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Abstract. Identifying a person’s age and gender from speech signal characteristics
poses a significant challenge in personal identity recognition systems, particularly
when security considerations are involved. In signal processing applications such as
speaker recognition, biometric identification, human-machine interface (HMI), and
telecommunication, the estimation of age and gender from voice is a crucial and
demanding problem. In several signal processing domains, deep learning models
have demonstrated remarkable effectiveness. In this paper, we propose a modified
convolutional neural network to identify the age and gender of the speaker using
the characteristics of the MFCC speech. We also included techniques to reduce the
dimensionality of the speech feature set. We tested modified one-dimensional con-
volutional neural networks (1D-CNN) and machine learning models such as support
vector classification (SVC), decision trees (DT), and random forests (RF). The mod-
ified 1D-CNN based on deep learning, along with dimensionality reduction, random
seeding, and cross-validation, is proposed for the recognition of age and gender in
speech. We applied different dimensionality reduction techniques, such as princi-
pal component analysis (PCA) and independent component analysis (ICA), along
with random seeding and various sets of cross-validation. In this study, we used
the Children Speech Recorning Dataset, Biometric Visions and Computing (BVC),
and the Mozilla Common Voice speech datasets for estimating age and gender from
speech. The proposed 1D-CNN model exhibits a promising performance compared
to the state-of-the-art (SOTA) approaches. The models were evaluated and com-
pared with evaluation metrics, such as accuracy. The dimensionality reduction
techniques, selection of speech features, and seeding show a significant impact on
the performance of the suggested model.

Keywords: Age and gender estimation, speaker recognition, MFCC, modified 1D-
CNN, dimensionality reduction, random seed, cross-validation
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1 INTRODUCTION

The ability to identify the age and gender [II 2] of a speaker from speech signals is
essential for speech recognition applications [3] such as biometric identification [4]
based on speech, personal voice assistance [5], and human-machine interfaces [6].
The perception of user preferences, content customization [7], and targeted ser-
vices [§] can benefit from an accurate age and gender classification from speech.
Audio signals can be used to estimate age and gender due to their simplicity and
quantity, making them a valuable source of information [I], 2].

The primary goal of this research is to use several sets of MFCC speech fea-
tures [9] to determine the age and gender [Il 2] of the speaker from speech. To
estimate the age and gender of the person, we employed fundamental machine learn-
ing (ML) [10] and deep learning (DL) [I1] techniques. Support Vector Classification
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(SVC) [12], Decision Tree (DT) [13], Random Forest (RF) [I4] and One-Dimensional
Convolutional Neural Network (1D-CNN) [1] techniques were employed.

The several sets of Mel frequency cepstral coefficients (MFCC) [I5] based on
speech characteristics were chosen with dimensionality reduction methods [16] such
as Principal Component Analysis (PCA) and Independent Component Analysis
(ICA) [I7, 18]. By using these dimensionality reduction strategies, the number of
calculations and the size of the model are decreased. To estimate the age and gender
of the speaker, the most useful characteristics were fed to algorithms for machine
learning (ML) and deep learning (DL). Real-time voice recognition systems [T9] will
benefit from this approach, which will reduce the dimensionality and computational
complexity of the model.

In addition, in this investigation we used random seeding [20} 21] for our machine
learning models. We examined the effectiveness of ML and DL modules for age and
gender recognition [I}, 2] from speech using a cross-validation approach [22] 23].
Cross-validation is an important component of model evaluation. Cross-validation
aids in training the model by utilizing all of the data by breaking it into several folds.
We use voice signals to investigate and contrast the significance of the feature, as
well as to estimate age and gender. In different machine learning tasks, PCA and
ICA [17, 18] have been widely used to convert high-dimensional data into a lower-
dimensional space while preserving the most important variance in the data.

Sikder et al. [24] suggested the Modified CNN models to use the Face emotion
recognition dataset, Gender recognition, and Age recognition datasets to determine
the emotion, age, and gender of children and adults. Kwasny and Hemmerling [25]
proposed a transfer learning-based approach for automated estimation of the gender,
age, and emotion of speakers. Using the TIMIT and VoxCelebl datasets, Maseri
and Mamat [26] explain how a voice recognition system that uses the MFCC fea-
ture extraction technique for the front end and HMM recognition for the back end
performs. The HMM training is done using the Baum-Welch method, while decod-
ing is done using the Viterbi algorithm. Jain et al. [27] suggested that the speech
recognition model suggests the use of several feature extraction methods, including
MFCC, spectrograms, and Croma. Along with other classification algorithms, di-
mensionality reduction techniques such as SVM and PCA are also mentioned. Many
feature extraction methods, including DWT, MFCC, and LDA, were described by
Murugappan et al. [28]. The effectiveness of their model was assessed and compared
for different MFCC and LDA values. To predict age, gender, and mood using the
MFCC features, Zaman et al. [29] used various machine learning algorithms, includ-
ing SVM, DT, and RF. Fulop [30] proposed the speech spectrum in addition to the
feature extraction and speech spectrum analysis methods. Accurate speech spec-
trum determination is also discussed in his paper, particularly for short frames, and
is commonly sought for in a number of domains, including speech processing, recog-
nition, and acoustic phonetics. The Mozilla Common Voice dataset and other voice
datasets were described by Ardila et al. [31] as beneficial to many speech-related re-
search projects. Shafran et al. explained voice-based gender prediction using HMM
and SVM in [32]. The authors examined how well SVM and GMM perform when
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estimating gender based on speech characteristics. Pfibil et al. [33] talked about
using the GMM model to identify the gender and age of a speaker based only on
their voice. Bocklet et al. [34] described how to use GMM and SVM algorithms to
determine the age and gender of a speaker’s speech.

