DER++ utilizes knowledge distillation
to retain past experiences and alleviate the forgetting problem.

e GSS (Gradient-based Sample Selection) [50]: GSS aims to increase the gradient
diversity of samples in the memory.

e ASER (Adversarial Shapley Value Experience Replay) [72]: ASER uses Shapley
Value for Memory Retrieval and Memory Update.

e DVC (Dual View Consistency) [73]: The DVC method retrieves MGI using
Maximum Gradient Interference for Memory Retrieval and maximizes mutual
information to explore semantic information in single-pass data streams, thereby
enhancing the model’s learning capability for new tasks.

e AOCIL (Online Class-Incremental Learning Based on Attention) [20]: AOCIL
explores important semantic information in the data stream by augmenting the
data in the memory bank and through the attention mechanism.

We consider the above class-incremental learning methods as our baselines, and
by comparing with them, we validate the effectiveness and advantages of our pro-
posed method in various scenarios. Through sufficient experimental evaluations, we
contribute new insights to the field of class-incremental learning research.
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4.4 Implementation Details

According to the existing methods [7T], [72], we use ResNet18 as the backbone model
for all datasets and train the network using stochastic gradient descent with a learn-
ing rate of 0.1. The model receives batch sizes of 10 from the data stream for each
training iteration, and the batch size K for memory retrieval is also set to 10. Ad-
ditionally, to perform memory retrieval, we set the number of candidate samples S
to 50. The parameter p in Equation is set to 2.

As for the hyperparameter § in Equation , we set it to 10 divided by the
number of elements in the attention map and the batch size per layer. For CIFAR-
10, Ay = Ay = 1, and A3 = 2. For CIFAR-100 and Mini-ImageNet, \; = Ay = 1, and
Az =4.

4.5 Results

We compare our proposed method with the baseline method on three data, cifarl0,
cifar100 and mini-imageNet. From the experimental results, our method achieves

advanced results in terms of average accuracy in Table [[|and average forgetting rate
in Table 2

Method Mini-ImageNet CIFAR-100 CIFAR-10

M=1K M=2K M=5K| M=1K M=2K M=5K|IM=02K M=05K M=1K
ER 10.2+£0.5 129+£0.8 16.4+£0.9| 11.6 0.5 15.0+0.5 20.5+0.8] 23.2+1.0 31.2+14 39.7+£1.3
MIR 10.1£0.6 142+09 185+£1.0| 11.3+0.3 15.1+0.3 22.24+0.7| 246+£0.6 325+15 428+14
GSS 9.3+0.8 14.1+1.1 15.0+1.1| 9.7+0.2 124+0.6 16.8+0.8| 23.0+0.9 283 +1.7 37.1+1.6

GDumb 73+03 11.4+0.2 19.54+0.5| 100+0.2 13.3+0.4 19.24+04| 266+1.0 31.9+£09 37.5+1.1
DER++ | 10.9+0.6 15.0+0.7 17.4+1.5| 11.84+04 15.74+0.5 20.84+0.8| 28.1+£1.2 354+13 428+ 1.9
ASER 11.5+06 13.5+0.8 17.8+1.0| 14.3+0.5 17.84+0.5 22.8+1.0/ 29.6£1.0 38.2+1.0 45.1+2.0
DVC 154+£0.7 17.2+£0.8 19.1£0.9| 19.74+0.7 22.14+0.9 24.14+0.8| 454+14 506+£29 52.1+£25
AOCIL | 17.3+£0.8 194+1.2 23.6+£0.9| 19.4+1.2 21.84+0.8 24.5+£0.3| 45.1£1.0 50.8+0.7 54.7£0.5
ADOCIL|20.74+0.6 22.4+1.5 25.24+0.5(23.3+1.7 25.8 +0.4 28.24+-0.8/48.8+1.7 546 +£0.9 57.1+0.8

Table 1. Average Accuracy (higher values indicate better performance). M represents the
memory buffer size. Results in bold represent the best outcomes. All figures represent the
average of 15 iterations.

