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Abstract. Graph Neural Networks (GNNs) have shown great promise in functional
Magnetic Resonance Imaging (fMRI) analysis due to their ability to capture com-
plex interactions between brain regions. However, existing models often overlook
the brain’s physiological structure and fail to leverage hierarchical information from
brain atlases. In this paper, we propose Hierarchical Bilateral Graph Neural Net-

* Corresponding author


https://doi.org/10.31577/cai_2025_5_1040

Hierarchical Bilateral Graph Neural Network 1041

work (HiBiGNN), a generic architecture that integrates hierarchical information
from brain atlases and incorporates the bilateral structure of the brain, with the
ability to be instantiated with various existing GNNs as its foundation. HiBIGNN
processes a special heterogeneous graph structure, called the Hierarchical Bilateral
Graph (HiBiG), which combines multi-level brain graphs derived from functional re-
gions defined by multi-level brain atlases and divides each brain graph into left and
right subgraphs, thereby modeling multiple types of nodes and relations. During
feature extraction, HiIBiGNN performs deep fusion of features from different types
of nodes using a unique convolution operation (HiBiG-Conv) and generates graph-
level representations via a specialized readout operation (HiBiG-Readout) for graph
classification tasks. To assess the effectiveness of HiBiGNN, we conducted exten-
sive experiments on a graph classification task using an fMRI dataset we collected
from a response inhibition task, testing multiple HiBiGNN instances with different
base GNN models. The results show that our HiIBiIGNN instances outperforms sev-
eral generic GNN models as well as those specifically designed for fMRI analysis,
demonstrating the significant potential of HIBIGNN for future applications.
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1 INTRODUCTION

Unraveling the functional mechanisms of the brain is a key objective of modern
neuroscience. To achieve this goal, researchers utilize advanced imaging techniques
and computational models to capture and interpret complex brain activity patterns.
Among these techniques, functional Magnetic Resonance Imaging (fMRI) can record
brain activity with high spatial resolution, making it widely used in cognitive neu-
roscience, psychology, clinical medicine, and other fields.

Using fMRI data to construct functional brain networks is a common analysis
approach, where the brain networks are modeled as graphs, with nodes correspond-
ing to brain regions and edges representing their connectivity. Typically, the brain
regions are referred to as Regions of Interest (ROIs). Traditional brain network
analysis involves manually defining graph features based on graph-theoretical met-
rics. However, the manual extraction of features demands extensive expertise, and
the quality of the defined features can greatly impact the effectiveness of subsequent
analyses.

In recent years, Graph Neural Networks (GNNs) have gained increasing popu-
larity for their exceptional ability to handle graph-structured data. Representative
works include GCN [I], GraphSAGE [2], GAT [3], GIN [], and others. GNNs can
automatically learn high-level feature representations for nodes, edges, and graphs
from raw input data, avoiding the need for complex feature engineering and captur-
ing intricate patterns more effectively. As a result, GNNs have achieved excellent
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performance across a wide range of applications, including social recommendation,
knowledge graph completion, drug discovery, traffic prediction, text classification,
and others.

The remarkable performance of GNNs has made them a popular choice for fMRI
analysis, with various models being proposed and applied to different tasks, particu-
larly graph classification tasks, such as gender prediction, cognitive states classifica-
tion, and classification between neurological disorder patients and healthy controls.

Using GNNs for fMRI-based graph classification generally involves two steps:
constructing graphs from fMRI data, and applying GNNs to extract graph-level
representations. Typically, a single brain atlas is used in the first step to parcellate
brain regions. To construct a brain graph, the average fMRI time series for each
region are extracted to derive node features, and the functional connectivity (FC)
between regions is calculated to define the edges. Since the nodes in the graph
correspond to brain regions from a single atlas, this graph structure is flat and does
not have a hierarchical organization.

However, from a neuroscience perspective, the brain can be parcellated at dif-
ferent scales, forming a tree-like hierarchical structure. At a coarser level, the brain
can be divided into major lobes, such as the frontal lobe, parietal lobe, and temporal
lobe. At a finer level, a lobe can be subdivided into gyrus-level regions: for example,
the frontal lobe comprises regions such as the inferior frontal gyrus, middle frontal
gyrus, and superior frontal gyrus. Moreover, a gyrus-level region can be further sub-
divided into subregions: for instance, the inferior frontal gyrus can be partitioned
into the orbital part, triangular part, and opercular part.

