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Abstract. Clustering analysis is a crucial method in data mining, aimed at iden-
tifying clusters of data objects in the attribute space. Distributed clustering has
gained prominence due to the emergence of Big Data. The rapid growth of data,
particularly with the advent of technologies, such as the Internet of Things and 5G,
has resulted in numerous challenges for data analysis and processing. Traditional
clustering methods, such as K-means and hierarchical clustering, struggle with ex-
tensive datasets designed for smaller to moderately sized datasets. Meta-heuristic
techniques have garnered significant attention among the various distributed clus-
tering algorithms due to their ability to deliver high-quality solutions across a wide
range of optimization problems. In this study, we proposed a new Cuckoo search
(CS) clustering algorithm for distributed clustering to address the challenges of Big
Data clustering. First, the CS clustering algorithm is executed on each local site, uti-
lizing GPU acceleration for efficient local data clustering. Second, on a global scale,
representative data from each site are aggregated and processed worldwide, with
centroids iteratively updated to generate the final clustering result. We have sig-
nificantly enhanced the processing efficiency by minimizing transmission costs and
eliminating the need for inter-node communication. Furthermore, our approach
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demonstrates adaptability in handling large datasets with competitive execution
times through the utilization of parallel processing and distributed computing. Our
approach demonstrates both efficiency and scalability across wide range of datasets,
highlighting its potential for various applications.

Keywords: Clustering, Big Data, Cuckoo search algorithm, distributed computing,
GPU
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1 INTRODUCTION

In the era of information technology, the generation, gathering, and storage of data
in different sites have experienced unprecedented exponential growth, resulting in
the advent of massive datasets [I]. Clustering, one of the most important tasks
in data mining and machine learning, plays a pivotal role in uncovering meaning-
ful patterns, structures, and insights within these extensive datasets. The intrinsic
complexity and sheer volume of Big Data have resulted in numerous challenges for
data analysis and processing in terms of scalability, computational efficiency, and
memory requirements [2]. Consequently, management of these data in a centralized
manner becomes infeasible due to privacy and transmission costs [3]. The devel-
opment of novel algorithms and techniques capable of effectively handling these
huge amounts of data becomes crucial. Traditional clustering techniques, such as
K-means and hierarchical clustering, are frequently unable to cope with extensive
datasets because they were designed for relatively small to moderately sized datasets.
Consequently, distributed clustering algorithms have received increasing interest [2].
These algorithms take advantage of distributed computing systems to enhance the
scalability and speed up the clustering. Distributed clustering techniques distribute
data across multiple computational nodes, facilitating parallel processing and accel-
erating the analysis of large datasets [4]. Metaheuristic techniques have attracted
significant interest among the plethora of distributed clustering algorithms because
of their capacity to provide high-quality solutions in a wide range of optimization
problems [B]. Bio-inspired algorithm-based clustering approaches regard clustering
as an optimization problem (i.e., to find a set of points as cluster centers to op-
timize a certain similarity measure) [6]. Bio-inspired algorithms, such as particle
swarm optimization (PSO) [7], have been introduced as an effective approach to
address complex data clustering problems [6]. The Cuckoo search (CS) algorithm
(CSA), inspired by the breeding behavior of cuckoo birds, stands out as a meta-
heuristic algorithm renowned for its efficiency in addressing complex optimization
problems [8]. The simplicity, adaptability, and escape from local optima exhibited
by CSA make it well-suited for clustering tasks. However, CSA’s applicability must
be expanded to a distributed computing environment to properly utilize its capa-
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bilities for large data clustering. This work introduces a novel approach, referred
to as the CS clustering algorithm (CSCA) for distributed clustering (CSCADC),
specifically designed to address the particular difficulties associated with massive
data clustering in distributed computing settings. The primary objective of this
work is to provide a scalable and efficient method for leveraging the parallel pro-
cessing power of distributed systems to cluster large datasets. Overall, the goal of
this research is to contribute to the existing knowledge in the field of distributed
clustering for large-scale data by introducing a novel algorithmic framework that
leverages the principles of the CSA while addressing the requirements of distributed
computing environments.

The findings of this study are expected to enhance our comprehension of scal-
able clustering methods for big data, thereby accelerating the speed and efficiency
of clustering algorithms. The remainder of this paper is structured as follows: Sec-
tion 2] provides an overview of some related work. Section [3| introduces a brief look
about scaling platforms of Big Data. Section [ outlines the methodology used. Sec-
tion [ presents the proposed approach. Section [f] presents findings that illustrate the
benefits of our approach. Lastly, we will draw conclusions from this paper. Section [7]
discusses future directions.