Method Mini-ImageNet CIFAR-100 CIFAR-10

M=1K M=2K M=5K| M=1K M=2K M=5K/M=02K M=05K M=1K
ER 32.7+0.9 29.14+0.7 26.0+1.0/ 39.1+0.9 34.6+09 30.6+0.9| 60.9+1.0 50.2+2.5 39.5+1.6
MIR 315+1.2 25.6+1.1 204+1.0/ 39.5+0.6 33.3+0.8 283+0.7| 61.8+1.0 51.5+1.4 38.0+1.5
GSS 33.5+0.8 28.0+0.7 27.5+1.2| 382+0.7 343+0.6 30.2+0.8| 62.2+1.3 55.3+1.3 44.9+14

DER++4 | 33.8+£0.8 28.6+0.8 27.1£1.3| 41.94+0.6 36.7+0.5 33.5+0.8] 55.9+1.8 45.0+£1.0 34.6+£28
ASER 33.8+1.3 30.5+1.3 25.1+0.8) 43.0+0.5 37.9+0.6 29.6+0.9| 56.4+1.6 47.5+1.3 39.6+£2.0
DVC 25.14+0.7 23.1+£0.7 21.94+0.8| 30.6+0.7 27.8+1.0 26.1+0.5| 27.24+2.521.3+3.1 19.7+2.9
AOCIL | 246+0.9 226+0.6 17.8+£1.2|29.24+0.5 26.74+0.8 28.7+1.0{25.1+1.0 30.5+1.7 24.6+0.5
ADOCIL|{19.3+1.217.54+0.9 148 +1.9|22.1+0.7194+06 16.8+1.3| 302+15 23.1+1.2174+0.6

Table 2. Average Forgetting (lower values indicate better performance). M represents the
memory buffer size. Results in bold represent the best outcomes. All figures represent the
average of 15 iterations.
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Results of average accuracy. From the results of average accuracy, our method
has shown significant improvements on all three datasets, regardless of the mem-
ory size. For the CIFAR-10 dataset, our method achieved an average improve-
ment of 4.1 %. For the CIFAR-100 dataset, the average improvement was 3.8 %.
The most significant improvement was observed on the Mini-ImageNet dataset,
with an average accuracy increase of 5.5 %, especially at M = 1K, where the
improvement reached 6.1 %.

We believe that such a significant improvement is due to the effectiveness of
our method. Two-stage sampling and attention distillation enhance model per-
formance by fighting catastrophic forgetting. And ADVC fully explores use-
ful semantic information in the data stream during the training process of
the model, which improves the model’s adaptability and generalization to new
tasks.

Results of average forgetting rate. Regarding the average forgetting rate, our
method also exhibits significant improvements. For the CIFAR-10 dataset, our
method did not achieve superior results at M= 0.2K and M = 0.5 K. The rea-
son for this outcome is that the introduced attention mechanism tends to overly
focus on a small number of samples when the memory size is small, leading
to an increase in forgetting rate for other samples. However, at M= 1K, our
method outperformed the baseline by reducing the forgetting rate by 2.3 %.
On the CIFAR-100 and Mini-ImageNet datasets, our method reduced the av-
erage forgetting rate by 8.7% and 6.1 %, respectively. This clearly indicates
that our method better preserves previous information, thereby alleviating the
catastrophic forgetting problem.

Figure [l] and Figure [§] show that our method consistently outperforms other
baseline methods. As the number of tasks increases, our sample selection method
is able to filter out more important and high-quality samples during replay and
further fights the catastrophic forgetting problem by distilling the attention map
to the student model so that the student model retains more critical information
about the old classes. Meanwhile, our ADVC is able to explore important semantic
information in the data stream, enabling our method to achieve higher accuracy.
The outstanding performance across various tasks validates our method’s ability
to preserve previously acquired knowledge while efficiently adapting to new tasks,
positioning our method as a powerful solution for mitigating catastrophic forgetting
in continuous learning environments.

4.6 Ablation Study

Our method mainly consists of three components: Two-Stage Sampling, ADVC,
and Attention Distillation. Among them, the role of ADVC is to better explore in-
formation in the data stream to improve the model’s performance, while Two-Stage
Sampling and Attention Distillation mainly aim to mitigate catastrophic forget-
ting. Therefore, in Table 2 we conduct an ablation study on the average accuracy
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Figure 4. Observe the average accuracy of each task on the CIFAR-10 dataset with
M = 200

0.5 \
—a— MIR

B .+ GSS
z 04 —+ DER++
g
< 035
]
o0
=
£ 02
=

0.1

Task Number

Figure 5. Observe the average accuracy of each task on the CIFAR-100 dataset with
M = 1000

improvement brought by each component, and in Table ] we demonstrate the im-
provements in average forgetting rate due to Two-Stage Sampling and Attention
Distillation. As shown in Table[3] each component of our method contributes to the
improvement of model performance. Specifically, Two-Stage Sampling demonstrates
the most significant improvement, especially at M = 2K, where it outperforms the
baseline by 3.3 %. We believe that Two-Stage Sampling helps us select high-quality
samples with significant impacts. ADVC and Attention Distillation also exhibit
outstanding performance, as both mechanisms enhance the model’s representation
capacity and generalization performance, improving the model’s ability to recognize
and utilize crucial samples.

