Computing and Informatics, Vol. 44, 2025, 1144-1177, doi: [10.31577/cai_2025_5_1144

ENHANCING LARGE-SCALE CODE
UNDERSTANDING THROUGH GOAL STRUCTURING
NOTATION AND LARGE LANGUAGE MODELS

Zezhong CHEN

Shanghai Key Laboratory of Trustworthy Computing
East China Normal University, Shanghai, 200062, China
e-mail: 52215902018@stu.ecnu.edu.cn

Yuxin DENG*

Shanghai Key Laboratory of Trustworthy Computing

East China Normal University, Shanghai, 200062, China

&

MoFE Key Laboratory of Interdisciplinary Research of Computation and Economics
Shanghai University of Finance and Economics

Shanghai, 200433, China

e-mail: yxdeng@msg.sufe.edu.cn

Wenjie DU

Shanghai Normal University
Shanghai, 200234, China

e-mail: wenjiedu@shnu.edu.cn

Abstract. Large language models (LLMs) aid programmers in understanding code
but are limited by input length when handling large codebases. To address this, we
propose using Goal Structuring Notation (GSN) — originally developed for articulat-
ing assurance cases in complex engineering projects — to represent and break down
large codebases. We introduce a tool that leverages LLMs to automatically con-

* Corresponding author


https://doi.org/10.31577/cai_2025_5_1144

Enhancing Large-Scale Code Understanding Through GSN and LLMs 1145

vert large code into GSN. The generated GSN provides an overview that simplifies
code comprehension and enhances communication among programmers. Experi-
mental results demonstrate that our approach significantly increases programmers’
confidence levels and reduces task completion times.

Keywords: Goal structuring notation, large language models, software mainte-
nance, code comprehension

1 INTRODUCTION

Maintaining large codebases is a critical yet challenging task in contemporary soft-
ware engineering. The inherent complexity of growing codebases, coupled with
inadequate or outdated documentation, makes understanding and modifying code
difficult and time-consuming, especially for new team members. Communication
barriers in large or cross-functional teams further complicate maintenance efforts.
Addressing these challenges necessitates technological innovations and improved
methodologies to enhance software comprehension efficiency and effectiveness.

To tackle these issues, we explore the use of Goal Structuring Notation (GSN) [11
2] and large language models (LLMs) [3] as promising solutions. GSN offers a struc-
tured and visual approach to representing complex arguments and justifications [4,
5]. Applying GSN to software maintenance can transform cryptic and convoluted
codebases into clear, understandable diagrams that elucidate goals, strategies, and
relationships within the code. This graphical representation bridges gaps caused
by inadequate documentation by providing a high-level overview of the software’s
architecture and logic. Moreover, GSN’s ability to encapsulate assumptions and
justifications makes implicit knowledge explicit, enhancing understanding and com-
munication among team members.

LLMs, with their advanced natural language processing capabilities, serve as
critical tools for deciphering complex code structures [6]. They can analyze and in-
terpret code, translating technical jargon and intricate programming concepts into
accessible language. This translation is crucial for team members unfamiliar with
specific aspects of the codebase or for newcomers acclimating to the project. Fur-
thermore, LLMs can assist in generating up-to-date documentation, alleviating the
burden on maintenance teams and ensuring that documentation evolves alongside
the code. However, the limited input length of LLMs poses challenges for processing
large codebases that exceed these restrictions.

To address this limitation, we propose breaking down large codebases into man-
ageable parts using GSN. By combining GSN’s structured visual framework with
LLMs’ nuanced language understanding, we present a synergistic solution.

Our approach systematically translates code into GSN elements — such as goals,
sub-goals, strategies, and evidence — providing a structured visual representation of
software logic. This process involves generating function call graphs, filtering nodes,



1146 Z. Chen, Y. Deng, W. Du

and using LLMs to create natural language descriptions of code functionality. This
enables stakeholders to efficiently comprehend and manage large codebases. Ex-
perimental results demonstrate the efficacy of this methodology, showing significant
improvements in programmers’ confidence and reduced task completion times.

By integrating GSN and LLMs, we offer a comprehensive approach to tackling
challenges associated with large codebases — including complexity, inadequate doc-
umentation, and communication barriers — paving the way for more efficient and
effective software understanding and maintenance practices.

The key contributions of the current work are as follows.

1. Innovative Method for Code Understanding: We introduce the use of GSN
in combination with LLMs to enhance the understanding and maintenance of
large software codebases.

2. Implementation of an Automated GSN Generation Tool: We develop
a tool that automatically transforms existing code into a GSN framework.

3. Validation through Real-World Case Studies: We validate the practicality
and effectiveness of the proposed method through case studies involving real-
world code repositories.

These contributions demonstrate the potential of combining GSN with LLMs in
the realm of code maintenance and understanding, offering new tools and directions
for research and practice in software engineering.

The structure of the paper is organized as follows. In Section 2, we review ex-
isting literature in the field of code understanding and maintenance. In Section [3]
we detail the process of transforming code into the GSN framework. In Section [4]
introduces the relevant technical implementations, including the generation of func-
tion call graphs and the integration of large language models. Section [5] provides
a case study to help readers understand the process of transforming code into GSN.
Section [f] presents the practical application of our methodology. In Section [7] we
discuss the implications, advantages, and potential limitations of our method. In
Section [§ we summarize our main findings and contributions.

Our tool Trusta is available at https://github.com/AssuranceCase/Trustal

2 RELATED WORK

The field of code understanding and maintenance has witnessed considerable re-
search [7, 8, 9], with various methodologies being proposed and evaluated over the
years.

Visualization tools have played a significant role in aiding code comprehension.
Research shows that visual representations of code structures and dependencies
can significantly reduce the cognitive load on developers and improve their under-
standing of complex software systems. Tools like SoftVis3D [10], Callcluster [T1],
Code Park [12], 3D-Flythrough [I3], Primitive [I4] and AppMap [I5] are notable


https://github.com/AssuranceCase/Trusta

Enhancing Large-Scale Code Understanding Through GSN and LLMs 1147

examples, offering visual metaphors to depict software architectures and relation-
ships.

Another related domain is the application of natural language processing (NLP)
techniques to interpret and document code [I6]. Research in this area has focused on
automatically generating documentation from source code using various NLP meth-
ods. Notably, recent advancements in large language models, such as ChatGPT-
4 [I7] and PaLM 2 [I8], have been leveraged to translate complex code structures
into more understandable narratives [6], aiding in both comprehension and docu-
mentation. Current state-of-the-art code comprehension tools integrating LLMs,
such as GILT [6], can only support interactive translation of small code snippets.
Our tool is specifically designed and developed for understanding large codebases.

In the specific context of using structured frameworks like GSN, there has been
limited but noteworthy exploration. For instance, some studies have investigated the
use of GSN for representing software design and architecture [19} 20], particularly in
safety-critical systems. These studies highlight the effectiveness of GSN in clarifying
design rationales and decision-making processes in software development.

However, the integration of GSN with large language models for the purpose of
enhancing code comprehension and maintenance, as proposed in our study, repre-
sents a novel approach in this field. This combination harnesses the strengths of
both visual structuring and advanced language understanding, potentially setting
a new direction for research and practice in software maintenance. Unlike existing
tools that visualize the entirety of code to aid programmers in understanding, our
methodology introduces several innovative aspects:

e By dynamically running specific functionalities of the program and extracting
the corresponding code, we present a more targeted display of the aspects users
are concerned with.

o We utilize large language models to translate the corresponding code into natural
language, facilitating comprehension among diverse stakeholders.

These enhancements not only differentiate our work from existing methods but also
offer a comprehensive approach to addressing the complexities of code maintenance
and comprehension.

In summary, while there have been several advancements in the realms of code
visualization, NLP-based documentation, and dynamic software analysis, our ap-
proach uniquely combines GSN with large language models, offering a fresh per-
spective on tackling the enduring challenges of large software maintenance and com-
prehension.

3 METHODOLOGY

In this section, we introduce the key ingredients of our methodology, including the
definition of GSN elements and the code to GSN transformation. Our approach



1148 Z. Chen, Y. Deng, W. Du

leverages the theoretical foundations of GSN and the advanced code comprehension
capabilities of LLMs.

3.1 Definition of GSN Elements

GSN, a graphical argumentation notation, is widely adopted for its ability to rep-
resent complex arguments and assurance cases in a structured and comprehensible
manner |21, [19]. In software engineering, GSN offers a high-level abstraction of soft-
ware architecture and logic, enhancing understanding and communication among
stakeholders. The core elements of GSN include:

Top-Level Goals: In our setting, these represent the primary objectives or the
main purposes of the code. They encapsulate the high-level functionality or the
key outcomes that the software is designed to achieve.

Sub-Goals: Derived from the top-level goals, sub-goals are more specific objectives
that need to be met to accomplish the top-level goals. In software, these typically
relate to specific functionalities or features of individual components.

Strategies: In GSN, strategies denote the approaches or methodologies adopted
to achieve the goals. In software terms, this would translate to the specific
algorithms or methodologies employed in the code to realize certain functions
or features.

Solutions or Evidences: These elements are crucial for providing proof or vali-
dation that the goals or sub-goals have been met. In software, evidences might
come in the form of test results, validation checks, or other forms of empirical
verification.

Context: Context elements provide the necessary background information to un-
derstand the goals, such as environmental constraints, data definitions, or opera-
tional settings. In software, this often includes class constructors or initialization
functions that set up the necessary environment for the code to function.

Assumptions: Assumptions in GSN are statements that are considered true within
the argumentation framework. In software, assumptions might include premises
about user inputs, system environments, or dependencies.