2 RELATED WORK

The exponential growth of data in the modern digital age has brought about signif-
icant challenges in data analysis, particularly when dealing with large and complex
datasets, commonly known as “Big Data” [I]. Clustering is a key technique in data
mining and machine learning that aims to discover inherent structures and patterns
in data [9]. Clustering algorithms have been used in various fields, including web
analysis, image processing, marketing, medical diagnostics, data science, and In-
ternet of Things (ToT) [1]. Accordingly, clustering algorithms must be improved.
A clustering problem is an NP-hard problem because of its complexity [I0]. Con-
sequently, traditional clustering algorithms typically require an extended period of
time to find an approximate solution and commonly encounter difficulties in han-
dling the scale and complexity of Big Data [I1]. Hence, research efforts are aimed
at discovering efficient clustering solutions capable of handling massive data clus-
tering within a reasonable time. Given that clustering finds applications across
various domains, it has received significant attention from researchers who are mak-
ing notable advancements in the field. The K-means algorithm [I2] is the most
well-known and commonly used clustering technique due to its simplicity and high
efficiency [6]. A drawback of the popular K-means algorithm is its requirement to
predefine the number of centroids. Furthermore, the effectiveness of the K-means
algorithm diminishes as the complexity of the dataset increases. Accordingly, nu-
merous improved K-means algorithms have been developed in the literature to deal
with large datasets. Cuomo et al. [T3] introduced three distinct parallel implementa-
tions of the K-means clustering algorithm, specifically designed to manage extensive
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datasets. These implementations leverage graphics processing units (GPUs), a par-
allel architecture utilized to minimize the execution time of K-means clustering. The
optimization addresses space limitations on GPUs and minimizes host-device data
transfer time.

Clustering using evolutionary algorithms is a compelling approach to data anal-
ysis, particularly in scenarios where traditional clustering methods may face limi-
tations [I]. Evolutionary algorithms, inspired by the process of natural selection,
utilize the principles of population-based optimization and genetic variation to ad-
dress complex data clustering problems [5]. Evolutionary algorithms view clustering
as an optimization problem to discover high-quality clustering solutions based on
a fitness function. The adaptability, ability to explore complex solution spaces, and
versatility of evolutionary algorithms make them valuable tools in the data analysis
toolkit for addressing a wide range of clustering challenges [14]. Reference [15] pre-
sented the challenge of clustering large datasets in a distributed environment and
proposed a novel two-phase algorithm. This approach combines a parallel genetic
algorithm (GA) with Mahalanobis distance in the first phase and refines the output
using K-means in the second phase. Benmounah et al. [I6] addressed big data clus-
tering challenges by introducing a decentralized distributed solution using swarm
intelligence algorithms within the MapReduce framework. The suggested algorithm
combines a migration strategy with three well-known algorithms, namely, ant colony
optimization [I7], artificial bee colony [I§], and PSO [7], to determine the optimal
partition that improves the clustering quality. Reference [6] explored evolutionary
computation for distributed clustering in IoT. It introduced distributed PSO using
distributed computing to address the performance challenges in scenarios with par-
tial data at each site. The method involves local data clustering using PSO at each
site and integration of local results using K-means at the global site. Reference [19]
introduced an enhanced PSO algorithm, multistart pattern reduction-enhanced PSO
(MPREPSO), designed to improve the clustering efficiency with big data. The
method aims to minimize the computational time through the compression of static
patterns by incorporating pattern reduction and multistart operators and enhance
the diversity in the population to avoid local optima. Reference [20] proposed the
distributed-parallel PSO with K-means (D-PPSOK) clustering algorithm, which is
designed to handle big data analysis by using data sampling techniques. The D-
PPSOK algorithm is based on the idea that a smaller subset of the data can hold
the same information as the whole dataset, allowing for an efficient processing of big
data. Moreover, the D-PPSOK algorithm has been shown to be particularly effective
in applications, such as document clustering. Reference [21] developed a highly effi-
cient and optimal data clustering scheme using the FSF-Sparse FCM + PWO-based
MRF for high-dimensional data. The FSF-Sparse FCM is designed by integrating
SFO, fractional concept, and Sparse FCM. The MRF has two functions: mapper
and reducer. FSF-Sparse FCM computes the cluster centroids in the mapper phase,
generating intermediate data. PWO refines the data in the reducer phase. Han [22]
proposed a big data clustering algorithm based on group intelligence utilizing the
K-means clustering mining algorithm. This approach involves analyzing the data
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storage capacity of the cloud computing Hadoop framework and the MapReduce
computing model. The traditional K-means clustering algorithm of data mining
is improved by adopting a group intelligence algorithm to address the local opti-
mization issue. The improved ant colony clustering algorithm has been applied to
the location of sports facilities, achieving good results. Reference [23] proposed an
efficient and flexible distributed clustering framework. Tarkhaneh et al. [24] intro-
duced HCSPSO, a hybrid algorithm for data clustering that combines CS, PSO, and
K-means. The proposed algorithm addresses the high functional evaluation issue in
standard CS utilizing PSO and K-means within CS, along with Mantegna Lévy dis-
tribution for faster convergence and local search. Tekieh and Beheshti [25] proposed
a distributed fuzzy clustering approach using MapReduce to handle large-scale data
with improved privacy-preserving methods based on Grasshopper optimization al-
gorithm.

