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Abstract. Large language models (LLMs) aid programmers in understanding code
but are limited by input length when handling large codebases. To address this, we
propose using Goal Structuring Notation (GSN) – originally developed for articulat-
ing assurance cases in complex engineering projects – to represent and break down
large codebases. We introduce a tool that leverages LLMs to automatically con-
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vert large code into GSN. The generated GSN provides an overview that simplifies
code comprehension and enhances communication among programmers. Experi-
mental results demonstrate that our approach significantly increases programmers’
confidence levels and reduces task completion times.

Keywords: Goal structuring notation, large language models, software mainte-
nance, code comprehension

1 INTRODUCTION

Maintaining large codebases is a critical yet challenging task in contemporary soft-
ware engineering. The inherent complexity of growing codebases, coupled with
inadequate or outdated documentation, makes understanding and modifying code
difficult and time-consuming, especially for new team members. Communication
barriers in large or cross-functional teams further complicate maintenance efforts.
Addressing these challenges necessitates technological innovations and improved
methodologies to enhance software comprehension efficiency and effectiveness.

To tackle these issues, we explore the use of Goal Structuring Notation (GSN) [1,
2] and large language models (LLMs) [3] as promising solutions. GSN offers a struc-
tured and visual approach to representing complex arguments and justifications [4,
5]. Applying GSN to software maintenance can transform cryptic and convoluted
codebases into clear, understandable diagrams that elucidate goals, strategies, and
relationships within the code. This graphical representation bridges gaps caused
by inadequate documentation by providing a high-level overview of the software’s
architecture and logic. Moreover, GSN’s ability to encapsulate assumptions and
justifications makes implicit knowledge explicit, enhancing understanding and com-
munication among team members.

LLMs, with their advanced natural language processing capabilities, serve as
critical tools for deciphering complex code structures [6]. They can analyze and in-
terpret code, translating technical jargon and intricate programming concepts into
accessible language. This translation is crucial for team members unfamiliar with
specific aspects of the codebase or for newcomers acclimating to the project. Fur-
thermore, LLMs can assist in generating up-to-date documentation, alleviating the
burden on maintenance teams and ensuring that documentation evolves alongside
the code. However, the limited input length of LLMs poses challenges for processing
large codebases that exceed these restrictions.

To address this limitation, we propose breaking down large codebases into man-
ageable parts using GSN. By combining GSN’s structured visual framework with
LLMs’ nuanced language understanding, we present a synergistic solution.

Our approach systematically translates code into GSN elements – such as goals,
sub-goals, strategies, and evidence – providing a structured visual representation of
software logic. This process involves generating function call graphs, filtering nodes,
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and using LLMs to create natural language descriptions of code functionality. This
enables stakeholders to efficiently comprehend and manage large codebases. Ex-
perimental results demonstrate the efficacy of this methodology, showing significant
improvements in programmers’ confidence and reduced task completion times.

By integrating GSN and LLMs, we offer a comprehensive approach to tackling
challenges associated with large codebases – including complexity, inadequate doc-
umentation, and communication barriers – paving the way for more efficient and
effective software understanding and maintenance practices.

The key contributions of the current work are as follows.

1. Innovative Method for Code Understanding: We introduce the use of GSN
in combination with LLMs to enhance the understanding and maintenance of
large software codebases.

2. Implementation of an Automated GSN Generation Tool: We develop
a tool that automatically transforms existing code into a GSN framework.

3. Validation through Real-World Case Studies: We validate the practicality
and effectiveness of the proposed method through case studies involving real-
world code repositories.

These contributions demonstrate the potential of combining GSN with LLMs in
the realm of code maintenance and understanding, offering new tools and directions
for research and practice in software engineering.

The structure of the paper is organized as follows. In Section 2, we review ex-
isting literature in the field of code understanding and maintenance. In Section 3,
we detail the process of transforming code into the GSN framework. In Section 4
introduces the relevant technical implementations, including the generation of func-
tion call graphs and the integration of large language models. Section 5 provides
a case study to help readers understand the process of transforming code into GSN.
Section 6 presents the practical application of our methodology. In Section 7, we
discuss the implications, advantages, and potential limitations of our method. In
Section 8, we summarize our main findings and contributions.

Our tool Trusta is available at https://github.com/AssuranceCase/Trusta.

2 RELATED WORK

The field of code understanding and maintenance has witnessed considerable re-
search [7, 8, 9], with various methodologies being proposed and evaluated over the
years.

Visualization tools have played a significant role in aiding code comprehension.
Research shows that visual representations of code structures and dependencies
can significantly reduce the cognitive load on developers and improve their under-
standing of complex software systems. Tools like SoftVis3D [10], Callcluster [11],
Code Park [12], 3D-Flythrough [13], Primitive [14] and AppMap [15] are notable

https://github.com/AssuranceCase/Trusta
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examples, offering visual metaphors to depict software architectures and relation-
ships.