Justifications: Justifications offer the rationale behind choosing a particular strat-
egy or making certain assumptions. In the context of software, this could involve
explaining the design philosophy behind implementing a specific feature or the
reasoning behind certain coding decisions.

Figure[I| gives an example GSN diagram. It visually demonstrates our methodol-
ogy by decomposing software engineering goals into manageable components, com-
plete with defined strategies, assumptions, and justifications, thus improving the
clarity and maintainability of complex software systems. From the perspective of
information representation and readability, compared to the one-dimensional linear
reading of code, GSN allows for the two-dimensional display of information both
horizontally and vertically.



Enhancing Large-Scale Code Understanding Through GSN and LLMs 1149

Figure 1. Goal Structuring Notation (GSN) framework diagram

3.2 Code to GSN Transformation Process

The translation of code into GSN is a systematic process that aids in the elucidation
of software logic and architecture. The steps involved in this transformation are
designed to distill complex code into a clear, structured format that aligns with
GSN principles. Herein we detail the step-by-step methodology shown in Figure [2|

1.

Function Call Graph Generation: This process commences with the creation
of a function call graph. The graph is a visual representation of the software’s
functional structure, where nodes correspond to function names and edges depict
the call relationships between these functions.

. Function Node Filtration: Following graph generation, we proceed to prune

the function call graph. This involves the removal of nodes that represent func-
tions not pertinent to the software’s core functionality, thus simplifying the
graph and focusing on the most relevant aspects of the code.

Natural Language Transformation Using LLMs: Large language models
are then employed to read and analyze the function nodes along with their corre-
sponding bodies of code. These models generate a natural language description
of each function’s purpose and deduce the strategies that connect each sub-goal
with its immediate higher-level goal. This step leverages the language model’s
capability to understand and articulate code in human-readable terms.

Contextualization of Constructors and Initializers: Constructors and ini-
tialization functions within the code are translated into context nodes within the
GSN framework. These nodes provide critical background information for the
understanding of the software’s operations and goals.

Integration of Test Cases as Evidence Nodes: Test cases associated with
the code are integrated into the GSN as evidence nodes. These nodes serve
to validate the achievement of the respective sub-goals they are connected to,
offering empirical proof of functionality.



1150

class Agent: step (1):
def _init_.(s?lf): step (2):

# Agent init code. K

s . step (3):

ef process(): .
normalize() step (4):
analyze() step (3):
print_log() step (6):

lstep D

step (2)

Z. Chen, Y. Deng, W. Du

Function call graph generation

Function node filtration

Natural language transformation using LLMs
Contextualization of constructors and initializers
Integration of test cases as evidence nodes
Assumptions and justifications

]

|_init_()| ‘normalize( |ana|yze()‘ ‘print_log()|

Data process.

step (4)

‘_init_()‘ |norma|ize()‘ |ana|yze()|

step (3) l

Data processing strategy.

Data processing strategy,

Normalize Analyze
data. data.

l step (5)

Data process.

Normalize
data.

Data processing strategy,

step (6)

Data process.

data.

Normalize
data

Figure 2. Flowchart of the code to GSN transformation process

6. Assumptions and Justifications: The final step involves the addition of
assumptions and justifications where necessary for expressiveness, need, and
logical completeness. Assumptions are added to the GSN to represent premises
considered true within the software’s operational context, while justifications
provide the rationale for the strategies and design decisions made.

4 TECHNICAL IMPLEMENTATION

This section provides a detailed introduction to the techniques involved in the six

steps of transforming code into GSN.

Steps (2), (4), and (5) are straightforward and can be assisted by program
static analysis [22] with some manual additions. Step (2) can define non-logical



Enhancing Large-Scale Code Understanding Through GSN and LLMs 1151

function naming rules, such as “print*”, as a basis for simplifying the function call
graph. Step (4) uses program features and project conventions to extract class
constructors and initialization functions via static analysis, converting these nodes
from sub-goal to context type in GSN. Step (5) extracts functions called within
test cases using static analysis. If some test cases cover a particular sub-goal, these
test cases are added as evidence nodes for that sub-goal. Step (6) involves subtler
information often not explicitly expressed in code (e.g., might exist in comments
and documentations), requiring manual completion considering project stakehold-
ers.

Steps (1) and (3) are more challenging, requiring more advanced techniques such
as dynamic code analysis [23] and large language models. Below we explain steps (1)
and (3) in more detail.

4.1 Usage of Function Call Graph Tools

Step (1) involves creating function call graphs, which can be either dynamic or
static [24]. Our study specifically refers to dynamic call graphs. A dynamic call
graph can be highly accurate but only represents a single execution instance of the
program. On the other hand, a static call graph represents all possible executions
of the program.

For large programs, the codebase can be vast, and programmers often only focus
on a specific functionality during maintenance. A dynamic call graph, generated
during the program’s execution, captures the content relevant to that functionality,
ignoring the unrelated parts of the code. This significantly reduces the scope of code
that needs to be read.

The principle of generating dynamic call graphs involves monitoring the function
calls made by a program during its execution. Profilers like callgrind [25], which is
part of the Valgrind tool suite, instrument the code to record each function entry
and exit. When the program runs, callgrind collects data on the call relationships
and the execution path taken, producing a detailed log of the function calls made.
This log can then be visualized to create the dynamic call graph.

In this study, we used the pycallgraph library [26] to generate dynamic function
call graphs for the Python project and the callgrind tool for the C project. These
tools helped visualize the function calls made during the execution of the respec-
tive programs, providing a clear map of the code flow for the specific tasks being
analyzed.

4.2 Usage of Large Language Models

Listing [1| encapsulates the structured prompt used in Step (3) of our methodology,
showcasing how large language models are employed to bridge the gap between raw
code and its representation within the GSN framework. The prompt is divided
into three main sections to ensure comprehensive function analysis and strategy
formulation:



1152 Z. Chen, Y. Deng, W. Du

Task Description: This initial section sets the context for the large language

20

21

model, defining its role as both an assurance case expert and a proficient software
engineer. It outlines the model’s tasks, which include analyzing the provided
code to determine the function’s goal and elucidate the strategy behind the use
of external functions to achieve this goal.

You are an Assurance Case expert as well as a good
software engineer.
Your answers always need to follow the following output
format and you always have to try to provide the specified
information.
I will provide you with code that contains a function.
Please analyze the content of the code and complete the
following tasks: (1) Describe in one sentence the goal of
this function. (2) This function in the code calls several
external functions. Along with the names of these
external functions, I will provide their corresponding sub
-goals. Please explain in one sentence the strategy behind
using these external functions, considering their sub-
goals, to achieve the overall goal of the function. If the
names of these external functions and their sub-goals are
not provided, just complete the first task.

Example 1:
Function Code:
(SN EN1
def process_data(data):
cleaned_data = clean_data(data)
normalized_data = normalize_data(cleaned_data)
result = analyze_data(normalized_data)
return result
(SN N1
External Functions:
[’clean_data: Removes any invalid or corrupt data.’, °’
normalize_data: Brings all data to a standard format or
range.’, ’analyze_data: Performs statistical analysis on
the data.’]
Task Answers:
(1) Function Goal: Prepare and analyze given data,
ultimately returning the analysis results.
(2) One-sentence Strategy: Cleans, Normalizes, and
Analyzes the data to ensure accurate and consistent
statistical results.

Example 2:
Function Code:




Enhancing Large-Scale Code Understanding Through GSN and LLMs 1153

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

(SN IN1

def clean_data(data):
# Remove null or missing values
data = data.dropna()
# Remove duplicate entries
data = data.drop_duplicates ()
return data
(SN N1
External Functions:
]
Task Answers:
(1) Function Goal: Removes any invalid or corrupt data.
(2) One-sentence Strategy: ’’

Tips: Please add the following in strict format, including
"Function Goal:", "One-sentence Strategy:".

Function Code:
(SN N1

<NEW_FUNCTION_CODE>

(SN N1

External Functions:
<NEW_EXTERNAL_FUNCTIONS>
Task Answers:

(1) Function Goal:

(2) One-sentence Strategy:

Listing 1. Step (3) prompt structure: natural language transformation using LLMs

Input and Output Format with Examples: This section specifies the format

for inputs (function code and external functions) and expected outputs (func-
tion goal and strategy). It provides clear examples in two different scenarios,
demonstrating how the model should interpret the code, identify the goal of
the function, and describe the strategic use of external functions based on their
sub-goals.

Example Template for Additional Scenarios: The final section offers a tem-

plate for further examples, with placeholders for new function codes and exter-
nal functions. This template is designed to be filled with specific code anal-
yses, facilitating the model’s task of generating consistent and structured re-
sponses.

In the prompt structure used for the LLM, there are two specific placeholders

that require substitution with relevant data as input for the model. The first place-
holder, marked as (NEW_FUNCTION_CODE), should be replaced with the source
code of the function currently under analysis. This represents the actual code of the
function node being examined.




1154 Z. Chen, Y. Deng, W. Du

The second placeholder, (NEW_EXTERNAL_FUNCTIONS), is to be filled with
the goals of all external functions called by the current function, providing a clear
context for their inclusion and use within the main function’s logic. The output from
the LLM will then articulate the primary goal of the current function and the strat-
egy behind employing these external functions to achieve that goal. If the current
function does not call any external functions, (NEW_EXTERNAL_FUNCTIONS)
placeholder should be left empty, and the model will only output the function’s
goal.