Clustering using evolutionary algorithms has been proven successfully addressing
numerous big data problems [T0]. However, the challenges related to computation
time and transmission cost can significantly affect the performance of any system.
Considering the above-mentioned issues, this work aims to address the slow compu-
tational speeds associated with clustering techniques, especially when dealing with
large datasets, by proposing a new distributed approach based on the CS algorithm,
aiming to accelerate the clustering process and provide efficient solutions.

3 SCALING STRATEGIES FOR BIG DATA CLUSTERING
PLATFORMS

Big Data clustering, a crucial component of data analytics, relies on robust platforms
that can efficiently handle the immense volume and complexity of large datasets [19].
Among the various strategies utilized, horizontal and vertical scaling stand out as key
paradigms in optimizing the performance of clustering algorithms [TT] as illustrated
in Figure [T}

Scaling Platforms

¥ v
Horizontal Vertical
Scaling Scaling
v v v / v
‘ Hadoop ’ ‘ Spark ’ Flink } ‘ CPU } [ GPU ’ ‘ FPGA ’

Figure 1. Scaling platforms for Big Data
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Horizontal scaling, also known as scaling out, involves distributing computa-
tional tasks across multiple nodes or machines. This approach enables parallel
processing and faster analysis by allowing simultaneous data processing across
a cluster of interconnected machines. Technologies such as Apache Hadoop [26],
Spark [27], and Flink [28] exemplify horizontal scaling in distributed computing
environments, providing scalable solutions for clustering large datasets.

Vertical scaling, or scaling up, enhances the computational capacity of an indi-
vidual machine by adding resources, such as CPU, RAM, and storage. This
approach focuses on augmenting the capabilities of a single machine to accom-
modate larger datasets and complex computations. This technique is suitable
for scenarios where the dataset partitioning is challenging or when specific algo-
rithms require substantial computational resources [I1].

Horizontal and vertical scaling are crucial for Big Data clustering infrastructure.
The selection between these strategies depends on dataset characteristics, clustering
algorithm, and available resources [29]. The flexibility of these strategies is vital
in creating scalable platforms to address large dataset clustering challenges in Big
Data analytics [I1].

4 METHODOLOGY

In this section, we first introduce the notations used throughout this work, the
clustering task, and the validation indexes for clustering. Thereafter, we present the
concept of the CS clustering algorithm.

4.1 Clustering Task

Let X = {X1,X,...,X,} be a dataset with n data objects where X; (1 < i < n)
be a data object described by m attributes X;i, X0, ..., Xi,. Clustering involves
identifying inherent patterns, structures, or similarities within a dataset without
having any prior knowledge of the group labels. The main objective of clustering is to
group the objects with the most similarities into one cluster P = {C1,Cy, ..., Ck}.
The constraints mentioned here are applied to clustering: Vj : C; (1 < j < K) # 0;
Vi#j:C;NC; =10, and Zfil C; = X. Each object in the dataset is defined by a
set of attributes or measurements. Distance measuring techniques can be employed
to determine the similarity or dissimilarity of data. Several measures of similarity
are provided in the literature, such as Euclidean distance, Manhattan distance [30],
Minkowski distance [30]. The Euclidean distance is used in this research to calculate
the similarity between two points in the multidimensional space. Euclidean distance
is the most popular distance calculated by Equation where X, is the value of
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the attribute number s of the object number ¢ (z;).

Distance(X;, X;) =

4.2 Validation Indexes for Clustering

Clustering evaluation relies on performance metrics, ensuring high similarity within
clusters and dissimilarity between them. Various metrics are utilized to assess clus-
ter separation and cohesion, providing valuable insights into clustering quality [2].
Below are some performance metrics that will be used later in this work, alongside
others.

e The distances between clusters, specifically the distances between their cen-
troids, are referred to as inter-cluster distances. In this context, the goal is
to maximize the separation between clusters, and this objective is quantified as
Equation

Inter-cluster = min ||C; — C;|? (2)

e Intra-cluster distances pertain to the distances between individual data vectors
within a given cluster. The primary objective is to minimize these intra-cluster
distances. This optimization goal is mathematically represented as Equation (3)).