Another related domain is the application of natural language processing (NLP)
techniques to interpret and document code [16]. Research in this area has focused on
automatically generating documentation from source code using various NLP meth-
ods. Notably, recent advancements in large language models, such as ChatGPT-
4 [17] and PaLM 2 [18], have been leveraged to translate complex code structures
into more understandable narratives [6], aiding in both comprehension and docu-
mentation. Current state-of-the-art code comprehension tools integrating LLMs,
such as GILT [6], can only support interactive translation of small code snippets.
Our tool is specifically designed and developed for understanding large codebases.

In the specific context of using structured frameworks like GSN, there has been
limited but noteworthy exploration. For instance, some studies have investigated the
use of GSN for representing software design and architecture [19, 20], particularly in
safety-critical systems. These studies highlight the effectiveness of GSN in clarifying
design rationales and decision-making processes in software development.

However, the integration of GSN with large language models for the purpose of
enhancing code comprehension and maintenance, as proposed in our study, repre-
sents a novel approach in this field. This combination harnesses the strengths of
both visual structuring and advanced language understanding, potentially setting
a new direction for research and practice in software maintenance. Unlike existing
tools that visualize the entirety of code to aid programmers in understanding, our
methodology introduces several innovative aspects:

• By dynamically running specific functionalities of the program and extracting
the corresponding code, we present a more targeted display of the aspects users
are concerned with.

• We utilize large language models to translate the corresponding code into natural
language, facilitating comprehension among diverse stakeholders.

These enhancements not only differentiate our work from existing methods but also
offer a comprehensive approach to addressing the complexities of code maintenance
and comprehension.

In summary, while there have been several advancements in the realms of code
visualization, NLP-based documentation, and dynamic software analysis, our ap-
proach uniquely combines GSN with large language models, offering a fresh per-
spective on tackling the enduring challenges of large software maintenance and com-
prehension.

3 METHODOLOGY

In this section, we introduce the key ingredients of our methodology, including the
definition of GSN elements and the code to GSN transformation. Our approach
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leverages the theoretical foundations of GSN and the advanced code comprehension
capabilities of LLMs.

3.1 Definition of GSN Elements

GSN, a graphical argumentation notation, is widely adopted for its ability to rep-
resent complex arguments and assurance cases in a structured and comprehensible
manner [21, 19]. In software engineering, GSN offers a high-level abstraction of soft-
ware architecture and logic, enhancing understanding and communication among
stakeholders. The core elements of GSN include:

Top-Level Goals: In our setting, these represent the primary objectives or the
main purposes of the code. They encapsulate the high-level functionality or the
key outcomes that the software is designed to achieve.

Sub-Goals: Derived from the top-level goals, sub-goals are more specific objectives
that need to be met to accomplish the top-level goals. In software, these typically
relate to specific functionalities or features of individual components.

Strategies: In GSN, strategies denote the approaches or methodologies adopted
to achieve the goals. In software terms, this would translate to the specific
algorithms or methodologies employed in the code to realize certain functions
or features.

Solutions or Evidences: These elements are crucial for providing proof or vali-
dation that the goals or sub-goals have been met. In software, evidences might
come in the form of test results, validation checks, or other forms of empirical
verification.

Context: Context elements provide the necessary background information to un-
derstand the goals, such as environmental constraints, data definitions, or opera-
tional settings. In software, this often includes class constructors or initialization
functions that set up the necessary environment for the code to function.

Assumptions: Assumptions in GSN are statements that are considered true within
the argumentation framework. In software, assumptions might include premises
about user inputs, system environments, or dependencies.

Justifications: Justifications offer the rationale behind choosing a particular strat-
egy or making certain assumptions. In the context of software, this could involve
explaining the design philosophy behind implementing a specific feature or the
reasoning behind certain coding decisions.

Figure 1 gives an example GSN diagram. It visually demonstrates our methodol-
ogy by decomposing software engineering goals into manageable components, com-
plete with defined strategies, assumptions, and justifications, thus improving the
clarity and maintainability of complex software systems. From the perspective of
information representation and readability, compared to the one-dimensional linear
reading of code, GSN allows for the two-dimensional display of information both
horizontally and vertically.



Enhancing Large-Scale Code Understanding Through GSN and LLMs 1149

Figure 1. Goal Structuring Notation (GSN) framework diagram

3.2 Code to GSN Transformation Process

The translation of code into GSN is a systematic process that aids in the elucidation
of software logic and architecture. The steps involved in this transformation are
designed to distill complex code into a clear, structured format that aligns with
GSN principles. Herein we detail the step-by-step methodology shown in Figure 2.

