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Abstract. A stroke is a serious neurological condition that occurs due to either
blockages or bleeding in the brain, which can lead to death or long-term disability.
This study aims to enhance the accuracy of disease diagnosis in imbalanced stroke
patient datasets. The model incorporates an artificial immune system algorithm,
whose parameters are fine-tuned using the Firefly algorithm to ensure both stability
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and balanced data. To enhance the performance of the underrepresented class, the
One-Sided Selection method is employed. The model’s effectiveness was tested in
two separate experiments: one utilizing all available features and the other apply-
ing the Artificial Bee Colony (ABC) algorithm to select the most relevant features.
The models were trained using six different classification algorithms: CatBoost,
Light Gradient Boosting Machine (LightGBM), Gradient Boosting (GB), Extreme
Gradient Boosting (XGBoost), Support Vector Machine (SVM), and Logistic Re-
gression (LR). The results were presented using performance metrics. When trained
using all features, the model achieved an accuracy of 93%, specificity of 93%, and
sensitivity of 80%. When trained using the best features selected by the ABC algo-
rithm, the model achieved an accuracy of 93%, specificity of 93%, and sensitivity
of 82%. Compared to previous studies, the proposed model was effective in both
experiments.

Keywords: Stroke disease prediction, artificial immune system, imbalanced data-
set, one-sided selection

1 INTRODUCTION

Stroke is a neurological disorder resulting from vascular obstruction or hemorrhage
in the brain, and its prevalence has been rising in recent years [1, 2]. As the disease
can lead to physical disabilities and long hospitalization periods, it can significantly
affect patients [3]. Early diagnosis is crucial to take necessary precautions against
the risks associated with the disease. However, traditional diagnostic methods, such
as computerized tomography, can be costly and time-consuming, making them less
efficient [4]. Therefore, machine learning techniques have been widely used in re-
cent years as a faster and more cost-effective way of diagnosing diseases, including
stroke [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. A diverse range
of studies has utilized artificial intelligence algorithms and machine learning tech-
niques to diagnose stroke. For instance, Arslan et al. [5] applied three different data
mining approaches—Support Vector Machine (SVM), Stochastic Gradient Boost
(SGB), and Penalized Logistic Regression (PLR) – to a dataset consisting of 80
patients and 112 healthy individuals. The results were satisfactory for the SVM and
SGB models. Similarly, Puspitasari et al. [6] used the ”Stroke Prediction Dataset”
from Kaggle, containing 5 110 records, to predict stroke risk. Their findings showed
that the Random Forest (RF) algorithm outperformed the Decision Tree (DT) in
accuracy.

One of the main challenges in using machine learning for disease detection is
dataset imbalance. This happens when there are significantly more samples of
one class (such as unhealthy individuals) than the other, often due to incomplete
patient information or uneven colletion of collected healthy versus diseased sam-
ples [7, 8, 9]. As a result, machine learning algorithms tend to focus on achieving
high accuracy for the majority class, reducing their effectiveness effectiveness in
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detecting the minority class – those with the disease [10]. Dataset imbalance is
a widely discussed issue in machine learning-based disease detection studies, and
also poses challenges for stroke diagnosis. Past studies have suggested solutions for
missing data, unbalanced datasets, and feature selection in stroke disease detec-
tion [21, 22, 23].

To achieve efficient and accurate stroke diagnosis, several swarm intelligence
algorithms have been employed with varying degrees of success in previous stud-
ies [15, 16]. For example, Yagin et al. [11] applied the gradient boosting tree clas-
sification method to an unbalanced dataset of 5 110 samples from the open-access
Kaggle dataset. To handle the imbalance, they used the Synthetic Minority Over-
Sampling Technique (SMOTE), which produced more realistic results and high-
lighted the importance of balancing in stroke diagnosis preprocessing. Similarly,
Sailasya and Kumari [12] tested several machine learning algorithms – Logistic Re-
gression (LR), DT, RF, K-Nearest Neighbors (KNN), SVM, and Naive Bayes – for
stroke prediction using the same dataset. They addressed missing data through
mean value imputation and dataset imbalance using undersampling, with Naive
Bayes delivering the best performance. Other studies have also tackled similar chal-
lenges. Rana et al. [13] used KNN imputation for missing data and SMOTE-Tomek
for balancing the dataset, finding that artificial intelligence yielded the best re-
sults among the classification algorithms tested. Dev and Malik [14] utilized the
”Stroke Prediction Dataset,” consisting of 43 400 records, and addressed missing
data by averaging. Their work employed the Artificial Bee Colony (ABC) algorithm
for feature selection, achieving more accurate predictions. Liu et al. [15] solved
the missing data problem using the RF algorithm, applying Principal Component
Analysis (PCA) and K-means clustering for balancing. Santos et al. [16] used the
same dataset as Liu et al. and addressed data imbalance using the artificial im-
mune algorithm, optimized according to the Kohonen network for oversampling and
hyperparameter tuning. They employed decision trees generated by the genetic
programming algorithm (DT-GP) in the classification step, achieving satisfactory
performance.