K
1
Intra-cluster = — X, —C|*
ntra-cluster WZH j Gl (3)

L =

e Dunn index [3I]: This index compares the minimum inter-cluster distance
relative to the maximum intra-cluster distance. A higher Dunn index means
better cluster separation. Dunn index is calculated using Equation @

IndexDN = min(Inter-cluster)

(4)

max(Intra-cluster)’

e Silhouette coefficient: This metric is utilized to evaluate cluster compactness
and separation by averaging dissimilarities within clusters and between neigh-
boring clusters and calculated using Equation .

max{b(X;),a(X;)}’ )

Silhouette(X;) =

where a(X;) is the average distance from the i® data point to the other data
points in the same cluster, and b(X;) is the smallest average distance from the
it" data point to data points in a different cluster, minimized over clusters. The
overall silhouette coeflicient for the entire dataset is the average of the individual
silhouette coefficients for each data point.
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e Sum of squared errors (SSE): SSE is a metric used in centroid-based cluster-
ing algorithms to assess performance.This metric calculates the sum of squared
distances between each data point and the centroid of its assigned cluster. The
objective is to minimize this metric during clustering, as defined in Equation @

SSE = ZZ(Xij,Zj), (6)

k=1 i=1

where z; is the mean (centroid) of the j" feature across all data points in the
assigned cluster.

4.3 CSA

The CSA, introduced by [8] in 2009, draws inspiration from the brood parasitism
behavior of certain cuckoo bird species. In this analogy, cuckoo birds represent so-
lutions to optimization problems. Meanwhile, host bird nests symbolize the search
space. The algorithm iteratively lays eggs in randomly selected nests, selecting the
best nests (with the highest quality) for the next iteration based on fitness val-
ues. CSA has been recognized for its simplicity, ease of implementation, and ability
to handle continuous and discrete optimization problems. This mechanism utilizes
Lévy flights and random walks to effectively balance exploitation and exploration.
Moreover, CSA requires fewer parameters compared with other bio-inspired algo-
rithms. The algorithm’s process is summarized in Algorithm [T

Algorithm 1 CSA
1: Objective function f(z) = (z1,...,z4)7;
2: Initialize a population of n hosts, z; (i = 1,2,...,n);
3: while (the stop criterion is not met) do
4: Randomly get a cuckoo z; by Lévy flights;

5: Evaluate its fitness (quality) Fg;

6: Randomly choose a nest among n (let us say j) ;

7 if (Fk > F}) then

8: Replace j by the new solution generated;

9: end if

10: Abandon a fraction p, of worst nests and build new ones by Lévy flights;
11: Keep the best solutions;

12: Rank the solutions and find the current best;

13: end while

4.4 CSCA

The CSCA is based on the concept of brood parasitism observed in cuckoo birds [32].
This algorithm aims to group a set of input samples (data points) into clusters
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with similar features in an unsupervised way. In the context of optimization and
clustering, each cuckoo represents a potential solution or cluster configuration, while
each egg laid by a cuckoo corresponds to a new potential solution. The ability
of CSCA to balance exploration and exploitation makes it a promising tool for
addressing complex and high-dimensional data analysis tasks [9]. The following is
a high-level overview of the CSCA.

1. Randomly initialize a population of candidate solutions (cuckoo nests).

2. Assign each data point to the cluster with the lowest distance (or highest simi-
larity).

3. While the stopping criterion is not met:

e Randomly generate a new solution (cuckoo egg).

e Replace a randomly selected solution in the population with the new solution
if the new one has better fitness.

e Abandon a fraction of the worst solutions in the population, and replace
them with new ones (cuckoo eggs) randomly generated.

e Reassign each data point to the cluster with the lowest distance (or highest
similarity) based on the current clustering solution.

4. Return the best solution found.

5 PROPOSED METHOD

This section introduces the CSCADC. In the proposed algorithm, the system com-
prises a central global site and N local sites, each denoted as L;; Vi € {0,1,..., N}.
Here, Lo represents the global site, while the remaining are local sites. The dis-
tributed clustering methodology involves the partitioning of the dataset into distinct
subsets independently processed across distributed nodes. Consequently, each node
L; manages a portion of the dataset denoted as z;, where Z = z; Uz, ...,Uzy. This
data distribution is instrumental in reducing time and spatial complexity, thereby
significantly decreasing the computational time required for clustering extensive
datasets in a parallel way. The parameter N, representing the number of local sites,
is adaptable based on user preferences and machine availability. Each node is re-
sponsible for clustering its own data subset, iteratively transmitting the outcomes to
the global site using the CSCA. We assume a predefined number of clusters centroids
denoted as K in the clustering process P = {C},Cy,...,Ck}. Subsequently, each
node handles the clustering of its respective data subset to achieve K predefined
clusters. The iterative transmission of the intermediate result (matrix 7;) from each
node to the global site ensures convergence and facilitates the generation of the final
clustering result, thereby enhancing the performance of our approach by minimizing
transmission cost.