1. Function Call Graph Generation: This process commences with the creation
of a function call graph. The graph is a visual representation of the software’s
functional structure, where nodes correspond to function names and edges depict
the call relationships between these functions.

2. Function Node Filtration: Following graph generation, we proceed to prune
the function call graph. This involves the removal of nodes that represent func-
tions not pertinent to the software’s core functionality, thus simplifying the
graph and focusing on the most relevant aspects of the code.

3. Natural Language Transformation Using LLMs: Large language models
are then employed to read and analyze the function nodes along with their corre-
sponding bodies of code. These models generate a natural language description
of each function’s purpose and deduce the strategies that connect each sub-goal
with its immediate higher-level goal. This step leverages the language model’s
capability to understand and articulate code in human-readable terms.

4. Contextualization of Constructors and Initializers: Constructors and ini-
tialization functions within the code are translated into context nodes within the
GSN framework. These nodes provide critical background information for the
understanding of the software’s operations and goals.

5. Integration of Test Cases as Evidence Nodes: Test cases associated with
the code are integrated into the GSN as evidence nodes. These nodes serve
to validate the achievement of the respective sub-goals they are connected to,
offering empirical proof of functionality.
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Figure 2. Flowchart of the code to GSN transformation process

6. Assumptions and Justifications: The final step involves the addition of
assumptions and justifications where necessary for expressiveness, need, and
logical completeness. Assumptions are added to the GSN to represent premises
considered true within the software’s operational context, while justifications
provide the rationale for the strategies and design decisions made.

4 TECHNICAL IMPLEMENTATION

This section provides a detailed introduction to the techniques involved in the six
steps of transforming code into GSN.

Steps (2), (4), and (5) are straightforward and can be assisted by program
static analysis [22] with some manual additions. Step (2) can define non-logical
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function naming rules, such as “print*”, as a basis for simplifying the function call
graph. Step (4) uses program features and project conventions to extract class
constructors and initialization functions via static analysis, converting these nodes
from sub-goal to context type in GSN. Step (5) extracts functions called within
test cases using static analysis. If some test cases cover a particular sub-goal, these
test cases are added as evidence nodes for that sub-goal. Step (6) involves subtler
information often not explicitly expressed in code (e.g., might exist in comments
and documentations), requiring manual completion considering project stakehold-
ers.

Steps (1) and (3) are more challenging, requiring more advanced techniques such
as dynamic code analysis [23] and large language models. Below we explain steps (1)
and (3) in more detail.

4.1 Usage of Function Call Graph Tools

Step (1) involves creating function call graphs, which can be either dynamic or
static [24]. Our study specifically refers to dynamic call graphs. A dynamic call
graph can be highly accurate but only represents a single execution instance of the
program. On the other hand, a static call graph represents all possible executions
of the program.

For large programs, the codebase can be vast, and programmers often only focus
on a specific functionality during maintenance. A dynamic call graph, generated
during the program’s execution, captures the content relevant to that functionality,
ignoring the unrelated parts of the code. This significantly reduces the scope of code
that needs to be read.

The principle of generating dynamic call graphs involves monitoring the function
calls made by a program during its execution. Profilers like callgrind [25], which is
part of the Valgrind tool suite, instrument the code to record each function entry
and exit. When the program runs, callgrind collects data on the call relationships
and the execution path taken, producing a detailed log of the function calls made.
This log can then be visualized to create the dynamic call graph.

In this study, we used the pycallgraph library [26] to generate dynamic function
call graphs for the Python project and the callgrind tool for the C project. These
tools helped visualize the function calls made during the execution of the respec-
tive programs, providing a clear map of the code flow for the specific tasks being
analyzed.

4.2 Usage of Large Language Models

Listing 1 encapsulates the structured prompt used in Step (3) of our methodology,
showcasing how large language models are employed to bridge the gap between raw
code and its representation within the GSN framework. The prompt is divided
into three main sections to ensure comprehensive function analysis and strategy
formulation:
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Task Description: This initial section sets the context for the large language
model, defining its role as both an assurance case expert and a proficient software
engineer. It outlines the model’s tasks, which include analyzing the provided
code to determine the function’s goal and elucidate the strategy behind the use
of external functions to achieve this goal.

1 You are an Assurance Case expert as well as a good

software engineer.

2 Your answers always need to follow the following output

format and you always have to try to provide the specified

information.

3 I will provide you with code that contains a function.

Please analyze the content of the code and complete the

following tasks: (1) Describe in one sentence the goal of

this function. (2) This function in the code calls several

external functions. Along with the names of these

external functions , I will provide their corresponding sub

-goals. Please explain in one sentence the strategy behind

using these external functions , considering their sub -

goals , to achieve the overall goal of the function. If the

names of these external functions and their sub -goals are

not provided , just complete the first task.