This study focuses on the problem of data imbalance, which is frequently encoun-
tered in datasets used for the diagnosis of stroke disease, and the resulting adverse
effects on the performance of classification methods. In order to provide a solution
to this problem, it proposes an evolutionary data balancing approach-based balanc-
ing model. The model uses the Clonal Selection Algorithm (ClonALG) combined
with the One-Sided Selection (OSS) model and enhanced with the Firefly Algorithm
(FFA) to balance the data. As a result, it has been shown that effective results are
obtained by comparing the performances with various classification methods with
current studies in the literature. In summary, the contributions of this study can be
given as follows:

• A hybrid evolutionary model-based data balancing approach is proposed, which
differs from methods used in the literature, for predicting stroke using an in-
complete and unstable medical dataset.
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• In the Artificial Immune System (AIS), sufficient numbers and varieties of an-
tibodies are generated using a selection algorithm updated according to FFA’s
attractiveness. This contributes positively to data balancing by increasing data
diversity. The high mutation diversity further ensures effective performance
results.

• The mutation data modeled according to the OSS algorithm increased the pa-
tient data rate from 1.8% to at least 15.5% for each training dataset created in
the cross-fold, providing effective results in learning rates.

• For the data balancing problem in the detection of stroke disease, the same
data set was compared with the studies in the literature and it was shown that
effective comparable results were obtained in performance metrics.

• Unlike the literature studies using the same data set, feature selection was made
according to the ABC algorithm which positively affected the performance met-
rics.

The rest of the paper is organized as follows: Section 2 introduces the dataset
and methods used. Section 3 describes the operation of the proposed balancing
model and its algorithm structure. Section 4 presents experimental results and
comparative analyses, and Section 5 concludes with an evaluation of the results and
potential implications for future research.

2 MATERIAL AND METHOD

2.1 Dataset

To evaluate the proposed approach, the stroke prediction dataset [24] was used in
the study. The dataset consists of 43 400 samples with eleven features. Data with
stroke patients in the dataset includes 1.89% of the entire dataset. This dataset
has a typical unbalanced structure, as is often seen in other datasets used in disease
detection. The characteristics and values of the data in the dataset are shown in
Table 1.

In the stroke prediction dataset, some features such as smoking status and Body
Mass Index (BMI) contain missing data, with smoking status having a missing data
rate of 30% and BMI having a rate of 3%. To prevent these missing data from
causing learning problems, used the MissForest algorithm, a Random Forest-based
imputation method. The MissForest algorithm identifies attributes with missing
data, then assigns the missing values by taking mean-median mode or by random
sampling. Additionally, an extra point is created to detect null data. Next, a Ran-
dom Forest model is created to estimate the missing data. After successful model
training, the output is predicted to test the data, and the output is replaced with
the relevant data points. This process is repeated until the desired proximity is
achieved.
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Attributes Values

Patient ID 1–43 400
Gender (gen) Male/Female
Type of Residence Rural/Urban
Avg-glucose (glu) 55–291

Work Type (work)
Never-worked/Government Job/
Children/Self-Employed/Private

Smoking Status Smoked/Formerly/Never
Hypertension (hyp) Yes/No
Married (mar) Yes/No
Age 0.08–82
Heart Disease (htd) Yes/No
Body mass index (BMI) 10.1–97.6