The T matrix comprises (K *m+1) columns, where m is the number of features
and y; is the value of the feature number . In this matrix, each row signifies
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Figure 2. Matrix T representation

the count of the data objects assigned to each cluster and the summation of their
attributes. The structural layout of the matrix T is illustrated in Figure[2 A visual
representation of the iterative process is demonstrated by Figure

The global site (Lg)

Dataset Z

Distributed Z
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Update P "
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Figure 3. Flowchart of the CSCADC

5.1 Local Process

The primary objective at each node is to independently cluster the local dataset
and transmit the results to the global site. This process necessitates the iterative
application of the CSCA at each site in a parallel fashion. In the CS process, an egg
in a nest serves as a candidate solution. Each nest accommodates a single egg, and
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every cuckoo lays one egg at a time. Accordingly, a cuckoo and its nest collectively
represent a candidate solution in our algorithm, where the terms nest, cuckoo, and
egg are interchangeably used. In centroid-based clustering algorithms, the final
results hinge on the identified cluster centers. The clustering task is comparable
to searching for optimal cluster centers, and the set of these centers constitutes
a candidate solution. Suppose a dataset has K clusters, the set of cluster centers x; =
{1, Ts2, . .., Tk } represents the candidate solution where 1 < i < population,,,).

The clustering outcome from each node is represented as matrix 7;. The clus-
tering results are compactly stored in a matrix format instead of sending all data to
optimize communication costs. The local data clustering independently operates at
each node without necessitating inter-node communication, contributing to the ef-
ficiency of the processing. The implementation of this iterative procedure leverages
GPUs, a parallel architecture embedded in each node, thereby mitigating the execu-
tion time of the CSCA for handling extensive datasets. The objective function f is
defined as f(z); * = min SSE(x1, ..., Zpopulation,,.,) Where n is the number of nests
defined as Equation @ The core steps of the local processing are elucidated in
Algorithm 2

Algorithm 2 Local process algorithm
Require: Local dataset z, list P
Ensure: Matrix T of the clustering result, result of clustering
Randomly initialize the population of n host nests containing one egg. A solution
x; includes K randomly selected cluster centroids (corresponding to K clusters)
2: Update the first nest generated by the received P list
Evaluate the population and pick up the best nest X from the population
using Equation @
4: while the stop criterion is not met do
Get a cuckoo x; in a random manner using Equation @

6: Randomly pick up a nest x; from the population
if (F; < F;) then
8: Replace the nest x; with the new nest x;
end if
10: Abandon a fraction (p,.) of the worse nests, and generate new ones using
Equation @

Evaluate the fitness of the new nests and update the best nest Xy g
12: Rank the solutions
end while
14: Calculate matrix T

The generation of a new set of clusters, constituting the updated solution set, is
accomplished by employing the current best solution from the ongoing iteration, as
detailed as Equation @ step denotes the step length of a Lévy flight, conforming
to a Lévy distribution. Mantega’s algorithm is utilized to derive the step length of
the Lévy flight, following the suggestion of Yang [33]. In Mantega’s algorithm, the
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calculation of the step is performed using Equation (§)), wherein the fixed value of
[ is set to 1.5.

Tnew = @ + randn X 0.01 X step X (T — Tpest), (7)
where
Step = —o— 8)
p - |’U|1/57
and
u=uvx*oa, (9)

where v is a matrix of the normally distributed random numbers with the same
dimension of a solution as follows: v ~ N(0,0?),0, = 1, where:

_[T(1+B)sin () 5
= (V) "

where I' is the gamma function as follows:

I(1+8)= /ONo t7 et dt. (11)

5.2 Global Process

Upon distributing the complete dataset across all nodes, we randomly select K
centroids from the initial dataset and disseminate them to all sites. Subsequently,
the CSCA is independently executed on each node in an iterative manner, and the
centroids sent to the local sites are iteratively updated using the received matrices
T. The update of each centroid is achieved by calculating the mean of its assigned
objects using Equation ([12]).