4

5 Example 1:

6 Function Code:

7 ‘‘‘

8 def process_data(data):

9 cleaned_data = clean_data(data)

10 normalized_data = normalize_data(cleaned_data)

11 result = analyze_data(normalized_data)

12 return result

13 ‘‘‘

14 External Functions:

15 [’clean_data: Removes any invalid or corrupt data.’, ’

normalize_data: Brings all data to a standard format or

range.’, ’analyze_data: Performs statistical analysis on

the data.’]

16 Task Answers:

17 (1) Function Goal: Prepare and analyze given data ,

ultimately returning the analysis results.

18 (2) One -sentence Strategy: Cleans , Normalizes , and

Analyzes the data to ensure accurate and consistent

statistical results.

19

20 Example 2:

21 Function Code:
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22 ‘‘‘

23 def clean_data(data):

24 # Remove null or missing values

25 data = data.dropna ()

26 # Remove duplicate entries

27 data = data.drop_duplicates ()

28 return data

29 ‘‘‘

30 External Functions:

31 []

32 Task Answers:

33 (1) Function Goal: Removes any invalid or corrupt data.

34 (2) One -sentence Strategy: ’’

35

36 Tips: Please add the following in strict format , including

"Function Goal:", "One -sentence Strategy :".

37

38 Function Code:

39 ‘‘‘

40 <NEW_FUNCTION_CODE >

41 ‘‘‘

42 External Functions:

43 <NEW_EXTERNAL_FUNCTIONS >

44 Task Answers:

45 (1) Function Goal:

46 (2) One -sentence Strategy:

Listing 1. Step (3) prompt structure: natural language transformation using LLMs

Input and Output Format with Examples: This section specifies the format
for inputs (function code and external functions) and expected outputs (func-
tion goal and strategy). It provides clear examples in two different scenarios,
demonstrating how the model should interpret the code, identify the goal of
the function, and describe the strategic use of external functions based on their
sub-goals.

Example Template for Additional Scenarios: The final section offers a tem-
plate for further examples, with placeholders for new function codes and exter-
nal functions. This template is designed to be filled with specific code anal-
yses, facilitating the model’s task of generating consistent and structured re-
sponses.

In the prompt structure used for the LLM, there are two specific placeholders
that require substitution with relevant data as input for the model. The first place-
holder, marked as ⟨NEW FUNCTION CODE⟩, should be replaced with the source
code of the function currently under analysis. This represents the actual code of the
function node being examined.
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The second placeholder, ⟨NEW EXTERNAL FUNCTIONS⟩, is to be filled with
the goals of all external functions called by the current function, providing a clear
context for their inclusion and use within the main function’s logic. The output from
the LLM will then articulate the primary goal of the current function and the strat-
egy behind employing these external functions to achieve that goal. If the current
function does not call any external functions, ⟨NEW EXTERNAL FUNCTIONS⟩
placeholder should be left empty, and the model will only output the function’s
goal.

The input and output of a single invocation of the large language model using
this prompt can be represented by the following formula:

Prompt(FunctionCode,ExternalFunctionsGoals)

→ {FunctionGoal , Strategy}
Prompt(FunctionCode, ∅) → {FunctionGoal , ∅}

where the variables are explained as follows:

• FunctionCode: The source code of the current function under analysis.

• ExternalFunctionsGoals : A list of goals for each external function called by the
main function. This includes the names of the functions and their respective
goals, providing the context for their strategic use.

• FunctionGoal : A concise statement of the primary objective of the function
being analyzed.

• Strategy : The rationale for utilizing specific external functions to achieve the
main function’s goal, outlined only when external functions are present. If
ExternalFunctionsGoals is empty, indicating no external functions are called,
then the strategy component is also empty, highlighting the direct relationship
between the function’s external dependencies and the formulation of a strat-
egy.

When processing a complex, multi-layered function call tree using the outlined
steps, it is imperative to traverse the call hierarchy from the bottom up. This traver-
sal begins with the leaf nodes – functions that do not invoke other functions – and
progresses upwards. Such a bottom-up approach ensures that the analysis of higher-
level functions can leverage the goals identified for the functions they call, thereby
maintaining consistency and continuity in the development of the GSN framework.
This methodology allows for a structured decomposition of software logic, making
the intricate relationships within the code comprehensible and systematically doc-
umented. This also reflects one of GSN’s characteristics: “Being able to simply
summarize viewpoints”: It shows that GSN users were able to summarize the view-
point [4]. In our method, summarizing the function’s role from the bottom up in
the function call tree results in fewer high-level goal nodes, with each goal cover-
ing a broader scope until the entire functionality is summarized in a single node.
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Then, from top to bottom, the number of nodes increases, with each sub-goal cov-
ering a narrower scope and revealing more details. Thus, once a complete GSN is
generated, stakeholders can examine the code at different levels, rather than search-
ing for information in incomplete documentation or extensive but overly detailed
code.