The primary contributions of this paper can be stated as follows:

1. Speech data for children and adults were collected from Children Speech Record-
ing Dataset [35], Biometric Visions and Computing (BVC) [36], and the Mozilla
Common Voice Speech datasets [37], and a new speech dataset was created to
identify the age and gender of the speaker.

2. The modified convolution neural network was proposed for identification of age
and gender from speech using MFCC speech features and dimensionality reduc-
tion techniques [I'7, [18].

3. The performance of several machine learning models was compared with the
proposed modified convolution neural network including the dimensionality re-
duction techniques.

This study is organized as follows. Section [I] shows the introduction and brief
explanation of the problem statement. The characteristics of the voice corpus in
the Children Speech Recording Dataset [35], Biometric Visions and Computing
(BVC) [36] and Mozilla Common Voice dataset 5.1 [37] are described. The arti-
cle’s Section [ also explains the Machine Learning algorithms that use various PCA,
ICA [17, 18], and random seeding [20, 21] techniques. The results of several ma-
chine learning model strategies including cross-validation [22] 23], are presented in
Section [3] of the same text, before the conclusion and future scope are provided in
Section Hl

2 METHODOLOGY

The machine learning algorithms determine the age and gender of the speaker [11 2]
from speech, based on the MFCC speech features [I5]. From the aforementioned
voice dataset, the MFCC speech characteristics are extracted using the librosa func-
tion [9, [15]. The speaker’s age and gender are predicted using the child and adult
speech dataset that was previously discussed. The pipeline for the age and gender
prediction model is displayed in Figure[]] There is a comparison of the ML and DL
methods with various PCA, ICA, cross-validation [22, 23], and random seed [20), 21].
We are obtaining varied levels of accuracy for different PCA and ICA, seed, and CV
values.

2.1 Datasets

Due to the scarcity and unavailability of child and adult-based speech databases,
we created our own data set to estimate the age and gender of the speaker from the
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Figure 1. Pipeline for age and gender estimation from speech
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speech by combining data from the Children Speech Recording Corpus [35], Biomet-
ric Visions and Computing (BVC) [36], and the Mozilla common voice-based speech
corpus [37]. Using age and gender identifiers, we collected 3000 speech samples. Of
the three thousand speech samples, fifteen hundred are from the children’s speech
corpus and biometric visions and computing datasets, while the remaining fifteen
hundred are from the adults’ class in the Mozilla Common Voice Speech Corpus,
as shown in Figure ] Every speech sample includes audio recordings and age and
gender information. Male and female children’s voice recordings were gathered from
both the Children Speech Recording Dataset [35] and the biometric vision speech
(BVC) databases. The acquired speech samples were marked as children and added
to the voice corpus. The 39 statistical MFCC features were retrieved from a speech
dataset using the librosa-based MFCC feature extraction technique [15]. After the
features were extracted, label columns were added to finish the dataset. The MFCC
features of the speakers’ audio files were utilized to ascertain their age and gender.
The age and gender category labels are part of an extracted MFCC speech feature
set from our voice dataset.

2.1.1 Children Speech Recording Dataset

The Children Speech Recording Dataset [35] contains audio recordings of 11 children.
Both male and female children are categorized as children and also included in
the voice corpus. There are nine numbers, five phrases, and many spontaneous
statements are included in the dataset. Children’s vocal utterances from under
14 years old are included in this speech dataset. The dataset was recorded in English,
and both native and non-native speakers contributed their voices. In the Human-
Robot Interaction (HRI) Laboratory at Plymouth University, two front microphones
from the Aldebaran NAO robot, a portable Zoom H1 microphone, and a studio-grade
Rode NTI-A microphones were used to record the speech samples.
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Figure 2. Origin of samples in the experimental dataset

2.1.2 Biometrics Visions and Computing (BVC)

The Biometrics Visions and Computing (BVC) dataset [36] of gender and age from
Vocal Collection contains vocal utterances from 526 people, with one to five record-
ings per person (336 males and 190 females). There are 3964 vocal utterances,
including 2149 male and 1815 female voices. Five distinct English speeches and
their equivalent translated native languages were gathered from the subjects in the
first and second sessions. The set of native languages contains 28 different native
languages. Speech samples of less than 18 years were collected and added to the
child speech dataset.