1 n
Ci=-30, (12)
=1

where n is the number of data point that belongs to cluster C; and O is the i*" data
point of cluster Cj.

Consequently, the global node is responsible for aggregating the results obtained
from the local sites, facilitating the update of centroids, and ultimately delivering
the global clustering result. When these centroids no longer change or the maximum
number of iterations is reached, the algorithm is stopped. Algorithm [3 outlines the
fundamental steps of the global process.
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Algorithm 3 Global process
Require: Dataset, K number of clusters, N number of local sites
Ensure: Final clustering result

1: Distribute the data among N nodes

2: Randomly pick K centroids from the initial dataset and send them to all sites
3: while (the stop criterion is not met) do

4: Execute the CSCA on each node

5 Get matrices Ty, Ty, ..., Ty.

6 Update the centroids using 71, T5, ..., Ty as Equation and send them

to all sites.
7. end while

5.3 Reliability and Fault Tolerance

Ensuring the reliability of distributed clustering algorithms is critical, especially in
large-scale and decentralized environments. To address potential reliability issues,
especially concerning the failure of the global site, we have integrated a Backup
Central Nodes Algorithm within our distributed clustering approach, as elucidated
in Algorithm [

This algorithm maintains a primary global node (PGN) and one or more backup
nodes (local nodes) that take over when the primary fails. The global node ID is
initiated as PRIMARY _NODE (node_id == PRIMARY _NODE).

Algorithm 4 Backup Central Nodes Algorithm

1: Response_time = 1s

2: if (node_.id == PRIMARY_NODE) then

3 while True do

4 Send heartbeat (signal) to all backup nodes

5: Wait(Response_time)

6 end while

7. else

8 while True do

9: if (not receive_heartbeat_from PGN) then

10: Consider the global node failed

11: new PGN = the backup node with the highest priority (Node ID,
Availability, etc.)

12: The new_PGN broadcasts its status to all nodes, informing them of
the change

13: end if

14: end while

15: end if

When the original PGN recovers, it can either remain a backup node or regain
its role as PGN if it is needed. By incorporating this fault-tolerant mechanism, our
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approach is robust against single points of failure, enhancing both reliability and
resilience in distributed environments.

6 EXPERIMENTS

In this section, we assess the effectiveness of the proposed approach through a com-
parative analysis with the K-means algorithm [12], DKmeans [34], iCSPM [35], and
DPSO [6] utilizing real datasets. The evaluation of CSCADC is conducted based
on performance metrics, including the sum of intra-cluster distances, inter-cluster
distance, silhouette value, Dunn index, and SSE value.

6.1 Datasets

In this study, we assess the effectiveness of our proposed algorithm using standard
datasets, sourced from the UCI dataset [36]. Additionally, we incorporate a super-
market consumer behavior dataset [37] in our evaluation. The datasets utilized in
this investigation are presented in Table [T}

Dataset Number Number Number

of Samples of Features of Classes
Iris 150 4 3
Breast cancer 683 9 2
CMC 1473 9 3
Yeast 1485 8 5
Supermarket consumer behavior 2019501 12 5

Table 1. Properties of the datasets used in our experiments

The Iris dataset contains features of iris flowers, and it is commonly used for
classification tasks. By contrast, the breast cancer dataset distinguishes between
malignant and benign tumors. The CMC dataset records socio-economic factors and
contraceptive choices of married women in Bangladesh. The yeast dataset provides
gene expression levels under various conditions valuable for clustering algorithms in
gene expression analysis. Finally, in the supermarket consumer behavior dataset,
businesses may benefit from cluster marketing by identifying customers who share
similar needs or respond similarly to particular marketing initiatives. All previous
datasets are ready for use except the last one, which requires preprocessing before
utilization.

6.2 Pre-Processing of the Supermarket Consumer Behavior

In the supermarket consumer behavior dataset, we attempt to group the clients
into separate classes according to their shopping behaviors and preferences using
unsupervised machine learning techniques. The supermarket dataset contains over
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2 million purchase records and 12 variables, as shown in Table [} After studying
the correlation between variables [38], the following columns were removed because
they have no effect: order_id, user_id, order_number, product_id, department_id,
and department. After removing irrelevant columns and applying label encoding for
categorical data and MinMax normalization [39], the dataset is prepared for analysis.
The optimal number of clusters K is determined by the Elbow method [40] in this
study. The dataset is tested with the default K-means clustering of MATLAB using
a range of values for K (between one and nine). Figure ] shows that the inertia score
begins to drastically drop between four and five clusters, resulting in the selection
of five clusters for further analysis.

le7

114
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Figure 4. Inertia plot per K