The large language model prompt in Listing 1 offers a structured approach
for the language model to analyze functions and their interrelationships, ensuring
a consistent and goal-oriented analysis. By following the detailed format for output,
the model can succinctly describe the function’s goal and the rationale behind the
use of each external function in achieving that goal. This forms a crucial component
of the GSN, linking code functionality to a structured argumentation framework
that enhances clarity and facilitates better maintenance practices.

The structured prompt ensures the generation of precise and coherent function
goals and strategies, which are essential for creating accurate and informative GSN
diagrams.

5 CASE STUDY

This section demonstrates how to transform the code of a Python-based AI inference
system into a GSN. The AI inference system contains approximately 8000 lines of
code. Using our Trusta tool, we generated a GSN with 34 nodes representing the
inference steps, which took 8 minutes to complete. Through this process, we clearly
express the code’s goals, logic, and related test cases.

Step 1: Generation of Function Call Graphs. First, we generate the function
call graph of the AI inference system, where each node represents a function and
edges indicate the call relationships between functions. This helps to reveal the
dependencies between the system’s modules. The function calls starting from
the main function are shown in Figure 3.

Step 2: Filtering of Function Nodes. After generating the function call graph,
we filter out the function nodes that are not related to the core functionality
of the AI inference system. This simplifies the graph and focuses on the key
parts of the inference process. The filtering rules (FUNCTION IGNORE
KEYWORDS) are obtained by fuzzy matching function names using configu-
ration files, as shown in Listing 2. In actual projects, this configuration should
be organized according to the project’s specifics and the purpose of generat-
ing the GSN. For example, if only the upper-level business code is of interest,
one can filter out low-level library functions unrelated to the business or set
a whitelist (FUNCTION NEED KEYWORDS) to include business-related
functions. The result of filtering the function call graph in Figure 3 is shown
in Figure 4, where the structure is simpler and contains only the desired con-
tent.
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Figure 3. Output of Step 1: Generation of Function Call Graphs
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1 {

2 "FUNCTION_NEED_KEYWORDS ": [

3 ],

4 "FUNCTION_IGNORE_KEYWORDS ": [

5 "InferEvent.info", "MinioOper.unzip_file",

6 "MinioOper.make_one_model_dir",

7 "InferImage.__del__", "ETATimeIter.print_info",

8 "ElapsedTime", "__main__",

9 "infer_model.<dictcomp >"

10 ]

11 }

Listing 2. Configuration file for function filtering

Step 3: Natural Language Transformation using LLM. We use LLM to an-
alyze the function nodes and their code content, generating natural language
descriptions for each function, as shown by the green nodes in Figure 5. Ad-
ditionally, we generate relationship descriptions for the parent and child nodes,
i.e., strategies in the GSN, as shown by the blue nodes in Figure 5. This helps
us identify sub-goals and link them to higher-level goals.

Step 4: Contextualization of Constructors and Initializers. In this step, we
transform constructors and initializer functions in the code into context nodes
in the GSN framework. These nodes provide background information for the
goals. Some nodes in Figure 5 are transformed into descriptions, becoming con-
text information for their parent nodes, as shown by the white parts in nodes
2, 6, 14, 16, and 19 in Figure 6. This step further simplifies the overall graph
structure without losing its original expressiveness.

Step 5: Integration of Test Cases as Evidence Nodes. We integrate test cases
into the GSN graph as evidence nodes. Test cases provide verification of whether
subgoals have been achieved, ensuring that the inference system functions as ex-
pected. By scanning the content of the test cases, if the test case covers nodes
(functions) in the GSN, it is attached as evidence to the corresponding node
as a child node. The yellow nodes in Figure 7 are the newly added test case
nodes. For simplicity, we only retained the main nodes (green goal nodes) in
the figure, hiding auxiliary information (blue strategy nodes and white context
information).

Step 6: Addition of Assumptions and Justifications. Finally, we can man-
ually add assumption and justification nodes based on the needs of the GSN
graph’s readers. Assumptions represent the premises for goal nodes, while justi-
fications explain the reasons for choosing certain strategies or design decisions,
enhancing the logicality and completeness of the GSN graph.

For another case study of our tool applied to cryptography code, see Appendix A.
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Figure 4. Output of Step 2: Filtering of Function Nodes
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Figure 5. Output of Step 3: Natural Language Transformation
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Figure 6. Output of Step 4: Contextualization of Constructors and Initializers

6 EXPERIMENTAL SETUP AND RESULTS

6.1 Experimental Setup

We designed an experiment to evaluate the impact of using GSN generated by
LLMs on programmers’ understanding and maintenance of code. We selected two
projects for the experiments: a Python-based AI inference system running in a pro-
duction environment, and the QEMU [27] project, a large open-source C language
software. QEMU is a generic machine and userspace emulator and virtualizer,
with a codebase that spans millions of lines of code. In our experiments, we
used QEMU to simulate a SabreLite development board for loading Linux ker-
nels, demonstrating one of its many capabilities. We used our tool (Trusta) and
spent 76 minutes generating a dynamic function call graph-based GSN with 212
nodes.
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Figure 7. Output of Step 5: Integration of Test Cases as Evidence Nodes
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The experiments were divided into six groups, with each group consisting of
10 participants, as shown in Table 1.