Table 1. Dataset description

2.2 Artificial Immune System

In vertebrates, the immune system consists of B and T lymphocytes that work
together to eliminate harmful antigens. When these cells encounter a threat, B lym-
phocytes produce antibodies that neutralize harmful agents. The genes encoding
these antibodies can undergo somatic hypermutation, enhancing the immune sys-
tem’s ability to recognize and combat future pathogens. B cells producing higher-
affinity antibodies proliferate more than those producing lower-affinity ones, which
strengthens the immune response [25]. Artificial immune systems (AIS) are meta-
heuristic methods inspired by the function of B and T lymphocytes in the biological
immune system. In AIS, the negative selection algorithm identifies harmful exter-
nal agents, while ClonALG is responsible for generating antibodies and applying
mutations to improve the response to these harmful factors. The overall working
mechanism of ClonALG is shown in Figure 1. The ClonALG algorithm incorporates
key evolutionary principles: differentiation, diversification, and natural selection. It
relies on affinity maturation through hypermutation and selects clones based on
their affinity to antigens. Initially, an antibody population is created to represent
the immune system, while antigens represent the external agents to be identified.
Each antibody is evaluated using the AIS fitness function and calculated separately.
The calculated values are copied in proportion to their fitness values, and the cre-
ated copies are mutated to increase antigen recognition. The generated mutations
are then used based on their fitness values, and those not meeting the appropriate
criteria are randomly replaced with other clones.

The proposed balancing mechanism in this study employs an Artificial Immune
System (AIS) based on the clonal selection theory to enhance the quality of sam-
ples within the dataset. ClonALG algorithm prunes unstimulated antibodies and
preserves a particular memory by selecting and cloning the most stimulated anti-
bodies. Random mutations occur after cloning, and then affinity calculations are
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Figure 1. General diagram of the artificial immune system [26]

performed through hypermutation mechanisms, followed by selection based on their
antigenic affinity. The mechanism of hypermutation is directly related to the dis-
tances between antigens and antibodies, and it is proportional to the affinities of the
antibodies. Clones with affinity values below a certain threshold are deleted, while
those with appropriate values are retained to ensure the quality of the generated
samples [27].

2.3 Firefly Algorithm

The Firefly Algorithm (FFA) is an optimization algorithm inspired by the flashing
light behavior of fireflies. Fireflies, which are not distinguished by gender, interact by
emitting light at varying brightness levels. These lights attract other fireflies based
on their distance and brightness. The FFA mimics this behavior, with each firefly
representing a point in the search space. The attractiveness of a firefly is proportional
to its objective function value, and fireflies move toward brighter (more attractive)
neighbors. This movement allows the algorithm to explore the search space and find
near-optimal solutions [28].

In this study, the Firefly Algorithm is employed to enhance the selection step of
the Artificial Immune System (AIS) by updating within specific boundaries. This
approach ensures the generation of more effective and appropriate data clones, thus
improving the overall quality of the solutions. The algorithm uses an objective
function where the maximum iteration value (Tmax) and the lower limit value (Lmin)
are randomly updated within certain bounds during each iteration. This ensures
that the cloning process, governed by the artificial immune system, produces more
effective results. The objective function used in the algorithm is defined as shown
in Equation (1).

Objective Function =
n∑

i=1

x2
i . (1)

The variable n denotes the dimension of the function to be evaluated, with xi

representing each parameter within the lower and upper limit bounds of Lmin and
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Lmax, respectively. In the Firefly Algorithm, the most attractive firefly is first de-
termined through the selection of random positions and parameters, which are then
evaluated based on the chosen objective function. The objective function selec-
tion may vary depending on the specific problem being studied. To provide clarity
on the resulting positions, the function outputs are passed through the parameter
assignment equation denoted by Equation (2).

Xi,k = Lmin,k + rand(0, 1)× (Lmax,k − Lmin,k). (2)

In Equation (2), the index i represents the solution set, and k represents the
index of the selected parameter within that solution. The value Xi,k, which denotes
the selected parameter for solution i at index k, is generated as a random value
between the lower bound Lmin,k and the upper bound Lmax,k. After determining
these parameters, the distance between the calculated values is computed using
Equation (3).

rij =

√√√√ d∑
k=1

(Xi,k −Xj,k)2. (3)

rij is the distance between the ith and jth fireflies. d is the parameter size, and k
is the parameter index. The attractiveness between fireflies, denoted as B(r), is then
calculated using Equation (4), where γ is the light absorption coefficient, typically
set to 1. The attractiveness between fireflies, denoted as B(r), is then calculated
using Equation (4), where B0 represents the base attractiveness or the brightest
firefly’s attractiveness, and γ is the light absorption coefficient, typically set to 1.