2.1.3 Mozilla Common Voice 5.1

The predictive model for speaker age estimation was developed using the Mozilla
Common Voice dataset [37]. This dataset consists of 64 000 speech audio files in MP3
format contributed by 61528 unique speakers. Each recording is accompanied by
metadata fields. A subset of 1500 audio files was extracted for this study, containing
metadata for filename, age, and gender. The age groups represented in the dataset
range from teenagers to individuals in their nineties, categorized into decades (e.g.,
twenties, thirties, etc.). The cleaned dataset, comprising selected speech record-
ings, was processed to predict speaker age using Mel Frequency Cepstral Coefficient
(MFCC) features derived from the audio files.
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2.1.4 The Experimental Dataset

In addition to the Mozilla Common Voice dataset, our study incorporated 3 000 voice
samples, divided equally between child and adult speakers. Specifically, 1500 sam-
ples were obtained from child speakers, sourced from the Children Speech Recording
Dataset and Biometrics Vision and Computing (BVC) datasets, while the remain-
ing 1500 samples were from adult speakers drawn from the Mozilla Common Voice
5.1 dataset. Each subgroup (children and adults) consisted of 750 male and 750 fe-
male samples. For this study, individuals under 18 years of age were categorized as
children, while those aged 18 and above were classified as adults.

2.2 MFCC Feature Extraction

In our study, the raw audio data was processed to extract pertinent information
for speech analysis, and the MFCC speech characteristics were extracted using the
feature extraction approach [9]. Mel Frequency Cepstral Coefficients (MFCC) [15]
are used to generate a perceptually appropriate logarithmic scale from the frequency
spectrum, simulating the human auditory system. From the MFCC feature extrac-
tion, 39 characteristics were extracted for each audio frame.

2.2.1 Mel Frequency Cepstral Coefficients (MFCC) Features

The Mel Frequency Cepstral Coefficients (MFCC) [9, [I5] are a ubiquitous technique
in automatic speech recognition (ASR) systems and speech processing [3]. It has
demonstrated efficacy in extracting pertinent information from voice signals while
lowering the data’s dimensionality. Since MFCC draws inspiration from the human
auditory system, it is a good fit for applications involving speech [38]. Several
approaches are used in MFCC extraction, which converts unprocessed audio data
into a condensed representation that emphasizes the important acoustic properties
of speech signals.

R Wt [y Wi

MFCC DCT " L < Mel Scale Filter

Figure 3. MFCC speech feature extraction

i

As seen in Figure B the MFCC feature extraction method [I5] consists of the
following steps: Pre-emphasis, framing, windowing, FFT, Mel filter bank, log scale,
and DCT. A collection of MFCC coefficients is the result of applying the discrete
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cosine transform (DCT) on the log-filter bank energies during the Mel Frequency
Cepstral Coefficients (MFCC) extraction procedure.

We set the window duration to 25ms, the window shift to 10ms, and the co-
efficients for 39 MFCC speech characteristics per 10ms frame. We estimated age
and gender using twelve MFCC features, twelve delta MFCCs, and Double Delta
MFCC’s twelve characteristics, along with one log frame of energy, one delta log
frame of energy, and one double delta log frame of energy.

The variability in the size of MFCC matrices brought on by variations in audio
file length is challenging for machine learning algorithms, which typically demand
fixed-length input vectors. Transforming the MFCC matrix into a fixed-length fea-
ture representation as though the MFCC feature set were restricted to 39 is a more
sophisticated method. In order to reduce the dimension of speech feature sets, we
also used methods such as Principal Component Analysis (PCA) and Independent
Component Analysis (ICA). These techniques produce a fixed-length feature vector
that may be entered into machine learning models by converting the MFCC matrix
to a lower-dimensional space while preserving important information.
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Figure 4. Correlation heat map of speech features
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2.2.2 Correlation Heat Map

These MFCC coefficients are utilized as features for additional analysis, includ-
ing speaker identification [I, 2, B], speech recognition, and other speech-related
tasks [4, Bl [6]. They describe the spectral properties of the audio signal in a com-
pact form. Among the 3000 audio recordings in our dataset, we were able to extract
39 MFCC characteristics for every audio file. The correlation heat map of the ex-
tracted 39 MFCC features is shown in Figure[fl The correlation heat map [39] shows
the correlation between the MFCC speech features. This will explain the correlation
of individual speech features with each other.

2.3 Support Vector Classification (SVC)

The SVC [12], one of the supervised machine learning approaches for binary classifi-
cation and regression issues, is the support vector machine [40]. For age and gender
categorization in Support Vector Machines (SVM), the most popular Gaussian ra-
dial basis function (RBF) is employed as the kernel function. All MFCC speech
samples [I5] are normalized using the min-max scalar data preprocessing approach
to bring all the features to the same level. The RBF kernel SVM classification tech-
nique is used to categorize the generated MFCC feature vectors. Of all the kernel
classification methods, the Gaussian RBF kernel function is used most frequently to
achieve the superior SVM classification of the kernel [12]. The effectiveness of the
algorithm is assessed and contrasted using different PCA, ICA random seeding, and
cross-validation training and testing techniques.