Brain networks built on parcellations at varying scales incorporate information
at different levels. Inspired by the hierarchical structure of brain parcellations in
neuroscience, we propose that constructing and integrating multi-level brain net-
works, rather than relying on a single level, can yield richer graph-level feature
representations.

Additionally, existing research typically treats the brain as a unified entity when
constructing brain networks, assuming uniform information exchange mechanisms
across all brain regions, without distinguishing between the left and right hemi-
spheres. However, from a structural standpoint, the two cerebral hemispheres have
a degree of independence and are interconnected through the corpus callosum. Neu-
roscientific studies indicate that the left and right hemispheres are functionally asym-
metric, with the corpus callosum facilitating communication between them to ensure
smooth overall functioning.

Considering the physiological structure and collaborative pattern of the left and
right hemispheres, we propose that when constructing brain networks, treating the
internal connections within each hemisphere and the connections between them as
distinct relations and applying graph convolution operations with different parame-
ters can better simulate the pattern of information exchange between left and right
brain regions, thereby leading to more meaningful node-level feature representations.

By simultaneously considering the hierarchical parcellations of the brain and
the interaction pattern between the left and right hemispheres, we propose that
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the brain network can be represented as a Hierarchical Bilateral Graph (HiBiG),
which contains multiple types of nodes and multiple types of connections. Cor-
respondingly, we have developed the Hierarchical Bilateral Graph Neural Network
(HiBiGNN) that takes HiBiG as input, fusing features from different types of nodes
and relations during the graph learning process to obtain more comprehensive fea-
ture representations.

The main contributions of this paper are as follows:

1. We introduce the HiBiG structure for fMRI-based brain network construction,
addressing the underutilization of hierarchical information from brain atlases
and the neglect of the brain’s physiological structure.

2. We propose the HiBiGNN architecture, which takes HiBiG as input and can be
instantiated with existing GNNs, integrating multi-level information and simu-
lating interaction between left and right brain hemispheres.

3. The proposed method has been validated on a self-collected fMRI dataset and
outperforms several existing models, demonstrating the effectiveness of HiBiG
structure and HiBiGNN architecture.

2 RELATED WORK
2.1 Graph Neural Networks for fMRI Analysis

In recent years, GNNs have been increasingly used for fMRI-based brain network
analysis. Numerous studies have concentrated on deriving graph-level representa-
tions from static brain networks and identifying important brain regions for specific
tasks. Yan et al. [5] proposed GroupINN, which introduces a node grouping layer to
coarsen brain networks, significantly reducing the number of model parameters and
identifying the most task-relevant brain subnetworks in prediction tasks. Li et al. [6]
introduced BrainGNN, which considers the variability between ROIs by designing
an ROI-aware graph convolutional layer that applies different kernel weights to dif-
ferent ROIs, and uses an ROI-selection pooling layer to identify important ROIs.
Cui et al. [7] proposed IBGNN, which uses an edge-weight-aware message passing
mechanism to address the issue that both positive and negative values may occur in
correlation-based edge weights, and introduces an interpretable module that learns
a globally shared edge mask to identify important brain regions and connections.
Kan et al. [§ introduced FBNetGen, which incorporates a learnable brain graph
generation module that integrates the generation of brain graphs and the training
of GNNs into an end-to-end pipeline, making the generated brain graphs more rel-
evant to specific downstream tasks compared to the traditional two-stage method
where brain graphs are first manually constructed and then GNNs are trained. Fur-
thermore, Kan et al. [9] presented Brain Network Transformer, which combines the
characteristics of GNNs and Transformers by using attention mechanisms to learn
the connection strengths between ROIs and considering modular-level similarities
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within brain networks, and introduces an orthonormal clustering readout operation
that generates cluster-aware node embeddings through unsupervised soft clustering
and orthonormal projection, leading to more meaningful graph-level representations.

Additionally, some studies focus on extracting both temporal and spatial fea-
tures simultaneously from dynamic brain graphs. Kim et al. [T0] developed STAGIN,
which uses dynamic FCs to construct a sequence of brain graphs instead of a static
graph as its input, and employs a spatio-temporal attention mechanism to obtain dy-
namic graph feature representations, along with a novel readout module and Trans-
former encoder to achieve interpretability in both temporal and spatial dimensions.
Yan et al. [I1] proposed Multi-Head GAGNN, which uses a spatial multi-head at-
tention graph U-Net to capture the spatial features of multiple brain networks, and
introduces a temporal multi-head guided attention network to model the temporal
characteristics guided by the extracted spatial information. Liu et al. [I2] proposed
BrainTGL, which integrates the advantages of GCNs and LSTMs to capture spatio-
temporal features from both fMRI time series and dynamic graph structures, and
employs an attention-based temporal graph pooling method to eliminate irrelevant
functional connections and data inconsistency.