B(r) = B0e
−γr2 . (4)

The objective function in this study allows the most attractive features to be
maintained within a specific region based on the FFA cycle. Unlike previous methods
in the literature, during the selection step of the AIS algorithm, a new selection
mechanism is introduced to choose between existing data in memory or newly cloned
data. Instead of selecting based on a fixed value, the selection is made according to
the FFA attractiveness function, which randomly changes within set limits during
each cycle. The experimental results demonstrate that this approach increases the
number and diversity of clones produced by the AIS algorithm, as shown in Section 4.

2.4 Artificial Bee Colony Algorithm

The Artificial Bee Colony (ABC) is a meta-heuristic algorithm that imitates the
foraging and resource-hoarding behavior of bees. In the foraging process, food
sources consist of employed foragers and unemployed gatherers, among other com-
ponents [24]. Bees perform their food-finding behavior in an organized manner, with
worker bees collecting food sources in the hive, onlooker bees monitoring the quality
of the food source, and scout bees searching for new food locations randomly. When
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a scout bee finds a food source, it transforms into a worker bee and takes the nu-
trients from the sources to the hive, performing various dances during this process
and communicating information about the source to the onlooker bee. Based on the
information sent by the worker bees, the onlooker bees determine the best-quality
food source.

In general, the ABC algorithm works by generating a set of S food source lo-
cations, where S represents the size of the worker bees or their food sources. Each
nutrient source is defined as ai = 1, 2, . . . , S and is a vector with dimension D,
which represents the number of parameters for the optimization problem. Initially,
the food source locations are randomly generated, as in Equation (5).

xj
ai
= xj

min + rand(0, 1) ·
(
xj
max − xj

min

)
. (5)

The lower and upper values of the jth parameter of the problem, where j =
1, 2, . . . , D, are represented by xj

max and xj
min, respectively. A random value between

0 and 1 is generated for each of them. Once the location is determined, the fitness
values (nectar amounts) of the food sources are evaluated. For the attendant bee,
the calculation of the neighboring food source location is shown in Equation (6).

V jrand
ai

= xjrand
min + rand ·

(
xjrand
ai
− xjrand

ak

)
. (6)

xjrand
ak

is a randomly selected food source. ak ∈ {1, 2, . . . , S} is a random integer, and
rand is a random value between -1 and 1. D is the number of parameters of the
problem at hand.

pai =
fitnessai∑S
n=1 fitnessan

. (7)

The fitness value probability is denoted by pai , where fitnessai represents the
quality of the food source evaluated by the attendant bee. After calculating the
probability, the onlooker bee finds the neighboring food source using Equation (6)
and evaluates the nectar amount of the new candidate food source. If the nectar
is higher than before, the bee holds the new source position and forgets the old
one. A counter is used for each bee working on the food source, and when the
counter value exceeds the maximum limit, the bee leaves the food source and looks
for new food sources. In this study, the algorithm assigned nutrient sources to each
attribute, and the fitness value in Equation (7) was recorded during the iteration.
The recorded top seven attributes were used for training. This feature selection pro-
cess was applied to each randomly generated training dataset during model creation.
The cloning and selection process is explained in further detail in Section 3. The
experimental results show that this approach increases the number and diversity of
clones produced by the AIS algorithm, as discussed in Section 4.
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3 PROPOSED MODEL

The general operation of the study involves data acquisition, preprocessing, sepa-
ration of data for testing and training, application of balancing algorithms, feature
selection, training, and classification steps. Missing data are imputed using the Miss-
Forest method. After data completion, the data are scaled using the standard scalar
method. In the balancing stage, a balanced dataset is created using the one-sided
selection algorithm. The performance results of the balanced data are then trained
with classifiers in two different ways: using the 7 features determined according to
the ABC algorithm and using all features. The general operation of the model is
illustrated in Figure 2.
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Figure 2. General block diagram of the proposed model