Category Traditional Method Enhanced Method

SPF 10 participants 10 participants
SP 10 participants 10 participants
JP 10 participants 10 participants

Note:
SFP = Senior Programmers Familiar with the Project;
SP = Senior Programmers Not Familiar with the Project;
JP = Junior Programmers Not Familiar with the Project.

Table 1. Classification of experiment participants and methods used

Traditional Method: Programmers received only the code documentation, source
code, search engines, and LLMs.

Enhanced Method: In addition to the materials provided in the Traditional Me-
thod, programmers in this group were also given GSN diagrams generated by
large language models.

The participants included programmers with varying experience levels, some of
whom were familiar with the projects. Their task was to understand and maintain
the code within a limited time frame, which involved fixing a known bug and adding
a new feature. Task 1 required debugging QEMU’s initialization flow by identifying
and removing an erroneous return statement in the qemu init main loop function,
ensuring that the VM launch process completed successfully. Task 2 involved adding
a post-initialization output to the QEMU startup sequence, where participants had
to print the string “Trusta” after the initialization, ensuring the message appeared
via the debug console or log without interfering with the core emulation logic.

The large language model used in this experiment is Llama3-70b [28], the state-
of-the-art open-source model, which was utilized to generate the GSN diagrams. We
further developed the Trusta tool (https://github.com/AssuranceCase/Trusta)
for visualization, as shown in Figure 8. One of the steps in generating the function
call graphs involved using the pycallgraph library [26] for the Python project and
the callgrind [25] tool for the C project.

To quantify the impact of the method on code understanding and maintenance,
we used the following two metrics:

Confidence Level: The confidence level of the programmers in understanding and
modifying the code, rated on a Likert scale (1 to 5) [29].

Task Completion Time: The time taken to complete the specified tasks (in min-
utes).

https://github.com/AssuranceCase/Trusta
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Figure 8. Full overview of the GSN diagram for the QEMU project

6.2 Experimental Results and Analysis

The results showed that programmers in the Enhanced Method group had signifi-
cantly higher confidence levels and shorter task completion times compared to the
Traditional Method group.

Figure 9 presents the successful task completion times for the six experimental
groups, excluding the two participants in the JP-Traditional group who did not
complete the task within 120 minutes. The tasks involved modifying a single line of
code, simplifying the assessment of completion times.

The Enhanced Method, which included GSN diagrams generated by LLMs in
addition to traditional resources, reduced task completion times across all groups.
The effect was more pronounced among programmers unfamiliar with the project:
in the SP group, the mean completion time decreased by approximately 45%; in
the JP group, the reduction was about 58%; and the SPF group saw a modest
decrease of around 23%. These results indicate that GSN diagrams significantly aid
programmers – especially those without prior project familiarity – in understand-
ing and maintaining code more efficiently. The Enhanced Method also reduced
variability in completion times, as evidenced by narrower interquartile ranges in
the boxplots. This suggests more consistent performance when additional struc-
tured documentation is provided. Despite the simplicity of the tasks, participant
experience and project familiarity influenced performance. SPF participants com-
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Figure 9. Task completion times across different experimental groups

pleted tasks fastest under both methods, highlighting the advantage of prior knowl-
edge.

After the participants read the tasks, we asked each of them to rate their confi-
dence level in completing the tasks. The average results for each group are shown in
Figure 10. Participants’ confidence levels varied among the six experimental groups.
Compared to the Traditional Method, the Enhanced Method, which added GSN
diagrams generated by LLMs to the traditional resources, consistently improved
participants’ confidence levels. This effect was particularly evident among program-
mers unfamiliar with the project, indicating that additional structured guidance can
significantly enhance confidence.

The data indicate that the programmers in the Enhanced Method group ex-
perienced a significant increase in confidence level and a notable decrease in task
completion time.
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Figure 10. Average confidence levels of participants across experimental groups

The superior performance of the Enhanced Method group in terms of confidence
level and task completion time is mainly attributed to the clear presentation of code
structure and logic provided by the GSN diagrams and the varying levels of detail
in code summaries generated by the LLMs. Specifically:

Confidence Level: The GSN diagrams and the natural language descriptions gen-
erated by the LLMs helped programmers better understand the overall archi-
tecture and specific implementations of the code, making them more confident
in making modifications.