2.4 Decision Tree (DT)

The DT algorithm [I3] is one of the supervised machine learning techniques that
is frequently utilized for regression and classification problems. The decision tree
algorithm. The DT machine learning method is utilized to classify the speaker’s age
and gender using MFCC speech characteristics. As a categorization of outcomes,
the DT includes leaf nodes, internal subbranches, branch nodes, and root nodes.
DT algorithms come in several varieties with varying approaches; they include ID3,
CART, and C4.5 [41]. The decision tree method is mostly applied to tasks related to
knowledge discovery, data mining, and data cleansing. The effectiveness of the DT
algorithm is assessed and contrasted using various PCA and ICA cross-validation
techniques and training and testing seeding.

2.5 Random Forest (RF)

The RF [14] is one supervised machine learning approach used for regression and
classification problems. The RF algorithm is a mixture of many DT algorithms;
by adding additional DT algorithms, the machine learning model’s accuracy will
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increase. Random forest techniques employ a variety of hyperparameters; the algo-
rithm’s accuracy is dependent on these hyperparameters. Because the RF algorithm
uses a mixture of DT, it produces better outcomes than DT algorithms. The effec-
tiveness of the DT algorithm is assessed and contrasted using various PCA, ICA,
cross-validation techniques, and training and testing seeding.

2.6 Modified 1D-CNN

Convolutional Neural Networks (1D-CNNs) are a class of deep learning models pri-
marily used for image and signal processing tasks [T, 2]. 1D-CNNs have shown
remarkable success in various computer vision applications [42]. However, their ef-
fectiveness is not limited to images alone, as they can also be applied to 1D data
sequences, such as time series data, audio signals, and text sequences. In our re-
search, we utilized 1D-CNNs to process the extracted MFCC features [9, [15], aiming
to efficiently learn relevant patterns for age estimation. As of today we do not have
an exact number for hidden layers in 1D-CNN architecture, so we modified the
1D-CNN architecture by changing the number of convolution and max pooling and
padding layers by fine-tuning the number of layers the proposed model showed bet-
ter results compared to all other models. Our 1D-CNN architecture for age and
gender estimation comprises several layers to process the extracted features.

1D-CNN Layer with ReLU Activation Function: The initial 1D-CNN layer
applies convolutional filters to capture local patterns and relationships in the
feature data. The Rectified Linear Unit (ReLU) activation function [43] intro-
duces non-linearity, enabling the network to learn complex representations.

Pooling Layer: The pooling layer samples the feature maps, reducing the spatial
dimensions and retaining important information. Max pooling, commonly used
in CNNs, extracts the maximum value within each pooling window.

Flatten Layer: The flattening layer reshapes the pooled feature maps into a 1D
vector, preparing the data for fully connected layers.

Dense Layer with ReLU Activation: The dense layer contains neurons fully
connected to the flattened features. ReLU activation is applied to introduce
non-linearity and capture complex relationships.

Output Layer with Sigmoid Activation: The final output layer contains a sin-
gle neuron with sigmoid activation, enabling the model to produce a probability
score representing the estimated age.

The input shape of 1D-CNN is determined by the MFCC speech features; how-
ever, because dimensionality reduction techniques are used, the input shape of the
1DCNN varies depending on the input vector sample.

1D CNN Input shape = (batch size, sequence length, number of channels).
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Input size is determined by the kernel size, stride, and padding employed in the
convolutional layer. Possible input size based on the output shape of (None, 37, 64).
For this state, the Kernel Size = 3; Stride = 1; Padding = 0.

The input length can be calculated as follows:

Input Length = (37 — 1) % 1+ 3 =36 + 3 = 39,

where Input shape for Kernel size = 3, stride = 1, padding = 0. The input size
is 39.

In our study, we further explored the impact of dimensionality reduction using
PCA and ICA on the three types of features (MFCC, first derivative, and second
derivative). We applied PCA and ICA [I7, [18] with different values of PCA and
ICA for each feature type, generating reduced feature sets. For each PCA, ICA,
CV, and seed value, we applied a feature set and employed 1D-CNNs to learn and
predict age and gender estimation. This process involved feeding the reduced feature
sets through the same 1D-CNN architecture described earlier and it is depicted in
Figure [}l This is tailored to handle the specific dimensions of the features.

Model: "sequential_86"

Layer (type) Output Shape Param #
convld_13@ (Conv1D) (None, 37, 64) 256
max_poolingld_13@ (MaxPoolinglD) (None, 18, 64) 2}
convid_131 (ConviD) (None, 16, 64) 12,352
max_poolingld_131 (MaxPoolinglD) (None, 8, 64) 2]
flatten_86 (Flatten) (None, 512) 2]
dense_172 (Dense) (None, 1@0) 51,300
dropout_44 (Dropout) (None, 1@@) 2}
dense_173 (Dense) (None, 1) 1e1

Total params: 192,029 (756.12 KB)
Trainable params: 64,809 (250.04 KB)
Non-trainable params: @ (©.00 B)
Optimizer params: 128,020 (500.88 KB)

Figure 5. 1D-CNN architecture

After training and evaluating the models, we observed better accuracy and cor-
rect age estimations. Furthermore, we calculated various metrics, including accu-
racy, F1 score, precision, recall, and support, by analyzing the confusion matrix [44]
generated using a heat map visualization. These metrics provide insights into the
model’s overall performance and its ability to correctly estimate age using different
sets of PCA, ICA, CV, and seed values.