The input and output of a single invocation of the large language model using
this prompt can be represented by the following formula:

Prompt(FunctionCode, ExternalFunctionsGoals)
— {FunctionGoal, Strategy }
Prompt(FunctionCode, 0) — { FunctionGoal, 0}

where the variables are explained as follows:

e FunctionCode: The source code of the current function under analysis.

o FEzternalFunctionsGoals: A list of goals for each external function called by the
main function. This includes the names of the functions and their respective
goals, providing the context for their strategic use.

e FunctionGoal: A concise statement of the primary objective of the function
being analyzed.

e Strategy: The rationale for utilizing specific external functions to achieve the
main function’s goal, outlined only when external functions are present. If
ExternalFunctionsGoals is empty, indicating no external functions are called,
then the strategy component is also empty, highlighting the direct relationship
between the function’s external dependencies and the formulation of a strat-

egy.

When processing a complex, multi-layered function call tree using the outlined
steps, it is imperative to traverse the call hierarchy from the bottom up. This traver-
sal begins with the leaf nodes — functions that do not invoke other functions — and
progresses upwards. Such a bottom-up approach ensures that the analysis of higher-
level functions can leverage the goals identified for the functions they call, thereby
maintaining consistency and continuity in the development of the GSN framework.
This methodology allows for a structured decomposition of software logic, making
the intricate relationships within the code comprehensible and systematically doc-
umented. This also reflects one of GSN’s characteristics: “Being able to simply
summarize viewpoints”: It shows that GSN users were able to summarize the view-
point [4]. In our method, summarizing the function’s role from the bottom up in
the function call tree results in fewer high-level goal nodes, with each goal cover-
ing a broader scope until the entire functionality is summarized in a single node.



Enhancing Large-Scale Code Understanding Through GSN and LLMs 1155

Then, from top to bottom, the number of nodes increases, with each sub-goal cov-
ering a narrower scope and revealing more details. Thus, once a complete GSN is
generated, stakeholders can examine the code at different levels, rather than search-
ing for information in incomplete documentation or extensive but overly detailed
code.

The large language model prompt in Listing [I] offers a structured approach
for the language model to analyze functions and their interrelationships, ensuring
a consistent and goal-oriented analysis. By following the detailed format for output,
the model can succinctly describe the function’s goal and the rationale behind the
use of each external function in achieving that goal. This forms a crucial component
of the GSN, linking code functionality to a structured argumentation framework
that enhances clarity and facilitates better maintenance practices.

The structured prompt ensures the generation of precise and coherent function
goals and strategies, which are essential for creating accurate and informative GSN
diagrams.

5 CASE STUDY

This section demonstrates how to transform the code of a Python-based Al inference
system into a GSN. The Al inference system contains approximately 8000 lines of
code. Using our Trusta tool, we generated a GSN with 34 nodes representing the
inference steps, which took 8 minutes to complete. Through this process, we clearly
express the code’s goals, logic, and related test cases.

Step 1: Generation of Function Call Graphs. First, we generate the function
call graph of the Al inference system, where each node represents a function and
edges indicate the call relationships between functions. This helps to reveal the
dependencies between the system’s modules. The function calls starting from
the main function are shown in Figure [3

Step 2: Filtering of Function Nodes. After generating the function call graph,
we filter out the function nodes that are not related to the core functionality
of the AT inference system. This simplifies the graph and focuses on the key
parts of the inference process. The filtering rules (FUNCTION_IGNORE_
KEYWORDS) are obtained by fuzzy matching function names using configu-
ration files, as shown in Listing [J] In actual projects, this configuration should
be organized according to the project’s specifics and the purpose of generat-
ing the GSN. For example, if only the upper-level business code is of interest,
one can filter out low-level library functions unrelated to the business or set
a whitelist (FUNCTION_NEED_KEYWORDS) to include business-related
functions. The result of filtering the function call graph in Figure [3] is shown
in Figure [l where the structure is simpler and contains only the desired con-
tent.



Z. Chen, Y. Deng, W. Du

1156

|eod

[qo~ jspow
19b°[9poI3juT’|ap
owr’ Jajurjes 1a4ul

|e0D
<dwodIp>"|3p
owr Jjurr|jes aajul

LY

41pT |]Ppow” uo
ajewradgolulpy e
do olunwrjjea” aa4ul
1T

dizun-sadgor
do olunwrjes>” uajul

|eos
209 ]

n_- -l#-h“’“hw*-h 1u
A9 Iajur|es aajul

nurT aadoolulp i
do olunwrjjes>” 1ajul

u

1a9ursbewr Iauy
S

puy

€C [44 o1 . =
pli- DUy pUY, pUY
I
[2powr1xa1u0>
= POWRJUT 2P
owr Asjurjes> 24Ul
61
1e09 1209 1209
Aewe o ojur u |eos T
17 Ploysaay1T|2qe| D os[Cjepow assedD BO['[SPOWJBJUT’'[3P  ulT *[SPORWJBJUT’|3p
2XJIJUT IBXD AB4Ul IXJI2JULDIXD J4uUl owr asjurjed> s24ul owr aajurr||es” asjul
ST ve 8T L1
pur pu Pl U
T
[CL5)
—u =
9X3I2JUrIaXaJajul
ST
EF'-,.’vl_lll.I\l.lE«
1209 120D =
a1p” sabe 151 abew!
wi dwy 1e3prabew  —oyTynsasTabiawru
42JurabewnrTiajul  ospisur uosiajul
8¢ 1T
DU Pl pUY:
[EE5)
T |1ep "ebew
Tiajurabewi1ajul
6T
wmfnll,llll_‘\llu.?
1209
TTulew T

(G55
— -abew

1eos
1~ u

Osgasjur uoS[ aul

T1

T E— UL

Jumop-iadQo!
do olunwr e aajul

EL5)
T "awn | pas
1182 12jun
€

8

JuiTpeojumop-abew
T4a4ur-abewr sayu

9

Generation of Function Call Graphs

Figure 3. Output of Step 1



Enhancing Large-Scale Code Understanding Through GSN and LLMs 1157

AW N e

"FUNCTION_NEED_KEYWORDS": [

1,

"FUNCTION_IGNORE_KEYWORDS": [
"InferEvent.info", "MinioOper.unzip_file",
"MinioOper .make_one_model_dir",
"InferImage.__del__", "ETATimelIter.print_info",
"ElapsedTime", "__main__",

"infer_model.<dictcomp>"

Listing 2. Configuration file for function filtering

Step 3: Natural Language Transformation using LLM. We use LLM to an-

alyze the function nodes and their code content, generating natural language
descriptions for each function, as shown by the green nodes in Figure f] Ad-
ditionally, we generate relationship descriptions for the parent and child nodes,
i.e., strategies in the GSN, as shown by the blue nodes in Figure [f] This helps
us identify sub-goals and link them to higher-level goals.

Step 4: Contextualization of Constructors and Initializers. In this step, we

transform constructors and initializer functions in the code into context nodes
in the GSN framework. These nodes provide background information for the
goals. Some nodes in Figure [f] are transformed into descriptions, becoming con-
text information for their parent nodes, as shown by the white parts in nodes
2, 6, 14, 16, and 19 in Figure [f} This step further simplifies the overall graph
structure without losing its original expressiveness.

Step 5: Integration of Test Cases as Evidence Nodes. We integrate test cases

into the GSN graph as evidence nodes. Test cases provide verification of whether
subgoals have been achieved, ensuring that the inference system functions as ex-
pected. By scanning the content of the test cases, if the test case covers nodes
(functions) in the GSN, it is attached as evidence to the corresponding node
as a child node. The yellow nodes in Figure [7] are the newly added test case
nodes. For simplicity, we only retained the main nodes (green goal nodes) in
the figure, hiding auxiliary information (blue strategy nodes and white context
information).

Step 6: Addition of Assumptions and Justifications. Finally, we can man-

ually add assumption and justification nodes based on the needs of the GSN
graph’s readers. Assumptions represent the premises for goal nodes, while justi-
fications explain the reasons for choosing certain strategies or design decisions,
enhancing the logicality and completeness of the GSN graph.

For another case study of our tool applied to cryptography code, see Appendix[Al




Z. Chen, Y. Deng, W. Du

1158

|eon

[go~ |apow

186’ |sponsjur’|ep
ow Jajurr|es” Jajul

1e09

3y |l2pow peo
Jumop-iadgolui-1a
do orunwr|jes1ajul

1209

yui—_aadoolulpytie
do ounw-jjes"aajul

£T (174 L
Py puy ply,
L
1eoo
|epow 3xa3uod
TMUI'|opOoWIBJUT PP
ow’ Isjurjjes isjui
6T
puy
|
20D |eon = [eon
Aevie"o ojur—u |0 1]
1 ploysaiyy [aqe|2 os[ |spow esied> pEO|’ [epOWI3juT’[op ul-_"|epopwlisjur|ep
aXxJJajur-Isxa Jajul 3XJIBJUI IBX3 Iajul owr I3jult||ea” Jajul ow Jajurr|jea” iajul
st L 44 8T LT
pU puY: pU Y
|eon
TauT
ax3lIajur daxs  Iajul
ST
9._<’,|’l_.l||-||||.up< =
_ 1229 |e0D =
J1p~sabe 1si|—ab6ewn

wi— dwy 1eap-abew
H‘_U&—_H.UUNE _|‘_ﬂh=_
8¢

pUv.