6.3 Results and Discussions

The experiment involved running the algorithm 20 times with random initial so-
lutions on each dataset. A population size of 50 and a maximum of 30 iterations
were set for the CSA. Parameters, such as py., (discovery probability) = 0.7 and 3
(Lévy flight parameter) = 1.9, were optimized to enhance the algorithm’s accuracy
and convergence speed, and they were used during the local clustering phase at each
node where CSCA (Algorithm [2] line 10) iteratively updates centroids before send-
ing representative results to the global site. Proper tuning of p,,, and § improves
clustering quality, convergence stability, and overall performance of the distributed
framework. The number of functional evaluations served as a fair measure for com-
paring algorithms [I]. MATLAB’s parallel computing framework was leveraged to
exploit multi-core processors and distributed computing resources, with each worker
representing a local site for executing the CSCA algorithm. The experiment was



Efficient Distributed Clustering Algorithm for Big Data 1193

conducted using MATLAB 2017b on a computer with Intel Core 19, 2.40 GHz, 32 GB
RAM, and an NVIDIA GFORCE GTX 1080 GPU.

The study recorded results from multiple runs and selected the best values. Ta-
bles 2] Bl [ 5] and [6] present the clustering results obtained from different algorithms
including standard k-means, distributed k-means, CSCA, iCSPM, and distributed
PSO clustering algorithms. CSCADC demonstrated significant improvements, par-
ticularly evident in the Iris dataset, where SSE was lower at 96.8544, and the intra-
cluster values were minimized to 0.6457. In the Cancer dataset, CSCADC achieved
an SSE value of 1.52e+5, outperforming other algorithms, along with superior index
DN and intra-cluster values. The results from our approach consistently showed
better performance metrics, including silhouette, SSE, index DN, and intra-cluster
values, across various datasets, such as the supermarket behavior dataset and Yeast
dataset.

The scalability of the proposed algorithm was also assessed, demonstrating su-
perior efficiency compared with other algorithms, particularly evident in Figures [
and[f] Meanwhile, smaller datasets, such as Iris and Cancer, exhibited better perfor-
mance with standard k-means due to the lower communication overhead. CSCADC
showcased enhanced efficiency as the dataset sizes increased, highlighting its suit-
ability for handling massive datasets. The benefits of the parallel processing and
distributed nature of CSCADC become more pronounced, offsetting the communi-
cation overhead (Figure @ These observations underscore the adaptive nature of
the proposed algorithm, demonstrating increased efficiency with the increase in the
dataset size. This result highlights the algorithm’s scalability and effectiveness, par-
ticularly in handling substantial datasets where the advantages of parallel processing
can be fully realized. Figure [7] illustrates a significant decrease in execution time
with the integration of GPUs at each local site. The utilization of GPUs demon-
strates a clear trend of reducing execution time, aligning with the known benefits of
GPU-accelerated computations in enhancing computational efficiency. This obser-
vation highlights the crucial role of GPU integration in expediting task execution
within the experimental setup.

Silhouette SSE  IndexDN Intra-class Inter-class Time
Kmeans 0.7357 97.2046 0.0988 0.6480 1.7972 0.85s
DKmeans 0.7357 97.2046 0.0988 0.6480 1.7972 1.22s
DPSO 0.6723 98.7511 0.0789 0.6853 1.2433 1.23s
iCSPM 0.7257 97.9734 0.0988 0.6532 1.7178 1.23s
CSCADC 0.7357 96.8548 0.0988 0.6457 1.7873  0.98s

Table 2. Iris dataset results

Our approach integrates vertical and horizontal scaling, distributing data across
machines and utilizing GPUs at each node. This hybrid framework optimizes effi-
ciency by enhancing individual machine capabilities and facilitating parallel process-
ing. GPU acceleration further boosts performance, demonstrating the effectiveness
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Silhouette SSE IndexDN Intra-class Inter-class  Time
Kmeans 0.8343 1.5264e+5 0,0173  2.6827e+2 1.3313e+3 0.77s
DKmeans 0.8343  1.5264e+5 0,0173  2.6827e+2 1.3313e+3 1.12s
DPSO 0.6699 2.7881le+5 0.0010 1.768¢+2 2.9765e+2 1.10s
iCSPM 0.8291  1.5248e+5 0.0156 2.6721e+2 1.2634e+03 1.53s
CSCADC 0.8277  1.5200e+5 0.0196 2.6712e+2 1.3124e+03 0.87s

Table 3. Cancer Breast dataset results

Silhouette SSE IndexDN Intra-class Inter-class Time
Kmeans 0.6420 5.5422e+3 0.0538 3.7625 9.4835 0.61s
DKmeans 0.6420  5.5422e+3 0.0538 3.7625 9.4835 0.88s
DPSO 0.5420 1.4324e+4 0.0456 3.7717 9.5623 0.42s
iCSPM 0.6437  5.5452e+3 0.0538 3.7646 9.5950 1.12s
CSCADC 0.6470  5.5420e+3 0.0538 3.7624 9.6749 0.32s

Table 4. CMC dataset results

of our hybrid scaling strategy in achieving scalability and computational efficiency,
as evidenced in previous results.