Before the balancing stage, the data is randomly divided into 10 different sets
for training and testing using the 10-fold cross-validation method. The balancing
procedure is applied independently to each of the 10 learning datasets, as illustrated
in Figure 3. The training datasets are balanced and subsequently used for model
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training, and their accuracy is evaluated using the corresponding test dataset. Af-
ter randomly dividing the dataset into 10 different training sets, determined the
training parameters for the minority (stroke patient) and majority (non-stroke pa-
tient) classes. Antibodies were selected at 20% for both classes to be used in the
artificial immune system. First, the minority and majority datasets were processed
separately with their antibodies and antigens in the hybrid ClonALG algorithm to
generate new clone data. Then, the clone data generated for the minority and ma-
jority classes were combined to create a single dataset. This dataset was processed
again in the hybrid ClonALG algorithm with the reserved training data, resulting
in new clone data. In the final stage, the majority class data in the clone data and
the minority class data generated in the previous steps were combined to balance
the dataset.

To achieve successful training results in the unstable stroke dataset, a large
number of efficient stroke patient data is required, and the ClonALG algorithm is
preferred for this purpose as it enables the production of various clones. FFA was
employed in the selection step to increase the number and quality of clones generated
by the algorithm. Algorithm 1 shows the part where FFA is incorporated into the
artificial immune system. Based on the fitness values generated according to the FFA
sphere function, it retains the highest affinity value (q) in the antibody population at
the minimum firefly affinity (f). If the highest affinity (p) in the cloned antibodies
is less than f , the clone data is replaced with the memory. This step maintains
the affinity value within a certain global domain limit and ensures consistent clones
are generated. The FFA algorithm parameters used in the study are presented in
Table 2. The lb and maximum iteration values are randomly determined to prevent
the same attractiveness value from occurring each time and to improve the diversity
of the produced clones.

Parameter Values

Dimension value 2
Lower value (lb) random [1.0, 1.1]
Upper value (ub) 2
Maximum number of iterations random [280, 330]

Table 2. Firefly algorithm parameter values

Different output values are generated by the FFA algorithm in each iteration.
Figure 4 displays the best FFA values obtained by setting the lower limit values as
1.0 and 1.1. The values produced results in the range of 2.0–3.78. The selection step
is performed by keeping the algorithm values within a certain limit, which helps in
generating consistent results in the produced clones.

Input parameters in the first step of the proposed algorithm: The growth factor
of the clone size is determined as β, the size of the population selected for cloning n,
and the number of iterations i. The determined antigen set is sent to the algorithm
one by one. The affinity values of each identified antibody are calculated according
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Figure 4. Representation of the best values obtained according to the proposed FFA al-
gorithm

to the antigen. The calculated values are put in order. The first n antibodies
sequenced are taken, and for each antibody:

B(r) = B0e
−γr2 . (8)

The selected antibody size represented by n and the cloning amplification factor β
values result in the production of clones corresponding to the iteration number x
associated with the loop. Subsequently, the clones undergo mutation through the
Gaussian mutation function. The mutated clone set is denoted as km. The clone
with the highest affinity in the km set is denoted as p, while the antibody with the
highest affinity in the data set is denoted as q. Following the determination of the
most suitable value f through the firefly algorithm, clones with affinities exceeding f
are disregarded. Thus, for each iteration, clones with affinities other than the firefly’s
best fitness value are neglected. The pseudo-code of the algorithm is presented in
Algorithm 1. The initial fixed variables β, n, and G are used, where β represents
the cloning growth factor β = 1, n represents the size of the selected population for
cloning n = 10, and G represents the number of generations G = 1 for Smin and
Smaj clone production, respectively.

The clones generated by the proposed hybrid model were arranged according to
the OSS algorithm to balance the minority and majority classes. Firstly, the antigens
and antibodies belonging to the minority class and those belonging to the majority
class were passed separately through the algorithm proposed in Algorithm 1. The
stroke patient data in the productive clones obtained from both algorithms were
extracted and added to the balanced dataset created for the final stage. Then,
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Algorithm 1 Cloning and Mutation Algorithm

Require: β, n, N , G
1: while the length of antigen data is not reached do
2: for j = 1 to N do
3: for g = 1 to G do
4: Calculate affinity for each antibody
5: Add to affinity list
6: Sort the list
7: end for
8: for i = 1 to n do
9: x← (β ·N)/i