1082 L. K. Durgam, R. K. Jatoth, D. Hladek, S. Ondas, M. Pleva, J. Juhdr
2.7 Dimensionality Reduction

Dimensionality reduction is a technique that reduces a dataset’s features or dimen-
sions while preserving the most important information [I6]. The curse of dimen-
sionality, which occurs when a dataset has more characteristics than it needs, can
cause overfitting and processing inefficiencies in high-dimensional datasets. We can
reduce the feature set by using the cross-correlation method, but if the features are
not correlated heavily, then we cannot use the correlation heat map to eliminate the
features in dimensionality reduction. In such cases, we can go with other dimen-
sionality reduction methods like PCA and ICA. The model’s dimensionality may be
decreased by employing a variety of techniques, including PCA and ICA, without
affecting the model’s performance.

2.7.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) [I7] is a commonly used dimensionality reduc-
tion approach that develops a new collection of orthogonal characteristics known as
principal components of the original data. The variance of these principal compo-
nents is used to order them, and the most significant components are those that
extract the most information from the original dataset. MFCC speech traits [9] [15]
were derived for every speech sample in our investigation. High-dimensional feature
sets are produced by extracting the voice characteristics from each sample. We used
principal component analysis (PCA) on a per-feature-type basis, varying the num-
ber of principal components (K) to achieve the desired reduction in dimensionality.
Possible values for K are 5, 10, 15, 20, 25, 30, and 35.

We reduced each feature set to a smaller collection of principal components
using PCA, which allowed us to keep the most crucial information while removing
the less critical ones. This decrease in dimensionality probably produced models that
were less prone to overfitting and more computationally efficient [45]. The various
machine learning models were used for the age estimation in the classification process
that was followed by PCA. To see how the various reduced feature sets influenced
the model’s performance, we measured accuracy and other metrics while assessing
the model’s performance for each PCA dimensionality level.

The fundamental mathematics of Principal Component Analysis (PCA) can be
stated in a few straightforward steps. PCA lowers the dimensionality of a dataset
by identifying the directions of maximum variance, known as principal components,
and projecting the data onto them.

PCA finds a transformation

T
Z=W Fcentered7

where,
F ¢ RO,

where F is the vector of speech characteristics and R(+/) is a matrix with 4 charac-
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PCA Feature Importance Analysis
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Figure 6. PCA feature importance analysis

teristics (rows) and j samples (columns). Z represents converted data in the new
coordinate system (principal components), and W is a transform matrix comprising
the covariance matrix’s eigenvectors. The primary goal is to identify a set of new
axes (principal components) that maximize the variety of the data.

The explained variance ratio quantifies the portion of the original dataset’s to-
tal variance that can be ascribed to each major component. The explained variance
ratio of a principal component is the ratio of its eigenvalue to the sum of the eigenval-
ues of all the other principal components. From Figure[f], the Cumulative Explained
Variance plot is a visual depiction of the proportion of the dataset’s variance that
can be explained cumulatively by each component. During PCA, the data are con-
verted into a new coordinate system, and the axes are ranked according to how well
they capture the variance in the data.

T
Z;n:1 Ay’

where the numerator denotes the eigenvalue for the " main component. The
denominator indicates the total of all eigenvalues between m and y = 1.

The cumulative explained variation plot is a graphical depiction that illustrates
how much of the dataset’s variation is explained cumulatively by each component.
Cumulative explained variance is used to choose which dimensions to preserve while
minimizing information loss. The explained variance in principal component analy-
sis (PCA) is the percentage of total variance explained by each principal component.
The individually explained variance aids in determining which components account

Explained Variance Ratio =
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for the majority of the variance. Figure [0 depicts the relationship between cu-
mulative explained variance and individual explained variance values, utilizing 39
PCA data points from our entire child and adult speech dataset. The model’s ef-
ficiency rises as the cumulative explained variance increases, and a limited number
of principal components with high individual explained variance are sufficient for
representing the data.
. . . DS
Cumulative Explained Variance Ratio = S———,
2 y=1 My
where the numerator is a representation of the total of the first k£ principal compo-
nents’ eigenvalues. The denominator symbolizes the sum of all eigenvalues for each
of the m components.

2.7.2 Independent Component Analysis (ICA)

The method of independent component analysis [I8] is used to disentangle mixed
signals into their component parts. Applications for Image and Audio Process-
ing, including Biomedical Signal Analysis [46]. A statistical and computational
method called independent component analysis (ICA) is used in machine learning
to disentangle a multivariate signal into its independent non-Gaussian components.
Finding a linear transformation for the data that gets the transformed data as close
to statistical independence as feasible is the aim of the ICA. ICA is an effective
technique for dissecting combined signals into their constituent parts. Numerous
applications, including data compression, image analysis, and signal processing, can
benefit from this. Since ICA is a non-parametric technique, it does not need any
presumptions on the data’s underlying probability distribution. Since ICA is an
unsupervised learning method, labeled examples are not necessary for its applica-
tion to data. Because of this, it can be helpful in circumstances when labeled data
is unavailable. By identifying significant characteristics in the data that may be
used for other tasks, including classification, ICA can be utilized for feature extrac-
tion.