0} 3nsai abiawru
osrisjur-uosi—1ajul

LT
pUY.

w0} 3si_=bewru
osrisjur-uosl 1ajul

puy

|eon

~ jyuir_-sbew
I49jur-ebewi 1ajul
<

puy

|09
2|y peo
Jumop-iadooiul 12
do~olunwrjjes1ajul
8

Dl

|eon

sabewi— 13
jur_peojumop-abew
118jur-abewr 1ajul

9

pliy
Ieon
Tauru
osgiajur-uosisyun
TT

puYy

: Filtering of Function Nodes

Figure 4. Output of Step 2



1159

Enhancing Large-Scale Code Understanding Through GSN and LLMs

“sy—abewy
ou3 u1 aBewn yoes 01 spy
PpuE 5212053423 uBIssY 67

-42pjo; paddizun
343 03 y3ed 3y3 uan3aa pue 4
dizun *apy [apows e peojumoa 0Z

e
“adAy paypads ay} uo
paseq 12alqo |spow 2y 199 £7

s

1203
~aBes015 OTU wosy oy fopow
< Gurzzsa0ad pus Guipsoumop
49 3pow =30 & szyeqIT 6T
Py
I

+adAy pue sweu |apow papiaeid ay3 Suisn
Ai0352.1p payads & wouy [apow ay3 peoj pus azi)
“0u 31 pue ‘popeo) ApeaJ|e S1 [poL B J PBUD BE

-
|

|05 =
“sanjen ploysasy; Jaddn

243 Peaa pue uonewojul

1202
NOSC [2pow 2y3 35id b7 “[Ppow paymads € peot 81

1eos
~uonewangur papitosd
3 Y 123090 33 IzenIL £

Asmens

“Juana pue 1xayued uamb
243 yim 323090 3y3 3ZERINT 2T

sabew; Asesodway sy 12210 8T

243 u1 2Beun yoea 03 Spjoysaiy pue

|en ploysad

(ot D e et i T o e o e i e

“s3ynse oy uaniad pue
|spow payi>ads & Buisn sabeuw)
0 uoHEdIISSR]3 3Y3 34uT 9T

—

53 |nsas uoREyISSEP Y3 SWAMa U UoRRUN)

.Aaipsse)

“s3nsa1 sy uangas pue
109 [opow paydads e Buisn sebewn

“syaed aBew: 243
Agnpduwns pue 351 3Bews 3y3 R =
Synsas 32uaiaguy ay3 364N LT -

40 UOREIHSSEIF I 4TUT BT

uans pue xa3ues uINE
24 yam 330q0 a3 3zyenul 6T oy

“[Spow usMIb & 40 sizpBweed
jeos s2ads 23epdn pue uonew.ozur

aBeun sy jo Ados & 3jEsa) £T

Aeens

Abmiens “Ispow yaes

0§ ssejowesed parepdn yiim uogewoyul Bew) 243 Jo

Ado3 e 512013 03 simewesed [spow oy3 yBno. Sresen

‘3Bews yIee 40} PUE 35I| SBEWI SU3 YBROYS 3R TE
™

=)
“uonewojul

2ewy Bujpuodsaios

a12y3 pue sjapow jo Aseuondip

JusAs pue jxajun3 USAIE U3 YIIM

oo

“y3ed =jy e20]

pue uoneso poynads
=i € peoumoa §

oty

1

Asmens

~saBeun a3 30
uopew0ju; pue Syjed e30] 3u3 uteIGe 03 3|y UOSE U
sesi2d 1 “Ajjeuts “s3p|o} = oyul 2yt diz 3 Jo S
sauny spy~dizun o3 sssn 3 e
2ds 543 oy S|y uost pue diz s

uos{ pue diz pasnbas 2y J1 IR 541 UORIUR) BUL OF

i
1

1o
J— [ p——]

‘ ‘erep
62wt 533304 pue peojumo o

= 03 2wt 30 351 © eAUGD TT ~ s
———

*Aiopaaip

Aserens

“Asoysaiip sabew

Aueioduwiay oy sea pue sy Sbews 2y yUM S3YNSe 23uBsBju gy 64w
“|3pow y2ea buisn SaBeW Jo UOHEOYISSE[D Sy Japul ‘S[APOU 40 ARUORIP
© 01 151 oBew oy 1oAUO> ‘erep obew owy 539304 pue peojumoq 6T

“da3s yoea doj awn pas:
au3 yam Buoje syjnssa s3ussajul

2y3 Bujuangas ‘sabewy jo yjeq
& uo Sdusisyu BBewn wiopsd T

I
Jusna pue 3x23u0> uanb
343 yam 3330q0 343 el TE

Natural Language Transformation

Figure 5. Output of Step 3



Z. Chen, Y. Deng, W. Du

1160

{)

£ s

oo -sapioy pedarzun

24k payrads a3 uo =15 03 red =4 uamas pus

peseq 399qo [9pow 23 IeD £z dimun ‘el [3pow € peojumoq 0T

—

TR G A e S i

uopeusioy pa
Lm 93100 ay) 27

*aBe4035 OFUIN w04
© Buissas0ud pue bu
Aq [3pous xajuos € 52
piv

Abmeas
“adA pue sweu [2pow PapIACId Bu3 BuIS A4033341p PaLDadS € 104 [PPOL
S peo] pue szijenIul Jou 1 pus ‘papeo] APEsi[e SI [3POW B J1 PIYD BE

{3

y
0 1205 1
e “sanjen ployssays saddn
asiTaBewrTiau pue ‘pjoysan samoj AoBajes o
343 ur aBeun Y323 o sploy=ag St pens pus uoneuLISUL S

pus saricBeies ubissy ST NOSC [2pow =t ss12d $7 “[opow payads & peot 51

-

Avmens
“eseiep
o Sy et
3w sbewn yses
KioBayes 1oe e 03 uoriUsIO}al NOSE 53t 254ed Yjopous payioads o4 PEoT €€
iy
i

{

1UBAS pUE
i PaIgo 2y X
3 {3
won 1000
“synsss oy vanes pue [ g —
Jpow payi>eds = uisn sacewr s1jisbds s3epdn pus ueneuoL
o uonesysseR a3 2T 5T SBews sus 4o Ados & saEei £1
oy
i i

Abmens Abzeas
“5}InS94 uonEdYISSE BU3 SUANIA UBY] UO Uy “[apows e soj simewiesed
[9pow 313 Buisn seBew! UBAID Sy3 UO UOREDISSEP Sy tOpAd OF Patepdn yam uogewoyuy

_ 1511 90eUn 213 yBnoa S1eIRT TE

spjey uost pu
aBewn a3 Jo Ados & 3jeais 1 oY 15 uny 21 0F

O

1000
“ped apy (220
43 uanyas pue uoneo) payypads
& wayy 3py & peojumag §

- WBAZ pUE
LA Pafdo 31 3z {

0 1955 )

{} ieas -uoneaIOzuL ~seBewn 243 30 voREwsoHI

0 “saed sBewn s “synses s wanye pue sewn bupuodsesios  pue syped [£20)] 213 Bunireiues

‘Aaopeap  Apjdwis pue 3si bews sl (M [2pow payiaads € Guisn saGeu 41003 pue Spopouw 40 Aseuorip Aaeuonoip e Guinas ‘eiep

ssbewn Areiodwal it 463D Gz S3nsea SauSaejul Y 3BHH LT 0 uonEsyIssep sy sejul T €01 sobew jo 151 & LeAUCD T 9Beun ssed0.d pue peojumod ©

—

ABzeas
“Auozaaitp sebew
Aaa0dwisy ay3 Je3P PuE ‘151] 3DELI B} UM SYNSBA 34D DL BB

L"U3AB PUE 1X31U0D UAID BUL UM 13[q0 317 32)

JUBAB PUE J431U0D UAID 31} U3IM SDUEISU] SSE 3U] 37

1won
“da3s yaes 404 awn pasder@ 243 yam Buoje synsas
uadagus oy 6 “sabew jo ya1eq waopsag ¢

Figure 6. Output of Step 4: Contextualization of Constructors and Initializers

6 EXPERIMENTAL SETUP AND RESULTS

6.1 Experimental Setup

We designed an experiment to evaluate the impact of using GSN generated by
LLMs on programmers’ understanding and maintenance of code. We selected two

duction environment, and the QEMU [27] project, a large open-source C language

projects for the experiments: a Python-based Al inference system running in a pro-
software.

QEMU is a generic machine and userspace emulator and virtualizer,

In our experiments, we

with a codebase that spans millions of lines of code.

We used our tool (Trusta) and

spent 76 minutes generating a dynamic function call graph-based GSN with 212

used QEMU to simulate a SabreLite development board for loading Linux ker-
nodes.

nels, demonstrating one of its many capabilities.



1161

Enhancing Large-Scale Code Understanding Through GSN and LLMs

1209

21" Jab6RURW|2POWISD |

1209
‘sanjea

pPloysaayl s2ddn

peo| [2pow 1S
peo| [2pow 1S 21 1a6RUR K [2POWISa |
EELEIEIRTEN TN | 19580159 £F
1958)1S9] tE >
1
P

3|1 [2powWw peojumo
P 1591 12d QOIUINISD L
195eD01S9) 7€

10

Ieos

|0 *19p|oy paddizun

*adAy paynads
a1 uo paseq 1alqo
[2Pow 241139 £¢

%«.l’l'll_\ll\ll\l%{

120

*abeioys

OTUIW wolj o[y
|2pow e Buissadoid
pue Buipeojumop

Aq |opow

IX2]U0D e 37ZIeniu] 6T

peo| |2pow 1S
195e)152] 1€

k.oll’.’.J||I\|\|.u_U<

“1si2bewr12jul
31 ui abeuwn yoea

01 Spjoysa.yl pue
sali0621ed ubissy G

pue ‘pjoysaayl J2moj|
‘A1obaned ayy penxs
pue uonewaoyul NOSC
[2pow 3y Isied ¢

1209
‘|2pow

p

puy.