10: Produce x number of clones
11: Mutate the clones (km)
12: p← antibody with the highest affinity in km
13: q ← antibody with the highest affinity in the dataset
14: f ← optimal value determined by firefly algorithm
15: end for
16: if f > q then
17: f ← q
18: end if
19: if f > p then
20: Replace data in memory with cloned data
21: end if
22: end for
23: Append the data from the determined iteration to a .csv file
24: end while

all outputs obtained by crossing the hybrid model with the minority and majority
class’s antigens and antibodies were combined. This new dataset, along with the
entire learning dataset, was used in the hybrid model to generate non-patient data.
While all the data allocated for training were set as antigens, the combined dataset
with the previously formed clones became antibodies. In this step, the data without
stroke patients were also added to the balanced dataset. As a result of these steps,
the patient data rate increased from 1.8% to at least 15.5% for each training dataset
created in the cross-fold. Following the completion of the balancing procedures, the
proposed model was classified into two stages. In the first stage, all features were
evaluated by using. In the second stage, the feature selection process was performed
by the Artificial Bee Colony (ABC) algorithm. The performance of the algorithm
is determined by essential parameters such as the number of features (D), colony
size (S), maximum iteration number, and trial limit. The number of features D = 7
determines the size of each food source in the optimization process (as shown by
Equation (5)). The colony size S = 20, i.e., the number of food sources, was
determined as 20. This means that worker bees will explore 20 different subsets of
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features in each iteration. The algorithm was run for a maximum of 50 iterations
to perform the search efficiently. In each iteration, food sources are trained with
the selected features according to their fitness values, and the results are recorded.
The fitness values determine the quality of the feature sets, and for this stage,
we use Equation (7). In order to maintain the diversity of the population, if a food
source does not show improvement in training results after 20 consecutive trials, it is
randomly replaced with a new source. This mechanism prevents the algorithm from
getting stuck in local minima. This process was applied separately for the selected
dataset in each cross-fold. Each of them was trained according to its own best
attribute. This resulted in better performance compared to using all components in
training. During the concluding phase, the clusters created by the proposed model
were evaluated using six machine learning algorithms.

The classifiers, CatBoost, Gradient Boosting, XGBoost, LightGBM, Logistic
Regression, and Support Vector Machine (SVM), are models that have proven to
deliver high-performance results for various data types [29, 30, 31]. Each classifier
has its own unique characteristics that distinguish it from the others. CatBoost
is typically preferred for categorical data, Gradient Boosting excels in model opti-
mization, XGBoost is highly effective for large datasets due to its speed and accu-
racy, and LightGBM, with its simple structure, also achieves high accuracy on large
datasets [32, 33]. Logistic Regression performs well in binary classification problems,
while SVM, which separates classes using the maximum margin principle, is effective
in complex classification tasks [34, 35]. The reason for selecting these classifiers is
that they offer flexibility, accuracy, speed, and overall performance advantages for
different data types, allowing a comprehensive approach to the dataset.

For the imbalanced dataset, GridSearchCV, a method proven to produce ef-
fective results in various classification applications by optimizing model hyperpa-
rameters, was used to achieve high sensitivity and specificity, especially on the test
set [36, 37]. GridSearchCV is a systematic hyperparameter optimization method in
which a specified range of values for each parameter is exhaustively searched to find
the combination that maximizes model performance [38]. An algorithm is developed
that automatically selects the optimal hyperparameter configuration and optimizes
until it reaches at least 70% specificity and sensitivity on the test data. In this al-
gorithm, parameters such as tree depth (the maximum depth of trees in the model),
learning rate (which controls the step size at each iteration of model training), and
iterations (the number of boosting rounds or trees) are tuned for decision tree-based
algorithms like CatBoost, XGBoost, and LightGBM. For instance, for the CatBoost
algorithm, tree depth is selected between 6, 8, and 10, learning rate between 0.01,
0.05, and 0.1, and iterations between 100 and 200. For XGBoost, tree depth is set
between 3, 6, and 9, learning rate between 0.01, 0.05, and 0.1, and the number of
trees (n estimators) is between 100 and 200. Similarly, in LightGBM, tree depth
is adjusted between -1, 6, and 8, learning rate between 0.01, 0.05, and 0.1, and
the number of trees between 100 and 200. Additionally, for Logistic Regression,
the regularization parameter C is chosen between 0.01, 0.1, 1, and 10, with solver
options ’liblinear’ and ’lbfgs’ being optimized (liblinear is suitable for small datasets
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and linear models, whereas lbfgs is a more appropriate optimization algorithm for
larger datasets). For SVM, the regularization parameter C is selected between 0.1,
1, and 10, with kernel functions ’linear’ and ’rbf’ being utilized (’linear’ uses a linear
decision boundary, while ’rbf’ kernel creates a more complex decision boundary for
non-linear data). By tuning the parameters in this way, the best possible configura-
tion of the models is selected, which leads to more reliable and accurate predictions.
And the performance metrics are constructed comparatively. All the outputs of the
proposed model are presented in Section 4.