According to ICA, the observed data X is a linear combination of independent
sources S:

X =AS,

where X is Observed mixed signals of i X j, ¢ is the number of signals, j is the
number of samples, A is the mixing matrix of ¢ x i. The objective is to identify
separate sources S using a separation matrix W, such that

S =WX.

Independent Component Analysis (ICA) is a statistical and computer method
for breaking down multivariate signals into statistically independent components.
It is widely used in signal processing, blind source separation, and feature extrac-
tion.
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2.8 Random Seeding

To create random integers in Python, we use the random seeding [20, 21] function.
The pseudo-random numbers are produced by using random seeding. Using some
specific values, the random seed method produces specific random numbers. It is
also called a ”seed value.” The seed function stores the state of a random function
such that for a given seed value, it may produce the same random numbers when
the code is executed repeatedly on the same system or separate machines. The
random number generator may be initialized to a known state by seeding, making it
possible to replicate the same random number sequence. This is helpful for testing,
troubleshooting, and ensuring repeatability in simulations and experiments. If the
same seed is utilized, this makes the number sequence repeatable and predictable.
The numbers produced will vary with each run if a seed is not provided. Random
seeding was used during data shuffle for train-test splits and initiation in PCA and
ICA to achieve consistent findings across numerous runs of the experiment. This
method allows reproducibility and enables meaningful comparisons across different
settings.

2.9 Cross-Validation (CV)

Evaluating a model’s performance on a small amount of data (K-folds) in machine
learning is called cross-validation (CV) [22, 23]. To train the model, the provided
data is divided into many folds, or subsets, of which one is utilized as a validation
set. Each time this process is performed, a different fold is used as the validation set.
Finally, an average of the results from each validation phase is produced, providing
a more trustworthy evaluation of the model’s performance. Cross-validation serves
primarily to avoid overfitting [47], a phenomenon in which a model performs badly
on newly discovered data after being trained excessively well on the training set.
Cross-validation yields a more accurate assessment of the model’s generalization
performance, that is, its capacity to function effectively on novel untested data by
testing the model across several validation sets.

The K-fold cross-validation [22), 23] is one of the several cross-validation pro-
cedures that were used in our research. To compute K-fold cross-validation, we
divided the dataset into K-folds, or subsets. We then trained on all the folds, sav-
ing one fold (K — 1) for the evaluation of the trained model. Using a distinct subset
set aside for testing each time, we iterated K times using this procedure. Due to K-
fold cross-validation’s repetition of the train/test split, it operates K times quicker
than Leave One Out cross-validation. Examining the findings of the comprehensive
testing procedure is easier.

Cross-validation offers a more reliable assessment of the model’s performance on
unknown data, which helps to prevent overfitting. You may compare many models
using cross-validation and choose the one that performs the best overall. By choosing
the values that produce the best results on the validation set, cross-validation may be
used to optimize a model’s hyperparameters, such as the regularization parameter.
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When compared to traditional validation procedures, cross-validation is a more data-
efficient method since it makes use of all the available data for both training and
validation.

2.10 Evaluation Metrics

We further assessed the performance of our age and gender estimation models by
evaluating model testing accuracy, cross-validation, and loss. These metrics provide
deeper insight into how accurately the models classified or predicted whether the
individual was a child or an adult for age and male or female for gender estima-
tion.

The confusion matrix [44] was used to compute the evaluation criteria for the
speech-based age and gender estimate algorithms. Figure [7] shows the confusion
matrix of the 1D-CNN model for age estimation. The formulas for the evalua-
tion metrics used in the context of binary classification. The prediction of the age
(child or adult) of the speakers into two classes based on the confusion matrix is
shown.

Accuracy = ((TP + TN))/((TP + TN + FP + FN)), (1)
Loss = ((FP + FN))/((TP + TN + FP + FN)). (2)

Here TP: The model properly predicted positive classifications. TN: The model
accurately predicted the negative classes. FP: Positive courses are projected wrongly,
while negative classes are categorized inaccurately. FN: Positive categories are im-
properly classified.

Age and gender estimation from speech using various MFCC speech features was
analyzed on ML and DL algorithms using various dimensionality relations, seeding,
and cross-validation [20} 2T, 22, 23]. The proposed 1D-CNN achieves better results
compared to all the other existing methods. Based on the confusion matrix in
Figure , the speaker’s gender (male or female) is predicted and divided into two
classes. The evaluation metrics, like model training, test accuracy, and loss, are
calculated for age and gender estimation models from the confusion matrix using
the above-mentioned formulas as Equations and .