—
leon
*S]INS21 241 UIN}ad
pue [apow payidads
e fuisn sabeuw
Jo uonesyisseR
a1 I2juy o1

puy

|
120D |eon
*syped *$1INS24 Y1 UIN1AA
209 2bewn aya Ajypduns pue [opows payads
“Atopa.ap pue 1s1] 20ewi aya e Buisn sabeu
sabew Atetodwal  yum S NSl DUIRJUL j0 :o._umu_u_mwm_m
241 1e3)) 8T a1 ab1ap /T

Py Py py

QY3 24uT BT

1S
Jpow 017 1s1| 26ewr
1591°21ND9XJI3JUTISI |
19582159 0

[ELE]
‘]opow uaAIb

e 10} s1a1pwesed
21D3ds s1epdn
pue uoneuojul
abeun ayy

Jo Adod e a1eau) €1

_of,v,:l_llullu\..%(

|eod

‘uoneuwliojul

abew buipuodsaliod
1121) pue

s|apow jo Aieuondip
e 0] sabeun

40 151] B LISAUOD T

a1 01 Yaed 2y winal
pue ‘q1 dizun ‘a1
|2pow e peojumoq 0T

2|y~ peojumo
P 1591 12d QOIUINISI L
195801591 6T

P
[LLE]
“yred a1y |ed0] 3y}
UIN121 pue uonedo|
paynads e wouy
2|j e peojumoq 8

ur

_u_<
[LLE]
*sabew ayn jo
uoneuuojul pue syjed
[e20] 2y1 BuluieluOd
Aseuondip e buluanial
‘ejep abewi ssadoad
pue peojumoq 9

+—

1209

“da1s yoes 10y awn pasdeja

241 yum bBuoje s3 nsa. DUI4uUL
a1 Buluanyal ‘sabewn jo yojeq
2 U0 2ul13jul abew wiopad ¢

p

Integration of Test Cases as Evidence Nodes

Figure 7. Output of Step 5



1162 Z. Chen, Y. Deng, W. Du

The experiments were divided into six groups, with each group consisting of
10 participants, as shown in Table [T}

Category Traditional Method Enhanced Method

SPF 10 participants 10 participants
SP 10 participants 10 participants
JP 10 participants 10 participants
Note:

SFP = Senior Programmers Familiar with the Project;
SP = Senior Programmers Not Familiar with the Project;
JP = Junior Programmers Not Familiar with the Project.

Table 1. Classification of experiment participants and methods used

Traditional Method: Programmers received only the code documentation, source
code, search engines, and LLMs.

Enhanced Method: In addition to the materials provided in the Traditional Me-
thod, programmers in this group were also given GSN diagrams generated by
large language models.

The participants included programmers with varying experience levels, some of
whom were familiar with the projects. Their task was to understand and maintain
the code within a limited time frame, which involved fixing a known bug and adding
a new feature. Task 1 required debugging QEMU’s initialization flow by identifying
and removing an erroneous return statement in the gemu_init_main_loop function,
ensuring that the VM launch process completed successfully. Task 2 involved adding
a post-initialization output to the QEMU startup sequence, where participants had
to print the string “Trusta” after the initialization, ensuring the message appeared
via the debug console or log without interfering with the core emulation logic.

The large language model used in this experiment is Llama3-70b [28], the state-
of-the-art open-source model, which was utilized to generate the GSN diagrams. We
further developed the Trusta tool (https://github.com/AssuranceCase/Trusta)
for visualization, as shown in Figure [, One of the steps in generating the function
call graphs involved using the pycallgraph library [26] for the Python project and
the callgrind [25] tool for the C project.

To quantify the impact of the method on code understanding and maintenance,
we used the following two metrics:

Confidence Level: The confidence level of the programmers in understanding and
modifying the code, rated on a Likert scale (1 to 5) [29].

Task Completion Time: The time taken to complete the specified tasks (in min-
utes).


https://github.com/AssuranceCase/Trusta

Enhancing Large-Scale Code Understanding Through GSN and LLMs 1163

Tree V30 . analysis llm/qem prof-01.dot] - utf-16 -
Fle Edit Prolog Disgram Windows Evaluation Translate StudyCase

HO+ER/BEENY BEOAFRQOR v 3o 5o

=
H
Ss)

NEGEI MG

Figure 8. Full overview of the GSN diagram for the QEMU project

6.2 Experimental Results and Analysis

The results showed that programmers in the Enhanced Method group had signifi-
cantly higher confidence levels and shorter task completion times compared to the
Traditional Method group.

Figure [9] presents the successful task completion times for the six experimental
groups, excluding the two participants in the JP-Traditional group who did not
complete the task within 120 minutes. The tasks involved modifying a single line of
code, simplifying the assessment of completion times.

The Enhanced Method, which included GSN diagrams generated by LLMs in
addition to traditional resources, reduced task completion times across all groups.
The effect was more pronounced among programmers unfamiliar with the project:
in the SP group, the mean completion time decreased by approximately 45 %; in
the JP group, the reduction was about 58 %; and the SPF group saw a modest
decrease of around 23 %. These results indicate that GSN diagrams significantly aid
programmers — especially those without prior project familiarity — in understand-
ing and maintaining code more efficiently. The Enhanced Method also reduced
variability in completion times, as evidenced by narrower interquartile ranges in
the boxplots. This suggests more consistent performance when additional struc-
tured documentation is provided. Despite the simplicity of the tasks, participant
experience and project familiarity influenced performance. SPF participants com-



1164 Z. Chen, Y. Deng, W. Du

Task completion times of different experimental groups

Traditional
Enhanced
80 -
<
Egl l
[}
E
=
c
.
% 40
[=% — —
E
5 :
i L
N 1
20
o
LAIJ

N\ B ~, S N >
I\o({b ,§‘°® ‘\0(:0 -5“00 -\06?’ ’b(\ora
L .M *, o
] L N W3 O
’bb f“’ ,bb /‘9 ) ,<<f
<('\" é{« P & PN §
£
Group

Figure 9. Task completion times across different experimental groups

pleted tasks fastest under both methods, highlighting the advantage of prior knowl-
edge.

After the participants read the tasks, we asked each of them to rate their confi-
dence level in completing the tasks. The average results for each group are shown in
Figure[I0} Participants’ confidence levels varied among the six experimental groups.
Compared to the Traditional Method, the Enhanced Method, which added GSN
diagrams generated by LLMs to the traditional resources, consistently improved
participants’ confidence levels. This effect was particularly evident among program-
mers unfamiliar with the project, indicating that additional structured guidance can
significantly enhance confidence.

The data indicate that the programmers in the Enhanced Method group ex-

perienced a significant increase in confidence level and a notable decrease in task
completion time.



Enhancing Large-Scale Code Understanding Through GSN and LLMs 1165

Confidence Levels of Different Experimental Groups

4.7 Traditional
4.5 Enhanced
4.0
41 38
B
o 32
=
— 3
%]
>
]
—
8 21
& 2
o
Y
c
Q
o
1 -
o] T T T T T T
> 23 > ~
g 2 F & \n& ,,O‘PB .\n“lb ,,,o“ab
R ™ K R X Ny
» &5 & &5 » b
,{\'b 4‘ :\"b 8 ,’\"b q
& e g
Group

Figure 10. Average confidence levels of participants across experimental groups

The superior performance of the Enhanced Method group in terms of confidence
level and task completion time is mainly attributed to the clear presentation of code
structure and logic provided by the GSN diagrams and the varying levels of detail
in code summaries generated by the LLMs. Specifically:

Confidence Level: The GSN diagrams and the natural language descriptions gen-
erated by the LLMs helped programmers better understand the overall archi-
tecture and specific implementations of the code, making them more confident
in making modifications.

Task Completion Time: The summaries generated by the LLMs reduced the
amount of code programmers needed to read, allowing them to understand the
code more quickly. Additionally, the GSN diagrams enabled programmers to
quickly locate the parts of the code relevant to the task, further reducing the
time needed to search the code, thus allowing them to complete tasks more
quickly.

We conducted a survey on the participants’ satisfaction with the Trusta tool,
and 88 % of users reported being satisfied. However, feedback highlighted areas for
improvement, including adaptive scaling, GSN diagram aesthetics, and the need



1166 Z. Chen, Y. Deng, W. Du

for progress indicators. These insights are crucial for Trusta’s future development,
emphasizing the importance of user-centric design for the tool.

These results demonstrate that GSN diagrams generated by the Llama3-70b
model can significantly enhance programmers’ understanding and maintenance effi-
ciency, proving to be highly practical.

6.3 Visualization Results

To illustrate the effectiveness of the GSN diagrams more clearly, we provide screen-
shots of the GSN diagrams for the QEMU experiment. Figure [§] is an overview of
the entire GSN diagram in the Trusta tool.

Figure [[1] illustrates the top-level structure of the GSN diagram for the QEMU
experiment, along with the corresponding code and function call graph for compar-
ison.

Figure[I2)shows a portion of the GSN diagram for the QEMU experiment related
to memory management and the corresponding function call graph.

7 DISCUSSION

This section discusses the inherent difficulties we encountered and the implications
of these challenges for future research and practice in software engineering.

7.1 Function Call Graph Generation

One of the primary complexities lies in the initial step of generating a function call
graph that accurately represents the software’s functional structure. This requires
a nuanced understanding of the codebase, as well as sophisticated analysis tools
capable of parsing and visualizing complex interdependencies among functions. The
task is further complicated by dynamically loaded modules and polymorphic behav-
iors, where the determination of call relationships can be non-trivial and requires
advanced static and dynamic analysis techniques, which depend on the capabilities
of the compiler or code parser of the target programming language. Recursive func-
tions generate a connection line pointing to the node itself, reflecting the recursive
state but failing to represent the details of recursive execution.