4 EXPERIMENTAL RESULTS

In the study, the performance of the balanced dataset is evaluated with six different
learning algorithms, namely, newly developed algorithms such as CatBoost, Light-
GBMBoost, GB, XGBoost, SVM, and LR algorithms, as shown in Table 3. The
evaluation criteria used to prove the effectiveness of these classification algorithms
in the proposed model are, respectively, accuracy (Acc.), sensitivity (Sen.), speci-
ficity (Spec.), and geometric mean (G-Mean). In the first step, when calculating
performance metrics to solve the class imbalance problem, the four metrics based
on the prediction results create a confusion matrix. These metrics are true positive
(TP), false negative (FN), false positive (FP), and true negative (TN) [39, 40].

The accuracy value (Acc.) expresses the accuracy rate of the prediction made
by the model.

Accuracy (Acc.) =
TP + TN

TP + FP + TN + FN
. (9)

Sensitivity is the measure of each category’s ability to predict true positives. It
refers to the rate of correctly guessing that the person is sick.

Sensitivity (Sens.) =
TP

TP + FN
. (10)

Specificity helps predict the true negatives of each category in making. It refers
to the correct guess that the person is not sick.

Specificity (Spec.) =
TN

TN + FP
. (11)

The geometric mean (G-Mean) is used to evaluate the degree of equilibrium of
the algorithm, especially for unbalanced class data, and the larger the value, the
better the result.

G-mean =
√
Sensitivity× Specificity. (12)

SVM, which is one of the classifiers used to evaluate performance metrics, pro-
vides nonlinear classification by determining the optimum plane between the planes
in the data and can organize the data in high dimensions. They can be used as
effective classifiers in studies in different fields [29]. In the proposed study with the
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best seven selections, higher results were produced with SVM in two performance
metrics, with 82% sensitivity and 87% G-Mean. The LR algorithm, which statisti-
cally determines the relationship between the variables, is not much affected by the
connection complexity and noise in the data. Due to this advantage, it has been
one of the preferred methods in this study, and comparable consistent results have
been produced [35].

Boosting algorithms are generally used to strengthen weak learning algorithms
and produce strong results from weak data, thanks to the weights assigned in each
iteration with the iterative learning method. The algorithms used in this study
are Gradient Boosting, Extreme Gradient Boosting (XGBoost), LightGBMBoost,
and CatBoost. Gradient Boosting is an algorithm that advances in training by
calculating the previous error and adding the previous predictions while creating
new predictions. XGBoost was developed with Gradient Boosting and includes im-
provements such as pruning, tolerating missing values, and removing deviations.
Additionally, it is better than Gradient Boosting in terms of avoiding overfitting
and improving training speed [32]. LGBMBoost increases training speed by offering
features such as Gradient-based One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB) and provides convenience in calculations by using variables dis-
cretely [35]. CatBoost, on the other hand, is more effective than other boosting
algorithms in processing data with different structures faster [30].

In the experiment where all features were used, GradientBoost gave the best
accuracy with 94% and specificity with 94% values, SVM gave the best sensitiv-
ity with 80% and G-Mean with 86% values. When the result table is evaluated,
the SVM algorithm produces the most appropriate values since it has the highest
sensitivity and G-Mean values.