3 RESULTS

The age and gender of the speaker were ascertained using a variety of dimension
reduction, seeding, and cross-validation techniques on ML and DL algorithms. We
successfully used PCA and ICA to reduce dimensionality in several ML and DL
applications, both with and without PCA and ICA feature sets of varied sizes. We
evaluated the accuracy and predictability of age and gender estimates. After using
ML and DL algorithms with different PCA and ICA levels, the Figure [ compares
the test and train accuracy of age and gender models.
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Age and Gender Estimation from speech Accuracy
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Figure 9. Age and gender identification test accuracy

3.1 Age Estimation from Speech

The outcome of the proposed 1D-CCN model was observed and shown in Figure
The individual’s age and gender were estimated using our own dataset. The pro-
posed 1D-CNN outperforms all other machine learning algorithms in terms of ac-
curacy. It was observed and compared with the train and test accuracy of various
machine learning models.

Age Estimation Train Vs Test Acc.

100.5
100

99.5
29
98.5
9
97.5
97
96.5
96
95.5
SVC DT RF 1DCNN

BTrain Acc. ®Test Acc.

Figure 10. Age estimation train vs test accuracy

When compared the models without PCA, the machine learning models with
different PCA levels provide greater accuracy. The train-test split is normally dis-
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persed, with 20 percent going toward testing and 80 percent going toward training.
When comparing the age estimate model’s performance with and without PCA val-
ues, the latter produced superior results. According to Table [T} rather than 39, the
suggested 1D-CNN model produced satisfactory results for PCA values of 30, 25,
15, and 10.

| Model | PCA35 | PCA30 [ PCA25 [ PCA20 | PCA15 | PCA10 [ PCAS5 |

SVC 99.46 99.60 99.33 99.06 99.73 99.20 98.01
DT 98.13 97.73 97.60 97.20 97.60 97.46 97.46
RF 99.20 99.33 98.26 97.60 98.13 98.40 97.33
1D-CNN 99.83 99.54 99.39 99.83 98.52 99.34 98.83

Table 1. Performance analysis of different models with various PCA

The machine learning models obtain better accuracy with different ICA values
than those without ICA values. As is typical, 80 percent of the train-test split goes
toward training and 20 percent toward testing. The age estimate model performed
better when comparing results with and without ICA values. Based on Table [2]
instead of 39 ICA values, the suggested 1D-CNN model produced decent results
at 20 and 10.

| Model [ ICA35 | ICA30 | ICA25 | ICA20 | ICA15 [ ICA10 [ ICAS |

SVC 96.13 97.60 98.80 99.06 99.86 99.33 | 99.33
DT 89.73 91.46 94.53 91.06 94.53 98.13 | 98.26
RF 97.06 98.80 95.86 95.33 97.20 99.06 | 98.53
1D-CNN 98.33 98.83 97.50 99.23 97.50 99.50 | 92.33

Table 2. Performance analysis of different models with various ICA

To estimate age from speech, the seeding strategy [20, 2I] was also used and
tested with ML and DL algorithms. The different ML and DL algorithms yield
varying accuracies depending on the seed value. In comparison to all other seeding
strategies, the seed 40 for 1D-CNN yields greater accuracy, as shown in Figure [T1}

To use ML and DL approaches, training and testing undergo 5, 10, and 15-fold
cross-validation |22, 23]. Table [3 illustrates that, of all the testing and training
techniques, 5-fold cross-validation (CV5) using the suggested 1D-CNN produces the
best results.

3.2 Gender Estimation from Speech

The speakers’ gender was estimated using a dataset we compiled, and the outcomes
of the suggested 1D-CCN, which included a variety of machine learning models,
were noted and displayed in Figure [[2] When compared to all other ML and DL
algorithms, the suggested 1D-CNN produces superior results. The different machine
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Figure 11. Performance analysis using various seed values
| CV \ CVs5 \ CV10 \ CV15 \
Model Test Acc. Loss | Test Acc. Loss | Test Acc. Loss
SvVC 99.1  0.006 99.3  0.050 99.4 0.070
DT 96.5 0.009 97.1 0.011 96.9 0.014
RF 97.6 0.004 97.9 0.007 98.0 0.013
1D-CNN 99.7 0.013 99.66 0.015 99.53  0.042

Table 3. Performance analysis of different models with various cross validation

learning models’ training and test accuracy were noted and contrasted with one

another.

The machine learning models with varying PCA values produce greater accu-
racy when compared to models without PCA. With 20 percent going toward test-
ing and 80 percent toward training, the train-test split is regularly distributed.
When evaluating the performance of the gender estimation model with and without
PCA values, the latter yielded better outcomes. Considering Table [ the recom-
mended 1D-CNN model yielded good results with PCA values of 35 and 30, instead

of 39.

[ Model | PCA35 [ PCA30 | PCA25 | PCA20 | PCA15 | PCA10 [ PCAS |
SVM 96.66 95.60 95.73 95.33 94.53 91.86 | 87.20
DT 88.53 86.53 87.46 89.6 89.46 88.26 | 86.40
RF 95.20 94.93 94.13 95.60 92.67 | 9320 | 91.86
1D-CNN 97.83 97.83 97.33 96.49 97.00 97.00 | 83.18

Table 4. Gender identification with PCA
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Gender Identification Train Vs Test Acc.
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Figure 12. Gender identification train vs test accuracy

Compared to models without ICA, the machine learning models with different
ICA values provide improved accuracy. The train-test split is normally dispersed,
with 20 percent going toward testing and 80 percent going toward training. When
comparing the performance of the age estimation model with and without ICA
values, the latter produced inferior results. From Table [f, rather than 39, the
suggested 1D-CNN model produced satisfactory results for ICA 20.