Table {4 presents the results of the ablation study on the average forgetting
rate for Two-Stage Sampling and Attention Distillation. From the results in the
table, both methods significantly reduce the average forgetting rate. Especially
noteworthy is the remarkable improvement achieved by Attention Distillation, with
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Method M=1K M=2K M=5K
Baseline 19.7+0.7 22.1+£09 24.1 +£0.8
Baseline + ADVC 208+0.5 23.1+1.7 26.0+0.6
Baseline + Attention distillation 221+16 23.9+04 26.7+1.4
Baseline + T'wo-stage sampling 227+14 2544+16 276+1.3

Baseline + ADVC + Attention distillation

. 23.3+1.7 258+04 282+0.38
+ Two-stage sampling

Table 3. Average Accuracy (higher values indicate better performance). Ablation studies
on CIFAR-100. “Baseline” denotes the model employing the DVC method. All figures
represent the average of 15 iterations.

Method M=1K M=2K M=5K
Baseline 306+07 278410 261405
Baseline + Two-stage sampling 214+15 186=+1.0 177+ 1.0
Baseline + Attention distillation 20.7 + 0.6 19.6+15 1714+0.5

Table 4. Average Forgetting (lower values indicate better performance). Ablation studies
on CIFAR-100. “Baseline” denotes the model employing the DVC method. All figures
represent the average of 15 iterations.

an average forgetting rate reduction of 9.0 %. This significant improvement is mainly
attributed to the alignment of attention distributions between the student model
and the teacher model through attention distillation. In incremental learning tasks,
where data and tasks continuously change, the model needs to quickly adapt to new
tasks while retaining knowledge of previous tasks. Attention distillation allows the
student model to focus more on samples and features relevant to the current task
while reducing forgetting of the previous tasks.

4.7 ADOCIL Versus AOCIL

The preliminary version of our proposed method is AOCIL [20] and the improve-
ments are described in Section [l To demonstrate the enhanced effectiveness of our
improved method over the previous one, we compare the outcomes of ADOCIL and
AOCIL, as depicted in Tables [[] and 2

Based on the information provided in the table, we observe the average accu-
racy of AOCIL and ADOCIL across various datasets (Mini-ImageNet, CIFAR-100,
CIFAR-10). Among them, the results of ADOCIL outperform those of AOCIL on
all datasets. This is mainly attributed to our proposed two-stage sampling strat-
egy. This strategy mitigates the catastrophic forgetting problem and improves the
performance of the model by filtering out high-quality samples and further selecting
among these high-quality samples the ones that cause the largest gradient changes
to the new samples for replay.
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As illustrated in Table[2] the enhancement effect of ADOCIL is more pronounced
on the Mini-ImageNet and CIFAR-100 datasets compared to the CIFAR-10 dataset.
This is due to the fact that the attentional distillation technique we introduced can
alleviate the phenomenon of forgetting the history task. By mapping the attention
map of the teacher model to the student model, the attention distribution of the
student model can be made closer to that of the teacher model, thus retaining more
information about the historical task.

5 CONCLUSION

In this paper, we introduce the ADOCIL framework, comprising three main com-
ponents. Among these, the two-stage sampling method facilitates the prioritization
of crucial samples among high-quality ones. Specifically, we select samples based
on their larger average gradients and the extent to which new incoming samples
perturb the network’s gradients. We believe that such samples can retain suf-
ficient information from old classes, thus alleviating the problem of catastrophic
forgetting. Furthermore, to explore crucial information in the data stream, we pro-
posed the ADVC. The method utilizes an attention mechanism to focus on im-
portant information and then maximizes the mutual information between them
to enhance the model’s understanding of the data. Most importantly, we intro-
duced an Attention Distillation technology, aligning the attention distribution of
the student model with that of the teacher model. This allows the student model
to pay more attention to samples and features relevant to the current task, ulti-
mately fighting catastrophic forgetting. Extensive experiments validate the superior
performance of our method in terms of average accuracy and average forgetting
rate.
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