Classification Acc. Spec. Sens. G-Mean

CatBoost 0.939 0.942 0.769 0.850
GradientBoost 0.942 0.945 0.738 0.834
XGBoost 0.941 0.944 0.728 0.829
LightGBMBoost 0.939 0.943 0.716 0.821
LR 0.933 0.936 0.772 0.850
SVM 0.929 0.931 0.803 0.865

Table 3. Comparison of performance metrics with all attributes

In the experiment where the seven best features were used, GradientBoost gave
the best accuracy with 94% and specificity with 93% values, SVM achieved the
highest sensitivity with 82% value, and the best G-Mean with 87% value according
to the performance results obtained with the enhancement algorithms. When the
result Table 4 was evaluated, it was seen that the SVM algorithm provided the most
consistent results with 93% specificity, 87% geometric mean, 93% accuracy, and
82% sensitivity in correctly predicting non-patients as healthy and sick individuals
as sick.
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Classification Acc. Spec. Sens. G-Mean

CatBoost 0.937 0.939 0.778 0.854
GradientBoost 0.942 0.946 0.728 0.829
XGBoost 0.939 0.943 0.719 0.823
LightGBMBoost 0.939 0.942 0.734 0.831
LR 0.933 0.936 0.772 0.850
SVM 0.928 0.930 0.816 0.871

Table 4. Comparison of performance metrics with best attributes

For addressing the stroke data balancing problem, Liu et al. [15] performed class
estimation with a real-time classifier with auto-selected hyperparameters using the
same dataset as this study. They solved the missing data problem in the data us-
ing the RF algorithm, and in the data balancing step, using PCA and K-means
clustering methods. In this study, a geometric mean of 47%, a sensitivity of 67%,
a specificity of 32%, and an accuracy of 71% were produced. Building upon the
work of Liu et al. [15], Santos et al. [16] addressed the missing data in the preprocess-
ing step by deleting it. Additionally, they balanced the data using hyperparameters
in the OSS model with the artificial immunity algorithm updated according to the
Kohonen network. Then, using decision trees induced by genetic programming and
arranged in an interpretable structure, they achieved 74% geometric mean, 78%
sensitivity, 70% specificity, and 70% accuracy results. Liu et al. [15] presented their
results comparatively. It is shown in Table 5 that the proposed model produced
results comparable to these previous studies in the literature. In addition, the un-
balanced stroke dataset named ”Raw Data” was trained directly with the proposed
classification model, and the results were presented. Although the proposed model
exhibits very high accuracy (98%) and specificity (99%) for the unbalanced dataset,
the sensitivity rate (0.01%), which reflects the model’s ability to correctly identify
stroke patients, is extremely low. This indicates that the learning approach is not
suitable for this dataset.

This study has achieved higher performance outcomes compared to the work of
Liu et al. [15] and the study by Santos et al. [16]. The success of the applied model
has been demonstrated through all performance metrics, providing strong evidence
of its effectiveness.

5 CONCLUSIONS

This study aimed to increase the reliability of stroke diagnosis based on patients’
physiological characteristics while considering the data imbalance problem. A stroke
data estimation model balanced according to the OSS model was proposed to achieve
this goal using the AIS algorithm selected with FFA. The study provided consistent
results comparable to many performance metrics for the imbalance problem in both
patient and non-patient classes. It has been demonstrated that the proposed model’s
precision and accuracy are more effective than those of the two models proposed
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Study
Pre
Process

Data
Balancing

Feature
Selection

Classi-
fication

Acc. Spec. Sens. G-Mean

[16]
Delete
missing
data

Kohonen
selective
AIS, OSS

– DT-GP 0.70 0.70 0.78 0.74

[15]
Random
Forest

PCA,
K-Mean

– AutoHPO 0.71 0.32 0.67 0.47

Raw
Data

Miss
Forest

–
ABC
Algorithm

GBoost 0.98 0.99 0.01 0.09

Prop. 1
Miss
Forest

FFA
selective
AIS, OSS

– SVM 0.93 0.93 0.80 0.86

Prop. 2
Miss
Forest

FFA
selective
AIS, OSS

ABC
Algorithm

SVM 0.93 0.93 0.82 0.87

Table 5. Literature studies and proposed model comparison

in previous studies in the literature. In future studies, the same model can be
attempted in other datasets with an unstable database, apart from the diagnosis of
stroke disease. Additionally, by determining higher dimensional selection thresholds
in the FFA algorithm, a more homogeneous and diverse production of resulting
clones can be achieved, which may improve educational performance.
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