Task Completion Time: The summaries generated by the LLMs reduced the
amount of code programmers needed to read, allowing them to understand the
code more quickly. Additionally, the GSN diagrams enabled programmers to
quickly locate the parts of the code relevant to the task, further reducing the
time needed to search the code, thus allowing them to complete tasks more
quickly.

We conducted a survey on the participants’ satisfaction with the Trusta tool,
and 88% of users reported being satisfied. However, feedback highlighted areas for
improvement, including adaptive scaling, GSN diagram aesthetics, and the need
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for progress indicators. These insights are crucial for Trusta’s future development,
emphasizing the importance of user-centric design for the tool.

These results demonstrate that GSN diagrams generated by the Llama3-70b
model can significantly enhance programmers’ understanding and maintenance effi-
ciency, proving to be highly practical.

6.3 Visualization Results

To illustrate the effectiveness of the GSN diagrams more clearly, we provide screen-
shots of the GSN diagrams for the QEMU experiment. Figure 8 is an overview of
the entire GSN diagram in the Trusta tool.

Figure 11 illustrates the top-level structure of the GSN diagram for the QEMU
experiment, along with the corresponding code and function call graph for compar-
ison.

Figure 12 shows a portion of the GSN diagram for the QEMU experiment related
to memory management and the corresponding function call graph.

7 DISCUSSION

This section discusses the inherent difficulties we encountered and the implications
of these challenges for future research and practice in software engineering.

7.1 Function Call Graph Generation

One of the primary complexities lies in the initial step of generating a function call
graph that accurately represents the software’s functional structure. This requires
a nuanced understanding of the codebase, as well as sophisticated analysis tools
capable of parsing and visualizing complex interdependencies among functions. The
task is further complicated by dynamically loaded modules and polymorphic behav-
iors, where the determination of call relationships can be non-trivial and requires
advanced static and dynamic analysis techniques, which depend on the capabilities
of the compiler or code parser of the target programming language. Recursive func-
tions generate a connection line pointing to the node itself, reflecting the recursive
state but failing to represent the details of recursive execution.

Static graphs may include unused paths, while dynamic graphs are context-
specific. Both static and dynamic graphs can generate GSN. Each has its pros and
cons: static graphs are more comprehensive but can be overly large and hard to
read, with lower accuracy and efficiency. Conversely, in large systems where only
certain functionalities need maintenance, more targeted dynamic graphs are more
suitable. The downside of dynamic graphs is that they require the system to be up
and running, which increases the difficulty of generation.
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a) b)

c)

Figure 11. Comparison of QEMU project’s top-level code, function call graph, and GSN
diagram

7.2 Function Node Filtering

The filtration of function nodes to isolate those critical to the core functionality
of the software introduces another layer of difficulty. This step demands a balance
between comprehensiveness and conciseness, necessitating a deep semantic under-
standing of the code to discern which functions are essential. The subjective nature
of “relevance” in this context poses a significant challenge, highlighting the need
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a)

b)

Figure 12. Function call graph and GSN diagram for memory management
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for intelligent algorithms that can adaptively determine importance based on the
software’s context and the user’s goals.

7.3 Integration of LLMs

Integrating LLMs for the natural language transformation of code descriptions and
strategies represents a cutting-edge aspect of our methodology, blending the fields
of software engineering and natural language processing. However, ensuring that
these models generate accurate, relevant, and coherent descriptions and strategies
is a non-trivial endeavor. It involves training or fine-tuning models on domain-
specific datasets and continuously validating their outputs against expert knowledge,
underscoring the interdisciplinary challenge of this approach. For some relatively
rare business domain codes, the training data of general LLMs may not include this
domain, potentially resulting in suboptimal performance. In such cases, fine-tuning
or using RAG (Retrieval-Augmented Generation) techniques may be necessary.

7.4 Ethical Considerations

The choice of Llama3-70b over other advanced models for integration into Trusta
is due to several reasons: while other LLMs such as GPT-4 and PaLM 2 can also
perform the corresponding tasks, our approach requires reading a large amount
of code, which is often confidential material within organizations. Therefore, we
selected Llama3-70b, a relatively advanced model that can be deployed locally, for
our experiments.

8 CONCLUSION

We have introduced a novel methodology that leverages GSN and large language
models to enhance the understanding and maintenance of large software codebases.
Our approach addresses the perennial challenges of code complexity, inadequate
documentation, and communication barriers in software maintenance.

The core contributions of our work include the development of an automated
tool that transforms complex code into a GSN framework, providing a structured
and comprehensible representation of the software’s logic. We integrated large lan-
guage models to generate natural language descriptions of code, facilitating better
understanding and communication among programmers. Our unique combination
of function call graphs with GSN aids in visualizing and navigating the structure and
functionality of code. We validated our methodology through experiments on real-
world projects, demonstrating significant improvements in programmers’ confidence
and efficiency.