Static graphs may include unused paths, while dynamic graphs are context-
specific. Both static and dynamic graphs can generate GSN. Each has its pros and
cons: static graphs are more comprehensive but can be overly large and hard to
read, with lower accuracy and efficiency. Conversely, in large systems where only
certain functionalities need maintenance, more targeted dynamic graphs are more
suitable. The downside of dynamic graphs is that they require the system to be up
and running, which increases the difficulty of generation.



Enhancing Large-Scale Code Understanding Through GSN and LLMs

int main(int argc, char **argv)

I
L

[a—

gemu_init(argc, argv);
return gemu_main();

a)

G129
main
G180 G183
gemu_default_main gemu_init
<& <&
b)

G129

Initializes and runs the QEMU
emulator with the given
command-line arguments.

$129

Initializes the QEMU machine
setup through gemu_init and then
runs the emulator's main loop
with gemu_default_main to
facilitate a complete emulation

process.

G180

Runs the main loop of the QEMU
emulator and performs cleanup
afterwards.

G183

To initialize and set up the QEMU
machine, including processing
command-line options, setting up
the memory model, initializing
the main loop, creating devices,
and configuring accelerators.

1167

Figure 11. Comparison of QEMU project’s top-level code, function call graph, and GSN

diagram

7.2 Function Node Filtering

The filtration of function nodes to isolate those critical to the core functionality
of the software introduces another layer of difficulty. This step demands a balance
between comprehensiveness and conciseness, necessitating a deep semantic under-
standing of the code to discern which functions are essential. The subjective nature
of “relevance” in this context poses a significant challenge, highlighting the need



1168

Z. Chen, Y. Deng, W. Du

G136
memory_region_transaction_commit

—

G121
generate_memory_topology

vk//%

G63
address_space_set_flatview

G62

address_space_dispatch_compact

G94

flatview_add_to_dispatch

G64

address_space_update_topology_pass

a)

<

G136

Commits a memory region
transaction, updating address
spaces and 1/O event file
descriptors accordingly.

5136

The function uses external
functions to update flat views of
address spaces, reset flat views,
and update I/O event file
descriptors to commit the memory
region transaction.

ﬁ//\.

G121

Generates a flat view
representation of a given memory
region.

§121

Utilizes external functions to
create and configure a flat view,
register its sections, compact
physical page mapping, and
ultimately return the resulting
flat view.

G63

Updates the flat view of an
address space, replacing the old
view with a new one.

$63

Looks up and sets a new flat view
for an address space, updating
the topology and reference counts
as necessary to ensure consistent
memory management.

G94

G62

Compacts physical page mapping
for an address space dispatch.

Registers sections of a memory
region with a flat view

dispatcher, handling subpages and
whole pages accordingly.

b)

G64

Updates the topology of an
address space based on changes
between old and new views.

pe

Figure 12. Function call graph and GSN diagram for memory management



Enhancing Large-Scale Code Understanding Through GSN and LLMs 1169

for intelligent algorithms that can adaptively determine importance based on the
software’s context and the user’s goals.

7.3 Integration of LLMs

Integrating LLMs for the natural language transformation of code descriptions and
strategies represents a cutting-edge aspect of our methodology, blending the fields
of software engineering and natural language processing. However, ensuring that
these models generate accurate, relevant, and coherent descriptions and strategies
is a non-trivial endeavor. It involves training or fine-tuning models on domain-
specific datasets and continuously validating their outputs against expert knowledge,
underscoring the interdisciplinary challenge of this approach. For some relatively
rare business domain codes, the training data of general LLMs may not include this
domain, potentially resulting in suboptimal performance. In such cases, fine-tuning
or using RAG (Retrieval-Augmented Generation) techniques may be necessary.

7.4 Ethical Considerations

The choice of Llama3-70b over other advanced models for integration into Trusta
is due to several reasons: while other LLMs such as GPT-4 and PaLM 2 can also
perform the corresponding tasks, our approach requires reading a large amount
of code, which is often confidential material within organizations. Therefore, we
selected Llama3-70b, a relatively advanced model that can be deployed locally, for
our experiments.

8 CONCLUSION

We have introduced a novel methodology that leverages GSN and large language
models to enhance the understanding and maintenance of large software codebases.
Our approach addresses the perennial challenges of code complexity, inadequate
documentation, and communication barriers in software maintenance.

The core contributions of our work include the development of an automated
tool that transforms complex code into a GSN framework, providing a structured
and comprehensible representation of the software’s logic. We integrated large lan-
guage models to generate natural language descriptions of code, facilitating better
understanding and communication among programmers. Our unique combination
of function call graphs with GSN aids in visualizing and navigating the structure and
functionality of code. We validated our methodology through experiments on real-
world projects, demonstrating significant improvements in programmers’ confidence
and efficiency.

Beyond these contributions, our methodology has broader implications for both
research and industry practices. By providing a systematic way to bridge the gap
between code and its conceptual understanding, our approach can influence future



1170 Z. Chen, Y. Deng, W. Du

research in software engineering, particularly in automated documentation and in-
telligent code analysis. It paves the way for developing more advanced Al-assisted
tools that can further alleviate the challenges of maintaining large codebases.

In the industry, adopting our method could transform software maintenance
workflows. Enhancing code comprehension and communication among team mem-
bers, it can lead to more efficient collaboration and project management. The in-
tegration of large language models with code analysis tools signifies a shift towards
more intuitive and intelligent development environments, which could become stan-
dard practice in the industry.

Future work could explore refining large language models for technical domains,
developing more advanced analysis tools, and integrating our approach with CI/CD
pipelines and automated testing scenarios. Additionally, expanding the scope of our
experiments to include more diverse codebases and programming environments will
help validate the wide applicability of our method.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under
Grant No. 62472175 and the “Digital Silk Road” Shanghai International Joint Lab
of Trustworthy Intelligent Software under Grant No. 22510750100.

REFERENCES

[1] KELLy, T.—WEAVER, R.: The Goal Structuring Notation — A Safety Argu-
ment Notation. Proceedings of the Dependable Systems and Networks 2004 Work-
shop on Assurance Cases, 2004, https://www.academia.edu/47943884/The_Goal_
Structuring_Notation_A_Safety_Argument_Notation.

[2] SCSC Assurance Case Working Group: Goal Structuring Notation Community Stan-
dard Version 3. Technical Report No. SCSC-141C, Safety-Critical Systems Club, CA,
USA, 2021.

RINARD, M.: Software Engineering Research in a World with Generative Artificial
Intelligence. Proceedings of the IEEE/ACM 46" International Conference on Soft-
ware Engineering (ICSE '24), 2024, doi: [10.1145/3597503.3649399.

[4] KoBAYAsHI, N.—NAKAMOTO, A.—SHIRASAKA, S.: What Is It to Structuralize with
Multiple Viewpoints by Using Goal Structuring Notation (GSN)? International Jour-
nal of Japan Association for Management Systems, Vol. 10, 2018, No. 1, pp. 125-130,
doi: 10.14790/ijams.10.125.

[6] KoBAYASHI, N.—SHIRASAKA, S.: Proposal on How to Use Assurance Cases for
Learning the Mindset to Respect Diversity. International Journal of Japan Association
for Management Systems, Vol. 12, 2020, No. 1, pp. 7-16, doi: [10.14790/ijams.12.7.

[6] NaM, D.—MACVEAN, A.—HELLENDOORN, V.—VASILESCU, B.—MYERS, B.: Us-

ing an LLM to Help with Code Understanding. Proceedings of the IEEE/ACM

3


https://www.academia.edu/47943884/The_Goal_Structuring_Notation_A_Safety_Argument_Notation
https://www.academia.edu/47943884/The_Goal_Structuring_Notation_A_Safety_Argument_Notation
https://doi.org/10.1145/3597503.3649399
https://doi.org/10.14790/ijams.10.125
https://doi.org/10.14790/ijams.12.7

Enhancing Large-Scale Code Understanding Through GSN and LLMs 1171

(7]

8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]
[19]

[20]

46'" TInternational Conference on Software Engineering (ICSE’24), 2024, doi:
10.1145/3597503.3639187.

BRAGDON, A.—ZELEZNIK, R.—REISs, S.P.—KARUMURI, S.—CHEUNG, W.—
KaprLAN, J.—COLEMAN, C.—ADEPUTRA, F.—LAVIOLA JR, J.J.: Code Bubbles:
A Working Set-Based Interface for Code Understanding and Maintenance. Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’10),
ACM, 2010, pp. 2503—-2512, doi: [10.1145/1753326.1753706.

SzAaBO, C.: Novice Code Understanding Strategies During a Software Maintenance
Assignment. 2015 IEEE/ACM 37*" IEEE International Conference on Software En-
gineering, 2015, pp. 276-284, doi: [10.1109/ICSE.2015.341.

AL-SA1YD, N. A.: Source Code Comprehension Analysis in Software Maintenance.
2017 2" Tnternational Conference on Computer and Communication Systems (IC-
CCS), IEEE, 2017, pp. 1-5, doi: 10.1109/CCOMS.2017.8075175.

KUHLMANN, E.—HAMER, S.—QUESADA-LOPEZ, C.: Software Visualization Us-
ing the City Metaphor: Students’ Perceptions and Experiences. 2023 XLIX
Latin American Computer Conference (CLEI), IEEE, 2023, pp. 1-10, doi:
10.1109/CLEI60451.2023.10346099.