[ ICA | ICA35 | ICA30 | ICA25 | ICA20 | ICA15 | ICA10 | ICAS5 |
SVM 9480 [ 97.06 | 97.87 | 96.93 | 96.00 [ 96.00 | 90.27
DT 8440 | 8360 | 86.13 | 83.06 | 87.33 | 83.26 | 87.46
RF 91.86 | 9040 | 9146 | 89.20 | 91.60 [ 91.20 | 90.40
ID-CNN | 9583 [ 9733 | 96.66 | 9750 [ 96.83 | 95.83 | 83.83

Table 5. Gender identification using ICA

The gender estimation of the speech process was also tested using the seeding
approach [20, 21] in comparison to ML and DL algorithms. Varying seed values
provide varying degrees of accuracy for various machine learning and deep learning
methods. Figure[l3|illustrates that compared to all other seeding strategies, seed 40
for 1D-CNN yields the highest accuracy results.

Training and testing are subjected to 5-10 and 15-fold cross-validation to use ML
and DL techniques [22] 23]. The results of all the testing methods are best achieved
with cross-validations of 5-fold (CV5) and 15-fold (CV15) using the recommended
1D-CNN, as shown in Table El The average of all k-folds (5, 10, and 15) cross-
validation test accuracy and loss parameters was displayed.
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Gender Identification Using Various Seed
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Figure 13. Gender identification using various seed

| CV \ CV5 \ CV10 \ CV15 \
Model Test Acc. Loss | Test Acc. Loss | Test Acc. Loss
SvC 92.4 0.017 92.80 0.012 92.90 0.021
DT 87.9 0.017 88.31 0.022 88.20 0.026
RF 89.6 0.017 89.30 0.022 88.90 0.027
1D-CNN 97.66 0.066 97.53 0.057 97.66 0.054

Table 6. Gender identification with various cross validation

3.3 Comparison of Age and Gender Estimation with SOTA Approaches

The performance of the suggested model is compared with other age and gender
estimation models shown in Table [} The proposed 1D-CNN model performs better
when utilizing a variety of speech characteristics to determine the age and gender
of the speaker. The results of several age group categories in earlier editions. The
suggested work distinguished between adult and child speech categories and voice
gender using the Mozilla Common Voice, biometric visions (BVC), and Children’s
Voice Recognition databases. The accuracy of the speaker’s age and gender tasks, as
well as a comparison to current literature, are displayed in Table [{] The proposed
effort is promising, despite using only 2 classes, and could yield better outcomes
than previous investigations.

4 CONCLUSIONS

In this paper, we study various machine learning and deep learning architectures
with PCA, ICA, cross-validation, and random seeding to estimate the age and
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Studies Task of Clasf; Dataset Accuracy
[48] Age and Gender 7 | aGender 58.98

[49] Age and Gender 3 | A dataset of 384 speakers Z;f%f;gm
[49] Age 6 | Common Voice 96

[50] Age and Gender 12 | Common Voice 76

[51] Age and Gender 3 | TIDIGITS 92.25

2] Age and Gender 6 | Common Voice 80

[ Age and Gender 10 | Common Voice 94.40
This study | Age 2 | Child and Common Voice | 99.83
This study | Gender 2 | Child and Common Voice | 98.00

Table 7. Performance comparison of proposed method with existing studies

gender of the speaker from speech using various MFCC speech features. In this
work, we implemented SVC, DT, and RF ML algorithms, including modified 1D-
CNN.

The DL-based age and gender estimation using various dimensionality reduc-
tion techniques such as PCA and ICA. The performance of the model was observed
and compared with each other for various sets of MFCC speech characteristics.
MFCC speech characteristics, along with PCA and ICA, played a major role in
identifying the age and gender of the person from various MFCC speech character-
istics.

The PCA and ICA dimensionality reduction techniques were implemented for
age and gender recognition, and results were observed. Instead of using all the
MFCC speech features, we can use highly effective features using PCA and ICA
methods for the identification of the age and gender of the speaker from speech.
Train-test seed and cross-validation techniques were applied, and the performance
was observed with existing literature.

The 5-10 and 15-fold cross-validations were observed, and the results were ana-
lyzed. The modified DL-based 1D-CNN model gives better performance compared
with all other existing models. The 1D-CNN model gave better results with MFCC
speech features along with PCA, ICA, seeding, and cross-validation methods. The
age and gender estimation of the person was identified with the proposed method
and provides good results compared to existing methods.

The main aim of this study is to analyze the importance of speech features with
dimensionality reduction techniques, which are useful for real-time speech recogni-
tion applications. This research helps to provide information about the field of study
and limitations of the existing ML and DL algorithms for age and gender identifi-
cation. We can also implement advanced dimensionality reduction techniques for
real-time speech processing applications. We will try to implement real-time speaker
age and gender from speech using various dimensionality reduction and hybrid deep
learning algorithms for human-machine interface applications.
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