The aforementioned studies have made various explorations in the feature ex-
traction of brain networks. However, they typically use a single brain atlas to divide
brain regions and extract fMRI time series, without considering the hierarchical
structure of brain functions or the distinctive connectivity patterns between the left
and right hemispheres. Given that fMRI data is inherently 4D images, it can be
processed into different graph structures, and we believe that designing more infor-
mative graph structures can better exploit the potential of fMRI data, which requires
the development of backbone models specifically tailored to the new structures for
effective feature extraction.

2.2 Heterogeneous Graph Neural Networks

Traditional GNNs operate on homogeneous graphs where all nodes and edges be-
long to the same type, whereas many real-world applications involve heterogeneous
graphs with multiple node and edge types. Heterogeneous Graph Neural Networks
(HGNNSs) are designed to handle such scenarios by incorporating different types of
information and relations within heterogeneous graphs.

To address the complexities of heterogeneous graphs, various efforts in HGNNs
focus on extending traditional homogeneous GNNs to accommodate multiple node
and edge types. Schlichtkrull et al. [I3] proposed R-GCN, which extends the mes-
sage passing framework of GCN to multi-relational graphs by decomposing the het-
erogeneous graph into multiple homogeneous subgraphs and learns different trans-
formation matrices for different relations. Zhang et al. [I4] developed HetGNN,
which handles structural and content heterogeneity in heterogeneous graphs by us-
ing different encoders for different content types (e.g., text or images), aggregating
neighbor features separately, and combining features using attention mechanisms.
Hu et al. [15] introduced HGT, which uses a heterogeneous mutual attention mech-
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anism to obtain contextualized node representations, incorporates relative temporal
encoding for dynamic graphs, and proposes an efficient mini-batch sampling algo-
rithm for Web-scale graphs.

Additionally, metapath-based approaches constitute a significant branch within
the field of HGNN research. Wang et al. [I6] proposed HAN, which accounts for the
rich semantic information in heterogeneous graphs by designing metapaths and em-
ploying hierarchical attention mechanisms at both node-level and metapath-level to
learn the importance of nodes and metapaths simultaneously. Fu et al. [I7] developed
MAGNN, which converts node information into a unified feature space, aggregates
structural and semantic information within each metapath, and integrates informa-
tion from all metapaths using attention mechanisms. Yun et al. [I8] introduced
GTN, which performs soft selection of edge types to handle noisy graphs, automat-
ically generates metapaths based on the data, and transforms the input graph into
useful metapath graphs for convolutions, offering greater scalability than manually
defined metapaths.

Currently, there is a lack of application of heterogeneous graphs in brain net-
work analysis. Inspired by R-GCN and other studies, we model brain networks as
multi-relational heterogeneous graphs in our study, employing graph convolutional
operations with distinct parameters for each relation during message passing, and
aggregating messages from various relations to update node features of brain regions.

3 METHODOLOGY
3.1 Hierarchical Bilateral Graph Structure

In this section, we propose the Hierarchical Bilateral Graph (HiBiG) structure,
illustrated in Figure [ which is specifically designed for fMRI-based brain network
construction.

The construction of HiBiG involves two steps: the construction of Hierarchical
Graph (HiG) and the construction of Bilateral Graph (BiG). The following parts
will sequentially introduce HiG and BiG, and then explain how to combine them to
obtain HiBiG.

3.1.1 Construction of HiG

HiG is composed of multiple levels of subgraphs, where each subgraph is generated
based on different hierarchical levels of brain parcellations, such as lobe-level, gyrus-
level, and subregion-level. Within a subgraph, nodes represent brain regions at the
corresponding level of parcellation, and the features of these nodes are summaries
of fMRI time series for those regions. Connections within a subgraph represent the
relation between brain regions at the same level (e.g., between a gyrus and another
gyrus), similar to those in single-level graphs of previous studies. Additionally,
there are connections between different levels of subgraphs (e.g., between a lobe and
a gyrus), representing the relation between regions at different levels of parcellations.
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Figure 1. Construction of Hierarchical Bilateral Graph (HiBiG). The construction of the
HiBiG begins by extracting multi-level time series from 4D fMRI using multi-level atlases.
Functional connectivity matrices are then calculated from time series to establish intra-
hemispheric connections. Multi-level brain graphs are then constructed, with each level
divided into left and right hemisphere subgraphs, adding inter-hemispheric connections
and establishing inter-level connections between subgraphs at different hierarchical levels,
resulting in HiBiG.