SBruzzi, J.I.: Callcluster: FExtraccién, Andlisis y Visualizacién de Callgraphs.
Jornadas Argentinas de Informaética e Investigacién Operativa, 2021, pp. 54-68,
https://sedici.unlp.edu.ar/handle/10915/141020 (in Spanish).

KnaALOO, P.—MAGHOUMI, M.—TARANTA, E.—BETTNER, D.—LAVIOLA, J.:
Code Park: A New 3D Code Visualization Tool. 2017 IEEE Working Conference on
Software Visualization (VISSOFT), 2017, pp. 43-53, doi: 10.1109/VISSOFT.2017.10.
OBERHAUSER, R.—SILFANG, C.—LECON, C.: Code Structure Visualization Using
3D-Flythrough. 2016 11** International Conference on Computer Science & Educa-
tion (ICCSE), IEEE, 2016, pp. 365-370, doi: 10.1109/ICCSE.2016.7581608.
VOORHEES, J.: Primitive: Immersive Development Environment. 2023, https://
primitive.io/.

LAwLER, E.—GILPIN, K.—BYRNE, D.: AppMap: Visualize Your Runtime Code,
Identify Problems, Find Solutions, Before Production. 2023, https://appmap.io/.
FucHs, S.—AMOR, R.: Natural Language Processing for Building Code Interpreta-
tion: A Systematic Review. Proceedings of the 38" International Conference of CIB
W78, 2021, pp. 294-303, http://itc.scix.net/paper/w78-2021-paper-030.
OPENAIL: GPT-4 Documentation. 2023, https://platform.openai.com/docs/
models/gpt-4.

GOOGLE: Introducing PaLM 2. 2023, https://ai.google/discover/palm2/.
DespoTOU, G.—KELLY, T.: Design and Development of Dependability Case Archi-
tecture During System Development. Proceedings of the 25" International System
Safety Conference (ISSC), 2007, https://www.researchgate.net/publication/
266472547 _Design_and_Development_of_Dependability_Case_Architecture_
during_System_Development.

MATSUNO, Y.: Design and Implementation of GSN Patterns: A Step Toward Assur-
ance Case Language. Information Processing Society of Japan Online Transactions,
Vol. 7, 2014, pp. 59-68, doi: [10.2197 /ipsjtrans.7.59.


https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1109/ICSE.2015.341
https://doi.org/10.1109/CCOMS.2017.8075175
https://doi.org/10.1109/CLEI60451.2023.10346099
https://sedici.unlp.edu.ar/handle/10915/141020
https://doi.org/10.1109/VISSOFT.2017.10
https://doi.org/10.1109/ICCSE.2016.7581608
https://primitive.io/
https://primitive.io/
https://appmap.io/
http://itc.scix.net/paper/w78-2021-paper-030
https://platform.openai.com/docs/models/gpt-4
https://platform.openai.com/docs/models/gpt-4
https://ai.google/discover/palm2/
https://www.researchgate.net/publication/266472547_Design_and_Development_of_Dependability_Case_Architecture_during_System_Development
https://www.researchgate.net/publication/266472547_Design_and_Development_of_Dependability_Case_Architecture_during_System_Development
https://www.researchgate.net/publication/266472547_Design_and_Development_of_Dependability_Case_Architecture_during_System_Development
https://doi.org/10.2197/ipsjtrans.7.59

1172

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Z. Chen, Y. Deng, W. Du

Maksmmov, M.—FunG, N.—KokALy, S.—CHECHIK, M.: Two Decades of Assur-
ance Case Tools: A Survey. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F.
(Eds.): Computer Safety, Reliability, and Security (SAFECOMP 2018). Springer,
Cham, Lecture Notes in Computer Science, Vol. 11094, 2018, pp. 49-59, doi:
10.1007/978-3-319-99229-7_6.

M@LLER, A.—SCHWARTZBACH, M. I.: Static Program Analysis. Technical Report.
Aarhus University, Denmark, 2024, https://users-cs.au.dk/amoeller/spa/spa.
pdfl

BaLL, T.: The Concept of Dynamic Analysis. Vol. 1687, 1999, pp. 216-234, doi:
10.1007/3-540-48166-4_14.

E1SENBARTH, T.—KOSCHKE, R.—SiMON, D.: Aiding Program Comprehen-
sion by Static and Dynamic Feature Analysis. Proceedings IEEE International
Conference on Software Maintenance (ICSM 2001), 2001, pp. 602-611, doi:
10.1109/ICSM.2001.972777.

WEIDENDORFER, J.: Sequential Performance Analysis with Callgrind and
KCachegrind. In: Resch, M., Keller, R., Himmler, V., Krammer, B., Schulz, A.
(Eds.): Tools for High Performance Computing. Springer, Berlin, Heidelberg, 2008,
pp- 93-113, doi: 10.1007/978-3-540-68564-7_7.

KaszuBA, G.: Python Call Graph. 2016, https://pycallgraph.readthedocs.io/
en/master.

BELLARD, F.: QEMU, a Fast and Portable Dynamic Translator. Proceedings
of the Annual Conference on USENIX Annual Technical Conference (ATEC’05),
USENIX, 2005, pp. 41-46, https://www.usenix.org/legacy/event/usenix05/
tech/freenix/full_papers/bellard/bellard.pdf.

META: Introducing Meta Llama 3: The Most Capable Openly Available LLM to
Date. 2024, https://ai.meta.com/blog/meta-1lama-3/.

JosHi, A.—KALE, S.—CHANDEL, S.—PAL, D.K.: Likert Scale: Explored and
Explained. Current Journal of Applied Science and Technology, Vol. 7, 2015, No. 4,
pp. 396-403, doi: 10.9734/BJAST/2015/14975.

GAYNOR, A. et al.: Cryptography Is a Package Which Provides Cryptographic
Recipes and Primitives to Python Developers. 2025, https://github.com/pyca/
cryptography.


https://doi.org/10.1007/978-3-319-99229-7_6
https://users-cs.au.dk/amoeller/spa/spa.pdf
https://users-cs.au.dk/amoeller/spa/spa.pdf
https://doi.org/10.1007/3-540-48166-4_14
https://doi.org/10.1109/ICSM.2001.972777
https://doi.org/10.1007/978-3-540-68564-7_7
https://pycallgraph.readthedocs.io/en/master
https://pycallgraph.readthedocs.io/en/master
https://www.usenix.org/legacy/event/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
https://www.usenix.org/legacy/event/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
https://ai.meta.com/blog/meta-llama-3/
https://doi.org/10.9734/BJAST/2015/14975
https://github.com/pyca/cryptography
https://github.com/pyca/cryptography

© ® N e G A w N e

Enhancing Large-Scale Code Understanding Through GSN and LLMs 1173
A CASE STUDY: TOOL USE IN CRYPTOGRAPHY CODE

In this appendix, we present a use case of our tool by applying it to a Python
code that utilizes the cryptography library [30] for encrypting a message. The
cryptography library contains approximately 70 000 lines of code. Using our Trusta
tool, we generated a GSN with 53 nodes representing the data encryption steps,
which took 12 minutes to complete. The purpose is to transform the code’s execution
process into GSN, thereby aiding in code comprehension and helping programmers
explore the encryption process of the cryptography library.

from cryptography.fernet import Fernet

def main():
key = Fernet.generate_key ()
f = Fernet (key)

token = f.encrypt(b"A,really secret_message.")
if __name__ == ’__main__"’:
main ()

Listing 3. Example code using the cryptography library

Using our tool, the above code is converted into a high-level GSN diagram, as
shown in Figure [[3] This diagram provides an overview of the encryption process
implemented in the code.

In Figure[[3] the top-level goal is “Generates a secure encryption key and uses it
to encrypt a secret message”. This is supported by sub-goals such as “Generates a
random, URL-safe base64-encoded key”. and “Encrypts given data”. The Strategy
(in node 3) provides information about the cryptography library and the methods
used. Figure [I3 elaborates on the sub-goals by mapping them to specific code
statements and functions:

Node 3: The main goal to encrypt a message is achieved by the main() function.
C1 in Node 3: Initializing the cipher is done through Fernet (key).

Node 4: Generating a key is performed by Fernet.generate key().

Node 6: Encryption is executed by f.encrypt().

For a more in-depth understanding, the tool generates a detailed GSN diagram
depicted in Figure [[4 This diagram breaks down each step and shows the interac-
tions between code components and functions.

In Figure[T4] the goal Node 8: “Encrypts data from parts, including the current

time and initialization vector, and returns the encrypted result” is achieved through
several sub-goals:

Node 8 - Node 10: Checks if a given value is of type bytes and raises an error if
it is not.