Beyond these contributions, our methodology has broader implications for both
research and industry practices. By providing a systematic way to bridge the gap
between code and its conceptual understanding, our approach can influence future
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research in software engineering, particularly in automated documentation and in-
telligent code analysis. It paves the way for developing more advanced AI-assisted
tools that can further alleviate the challenges of maintaining large codebases.

In the industry, adopting our method could transform software maintenance
workflows. Enhancing code comprehension and communication among team mem-
bers, it can lead to more efficient collaboration and project management. The in-
tegration of large language models with code analysis tools signifies a shift towards
more intuitive and intelligent development environments, which could become stan-
dard practice in the industry.

Future work could explore refining large language models for technical domains,
developing more advanced analysis tools, and integrating our approach with CI/CD
pipelines and automated testing scenarios. Additionally, expanding the scope of our
experiments to include more diverse codebases and programming environments will
help validate the wide applicability of our method.
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A CASE STUDY: TOOL USE IN CRYPTOGRAPHY CODE

In this appendix, we present a use case of our tool by applying it to a Python
code that utilizes the cryptography library [30] for encrypting a message. The
cryptography library contains approximately 70 000 lines of code. Using our Trusta
tool, we generated a GSN with 53 nodes representing the data encryption steps,
which took 12 minutes to complete. The purpose is to transform the code’s execution
process into GSN, thereby aiding in code comprehension and helping programmers
explore the encryption process of the cryptography library.

1 from cryptography.fernet import Fernet

2

3 def main():

4 key = Fernet.generate_key ()

5 f = Fernet(key)

6 token = f.encrypt(b"A␣really␣secret␣message.")

7

8 if __name__ == ’__main__ ’:

9 main()

Listing 3. Example code using the cryptography library

Using our tool, the above code is converted into a high-level GSN diagram, as
shown in Figure 13. This diagram provides an overview of the encryption process
implemented in the code.

In Figure 13, the top-level goal is “Generates a secure encryption key and uses it
to encrypt a secret message”. This is supported by sub-goals such as “Generates a
random, URL-safe base64-encoded key”. and “Encrypts given data”. The Strategy
(in node 3) provides information about the cryptography library and the methods
used. Figure 13 elaborates on the sub-goals by mapping them to specific code
statements and functions:

Node 3: The main goal to encrypt a message is achieved by the main() function.

C1 in Node 3: Initializing the cipher is done through Fernet(key).

Node 4: Generating a key is performed by Fernet.generate key().

Node 6: Encryption is executed by f.encrypt().

For a more in-depth understanding, the tool generates a detailed GSN diagram
depicted in Figure 14. This diagram breaks down each step and shows the interac-
tions between code components and functions.

In Figure 14, the goalNode 8: “Encrypts data from parts, including the current
time and initialization vector, and returns the encrypted result” is achieved through
several sub-goals:

Node 8 ⊢ Node 10: Checks if a given value is of type bytes and raises an error if
it is not.
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Figure 13. High-level GSN diagram of the encryption process

Node 8 ⊢ Node 13: Creates a padding context for cryptographic operations.

Node 8 ⊢ Node 15: Updates the internal buffer with new data and returns the
padded result.

Node 8 ⊢ Node 18: Finalizes the encryption/decryption process by padding and
returning the result.

Node 8 ⊢ Node 30: Initializes and sets up an encryption context.

Node 8 ⊢ Node 40: Updates a cryptographic context with given data and returns
the resulting encrypted data.
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Figure 14. Detailed GSN diagram of code execution flow
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Node 8 ⊢ Node 43: Finalizes the encryption or decryption operation, handling
errors and tag management.

Node 8 ⊢ Node 50: Updates the HMAC context with the provided data.

Node 8 ⊢ Node 52: Finalizes the HMAC operation and returns the resulting di-
gest.

The strategy (in node 8) employed is:

Strategy: “The function uses padding to ensure consistent block sizes, encrypts the
padded data using AES in CBC mode with a provided Initialization Vector (IV),
and then signs the resulting ciphertext with an HMAC for authentication.”

The contexts (in node 8) provide additional information about the initialization
of various cryptographic objects:

C1: Initializes an object with a specified block size.

C2: Initializes an object with a cryptographic key.

C3: Initializes an object with a given initialization vector.

C4: Initializes a cipher object with the provided algorithm and mode.

C5: Initializes an HMAC object with a given key and algorithm.

These contexts (C1–C5) correspond to the setup steps required before encryption
and authentication processes can proceed.

The GSN diagrams generated by our tool offer an overview and a detailed expla-
nation of the code’s encryption process. This visual representation facilitates better
understanding and communication among programmers, ultimately enhancing code
comprehension and assisting them in exploring the encryption mechanisms within
the cryptography library.
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