7 CONCLUSIONS AND FUTURE WORK

In this study, we presented a novel approach, CSCADC, designed to address the
challenges posed by Big Data clustering. A distinctive feature of CSCADC lies
in its two-step process. First, CSCA is independently and iteratively executed on
local data at each local site, effectively utilizing distributed computing to cluster
local datasets. Second, the representative data from each local site is aggregated
and processed at the global site, where the centroids are iteratively updated to
generate the final clustering result. We have significantly enhanced the processing
efficiency by the minimizing transmission costs and eliminating the need for inter-
node communication. The backup central nodes algorithm ensure that the proposed
algorithm is both resilient and robust, providing reliable performance even if the
global node fails.

The algorithm showcases the adaptability to handle substantial datasets while
maintaining competitive execution times using parallel processing and distributed
computing capabilities. Our proposed algorithm is designed with scalability in mind.

Silhouette SSE  IndexDN Intra-class Inter-class Time
Kmeans 0.3204 271.3357 0.0988 0.1828 0.1956 0.86s
DKmeans 0.3190 270.1557 0.0988 0.1832 0.1913 1.23s
DPSO 0.2978  268.2343 0.0789 0.1934 0.1765 2.93s
iCSPM 0.3200 271.2343 0.0988 0.1832 0.1912 7.23s
CSCADC 0.3191 271.3355 0.0988 0.1828 0.1962 0.23s

Table 5. Yeast dataset results
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Silhouette SSE  IndexDN Intra-class Inter-class Time
Kmeans 0.7420 8.0695e+5 0.077 0.4258 0.6086 12.053s
DKmeans 0.7422 8.0471e+5 0.078 0.4246 0.6164 6.228 s
DPSO 0.6345 1.7623e+6 0.062 0.6634 0.6321 7.63s
iCSPM 0.7645 8.2748e+5 0.078 0.4266 0.6266 891s
CSCADC 0.7650 8.1003e+5 0.078 0.4266 0.6362 3.90s

Table 6. Supermarket behavior dataset results

Comparison of Execution Time for Different Algorithms and Datasets

KMeans
Dkmeans
DPSO
CSCA
CSCADC

102 4

Logarithmic Execution Time

Cancer CMC Yeast Supermarket Behaviour
Datasets

Figure 5. Comparison of the execution time for the different algorithms

It leverages distributed computing, which inherently supports the processing of
larger datasets by spreading the workload across multiple machines. By combin-
ing vertical and horizontal scaling, our method efficiently utilizes computational
resources. Vertical scaling makes a single machine better, while horizontal scaling
enables parallel processing across multiple nodes. This flexibility makes the algo-
rithm suitable to dataset from real world applications with higher complexity and
data size. We also discussed that our proposition gives advantageous results and we
shown it especially when the dataset was increased.

The results of the thorough evaluation of the diverse datasets indicated that
CSCADC demonstrates remarkable efficiency and scalability, particularly with the
increase in dataset sizes. The context-dependent nature of the algorithm’s per-
formance is evident, with competitiveness observed in scenarios involving larger
datasets. However, in smaller datasets, traditional algorithms, such as k-means,
may be outperformed due to reduced communication overhead. Future work may
focus on further refining communication strategies and exploring the algorithm’s
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Comparison of Execution Time for Different Algorithms and Datasets (Log-Transformed)
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Figure 6. Comparison of the execution time for the different algorithms and datasets (log-
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applicability in various domains and more extensive datasets. We may also con-
sider addressing security aspects in our approach. Nonetheless, our approach has
limitations; for instance, the number of clusters must be specified. In future work,
we plan to incorporate dynamic clustering algorithms that automatically determine
the number of clusters based on dataset characteristics if not provided. The use of
our approach for online-stream data is also interesting. Addressing and overcoming
this limitation are the key areas for improvement in future research. In conclusion,
CSCADC presents a valuable contribution to the field of distributed clustering, of-
fering a balanced approach between efficiency and scalability. This study opens
avenues for continued exploration and application of the algorithm in diverse do-
mains requiring effective solutions for clustering large-scale datasets.
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