Z. Chen, Y. Deng, W. Du

1174

{, wyyuobje pue Asy uaalf e yum 128(qo DYWH ue S8
‘opow pue wyyioble papiaoid 2yl yum 123[qo saydid e 5@
*,10103A uopezieniul usAlb e yum 13[go ue ss:

‘A9 o1ydeaboydAid e yum 123[qo ue ss

a3 subis uayy pue ‘Al paplaoid e yum spow DGO ul S3v Buisn eep papped sy
s1dAidus ‘sszis »o0o|g Jus)s|suod ainsus 0] bulpped sasn uolpuny syy, :,Absjens,

sped woly JdAnus Jouleqjowey AydeiboydAn

*}nsaa pardAnus ay) suinial
puE “10199A UONEZI[ENIUI pUB 3w JuaLnd 3y} uipnpul ‘spied wouy ejep sidAnul g
P
1

{. e1ep sy3 1dAIdus 0] BWI} JUSLIND
33 yum Buoje 31 S3sN pue 10193A UCHEZIRIIUl WopUel B s3jeiausg, @, AB31ens,

aw je ydAnusiaulejeuwayAydeibold D)

1209
2w} 2ypads e je eyep uaalb sydApug 7
puy
|

{,'uondAidus 81ndas 8INSuUa 0} uonPUNy sWwn e 1dAIdus
a3y Buisn awn JuaLnd ayl e eyep auy sidAnug, @ Abaiens, {3
JdAnusiswa] 1pule)AydelfoydAn

1eod 1205
.ENﬂ:uEUﬂnP.u:wu .>U-___U_H.s:wuv=umma_m¢&mh_¢:.Eov:ﬂ&mwumhw:vwv

J\
{,sAsx uondAious

pue Bujubls ojul 31 Buliyds ‘Asy usAIB © ylm P3[qo 13Ul B Sazljelul, 1,12,

’ . =bessaw 1a109s ay] 1dAuDus AjBIndes 0] suolpuny

uondAinus pue ‘123[qo 18uia4 3yl Jo uonezieul ‘uonessusb Asy sasn, :,Abslens,

ujeLUlRW B)SY

|eod
*abessaw 124095 e 1dAidus 01 11 595N pue Ay uonldAIDU3 24nN23s B S3IBIBUID £

Figure 13. High-level GSN diagram of the encryption process

Creates a padding context for cryptographic operations.

Node 8 - Node 13

Updates the internal buffer with new data and returns the

Node 8 - Node 15

padded result.
Node 8 - Node 18

Finalizes the encryption/decryption process by padding and

returning the result.

Node 8 - Node 30

Initializes and sets up an encryption context.

Updates a cryptographic context with given data and returns

Node 8 - Node 40

the resulting encrypted data.



1175

Enhancing Large-Scale Code Understanding Through GSN and LLMs

{

suopessdo siydeiBoidiss

Inpouw 6ulp

u1q-1ewzey Aydei6oldild

3U1 Woiy uomouny
ussseTjssuado™ au3 seznN,

{

Asesssosu

1 63 uoREdRUBYINE
ue bunessush

ose BIyM ‘sI0LB
jenus3od bujbeuew
pue suoipuod
Buasse ‘sssoo.d

*suopeledo 15502do sezynN

owdeiboydAn

! a3 szijeuy 0y

! ¢ | suoneisdo tssuedo

{ ~wopasse] an, :.Absiens,

."15861p ybnoays uenesado :
U 3U3 3A3LI31 pUB |nJsse00ns Buunsue
X303 IYIWH BUY B[1yM 3XIU0D
szi/euy 01 Saadosd YW 24 21epdn
oeds-wuioble 01 Aseiqy 1ssusdo

pue 'suoniasse Due soeu3Ul =

‘suopeszdo

suanyas pue uonesado
OVHH 2y SeTIjeUL £5
By

i
{
Aubaauy
e1ep buunsus
‘uonesado SVLH U1
815/dwod 01 uoPIUN)
IeuIa® B2IfEUl 3U)

(5]

“15961p Bunjnssa sy3
sunyes pue uonessdo
OVMH 243 SazIjeul 7§

uonpuny ubaioy.
sesn, 1, ABe1eAS,
3

1202
-e3ep papinosd

S yum 30>
SV 2u1 s21epdn

e3Ep URIUIEW
o3 31 bunepdn aJojeq
E1ep 1ndu) sx22LD
PUE 1%31U00 DVINH
pllRA B saunsu3,,

1203
-erep pepinoad

S yum 30>
VKK 3U3 531epdn 05

Juswabeuew bey
pue sioua Duljpuey
‘uonesado uondAiap

~pxeiu0d
au3 bupesed
pue ‘syibus e3ep

'sbe3 uogesnuaLIne
BuibeUew

200
P —
pue sio.3 Guijpuey
‘uonesado uondinep
40 uondAnus

Pl

{

uwoy paadAsous
5/ ujeago pue exep
Indul au ssa00.d
Al21n33s 03 UOIPUNY.
o1l =1epdn au1
sasn, 1,ABa1ens,
¥

"oy desbordAs
e sa3epdn T+

{

JIndano

pedAbbuz 241
2onpasd 01 1x@IUCD
owdesboadi 203
031 31 se3epdn pue
Jayng e sadedaud,

pa1dAsus bunnsas
243 suinz2s pue e3ep
UM Y pu0d
SwdeibodAn

{

Buissea0.d exep nysseoons

: AB2tens,

b3

jeos
“poua|

Indino 230} 3y} SUINJR4 pue elep uAI6
Y1 P dydesbordAn e sajepdn zy

{
uopesRde
pue “epow 4audi>

“puaPRq UBAID
243 uI EIU0D
u_ﬁsmﬁ&cu

“aydp “pusrpeq
papinoad auy

Buisn “xequ0d saydi>
10 uondAnus qyIv
Se yons “xau0d

[eos

~sasodand Buipped

{ 40y 2215 paynads

uonerado ® 30 22uanbas

pue ‘apow “aydp 21Aq @ s31e:3uB9 7
“pusyoeq usnIb S

3Y3 YHM PRI I
u;.n_Emoﬁtu =

{

usgpuny Bupped

jeuisyxe ue bugsn

ysyqeIss 03 uogouny JByng 3ndu; 5
pewooseydp~| | 3y spusdde peeezis
st bujsn peU0> 61uppEd pauinbe.

wdeiboydAn s ssEnled,

o1ydeiBoydAn Jo adky
Sypads e sazilenuul,

Abajeng,
3

je00
“uonessdo e
Ppue 2pow UMb ~2pow pue
243 U0 paseq A YA URAIG U3 M
SwydeiboydAn 1x21u0D uoRdADUD o
e swinjas i
pue s33e2.) g€ =
— el {
jnsel
= pezjjeuy sy} SR
£ s pue ‘3215 3430/q

‘uopessds
UORAAISS oy
aieda.d 01 31 sdesm
usy1 pue “apow pue.
Jmydp usnib B Y
W00 uopdAnua:
Suzewwihs e

Jadoud aunsus 01

ped Supped ST

se1ean, - ABolens,
b

o)

ynsas

== 243 Buiuimps pue

pojuod Suipped Aq ss=20.d u

uondAnus ue dn ondAnap/uondinus

=1 azyjeurs 8T

9

{
Pl
passen0ud winjal pue

s3epdn ApuspuE 03

Juswsbeuew sayng

ssjpuey pue adiy

3ndus 1e1100 sunsus
2 wx__mwin e
Ab=nen;

jeos
Si01q
PRI 243 SU4N324 pue
212p M3U Ypm s33ynq
23Aq e sa3epdn 91

ol

i

{
-Buissesoid ejep
papeuuoy Apadoid
pue 21nss a.nsus 0]
@1epdn Buipped 214q

jeos
“}jnsa4 papped a3
sus3as pue eep mau
i 244nq [ewiajuy
sy1 ss1epdn <1

ey Py LT

2215 3po|q pay:
© ﬁmso

iMoes sinsus 0}
5215 20/q usAlb BYY

Pxequ0a buipped
£SDd € saz||el

0

120
“suonesado

Sy desbojdan

10y Pauod

Guipped e sa1ea:) £T

i)

=09

-20u 53t

1 40433 ue sasied pue
59340 2dA3 Jo 51 3njeA
U3AIG @ 31 434D 0T

i ————

awp sazijeund £

e s3jepdn ot

— )

o3 subls usuy pue Al PepIA0Id € UM SpoW JED Ul S3Y

buisn ejep pepped auy s3dAIdUs 'sa7is %20|q JUBISISUO
24nsu3 01 buIpped sasn uopdun L, : ABe1ens,

b
Sued-woy 3dADUS JPuRt Wy AudeiboidAn|

jeos
3INS34 PRAAIDIUS DU SUINGAI PUR “01IFA UORZIERIUL

PUe 3L Ju3.4n3 3y BuIPN|3UI ‘S}ied woay eep S}AADUT g

Figure 14. Detailed GSN diagram of code execution flow



1176 Z. Chen, Y. Deng, W. Du

Node 8 - Node 43: Finalizes the encryption or decryption operation, handling
errors and tag management.

Node 8 - Node 50: Updates the HMAC context with the provided data.

Node 8 F Node 52: Finalizes the HMAC operation and returns the resulting di-
gest.
The strategy (in node 8) employed is:

Strategy: “The function uses padding to ensure consistent block sizes, encrypts the
padded data using AES in CBC mode with a provided Initialization Vector (IV),
and then signs the resulting ciphertext with an HMAC for authentication.”

The contexts (in node 8) provide additional information about the initialization
of various cryptographic objects:

C1: Initializes an object with a specified block size.

C2: Initializes an object with a cryptographic key.

C3: Initializes an object with a given initialization vector.

C4: Initializes a cipher object with the provided algorithm and mode.
C5: Initializes an HMAC object with a given key and algorithm.

These contexts (C1-C5) correspond to the setup steps required before encryption
and authentication processes can proceed.

The GSN diagrams generated by our tool offer an overview and a detailed expla-
nation of the code’s encryption process. This visual representation facilitates better
understanding and communication among programmers, ultimately enhancing code
comprehension and assisting them in exploring the encryption mechanisms within
the cryptography library.



Enhancing Large-Scale Code Understanding Through GSN and LLMs 1177

Zezhong CHEN is currently pursuing his Ph.D. degree at the
East China Normal University in Shanghai, China. His research
interests include software engineering and formal methods.

Yuxin DENG is Professor at the Shanghai University of Finance
and Economics. His research interests include concurrency the-
ory, program semantics, formal verification, and quantum com-
puting.

Wenjie Du is Lecturer at the Shanghai Normal University. Her research interests include
concurrency theory and formal verification.