Formally, we define HiG as a multi-relational graph Gy = (Vi1, En, Ru), where
Vh is the node set, Ey is the edge set, and Ry is the relation set. The edge set
Ey contains both intra-level edges and inter-level edges, and the relation set Ry
contains the corresponding relations:

Eu = Fingratevel U Einter-level, (1)

RH = Rintra—lcvcl U Rintcr—lcch (2)

Specifically, there are L hierarchical levels, and the subgraph at level i is denoted
as G; = (V;, E;), which contains only intra-level relation. Consequently, the entire
node set V' can be expressed as the union of node sets at all levels:

L

v = JV, (3)

and the intra-level edge set Fiytratever 1S the union of edge sets at all levels:

L
Eintraflevel = U EZ (4)
i=1



Hierarchical Bilateral Graph Neural Network 1047

= . X ( N
- T Level i - Level i N )
o — -
= & = e N
Level i : Level i+1 ( Level i+1 Level i+ ( )
Level i+1 N =7
Intra-level (Correlation) Inter-level (Inclusion)

a) HiG: Including intra-level connections derived from the correlation matrix, and inter-level connections
defined by the inclusion relation

Left Right Left Right
z SN a0 -~ =<
@ % @ — ) (Lo
&~
R \ /N 7 - U O—O
Left Right =~ =~ Right =~ =~

Intra-hemi (Correlation) Inter-hemi (Diagonal)

|
E

Left

b) BiG: Including intra-hemispheric connections derived from the correlation matrix, and inter-hemispheric
connections defined by a diagonal matrix

oo SEH 333 s 5[ i
Left Right Right Level i+l
Level i+1 coe cee Level i+1 cee cee
Intra-hemi (Correlation) Inter-hemi (Diagonal) Inter-level (Inclusion)

¢) HiBiG: Combination of HiG and BiG, including intra-hemispheric connections, inter-hemispheric con-
nections, and inter-level connections

Figure 2. Connections in HiG, BiG and HiBiG

Given the hierarchical structure of HiG, constructing it requires multi-level fMRI
time series as input, which can be denoted as X = [Xi, Xs,..., X1], where X; €
RNixd Here, N; is the number of regions at level i, and d is the length of the time
series, which corresponds to the input feature size for each node.

To establish intra-level connections at level i, the correlation matrix C; € RN:xN:
is computed from the time series of all regions at this level. The intra-level adjacency
matrix 4; € [0, 1]V is derived from C; by applying a threshold to retain significant
connections. The computation of C; and A; is as follows:

C; = Correlation(X;), (5)

1, i Ci(lk) >,
Ai(l k) = (6)

0, otherwise.
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Here, Correlation(-) is used to compute the correlation matrix of X;, with available
metrics including Pearson correlation, partial correlation, etc., and C;(I, k) repre-
sents the correlation value between regions [ and k at level i. Edges in C; are
filtered by @ based on a specified threshold 7, such that only connections with
correlation values greater than 7 are retained in the adjacency matrix A;. It is
important to note that the correlation matrix C; can contain negative values, rep-
resenting anti-correlated regions. However, in this study, the threshold 7 is set to 0,
and therefore, negative correlations are not considered.

The connections between levels (i.e., inter-level connections) are defined by the
inclusion relation of regions, as shown in Figure . For example, the inferior frontal
gyrus (IFG) is part of the frontal lobe, thus a connection is established between the
IFG and the frontal lobe. Assuming i represents a coarser level and j represents
a finer level, the inter-level adjacency matrix A;; € [0, 1]Y*N: between level i and
level j is defined as follows:

17 if Bi,l 2 Bj,kn
Aij(l, k) = (7)

0, otherwise,

where B;; and B, represent brain regions [ and £ at levels ¢ and j, respectively.

In short, HiG is a multi-level graph structure that features two types of connec-
tions: intra-level and inter-level connections. This design allows HiG to not only
handle interactions between brain regions at the same level, but also capture the
hierarchical relation between regions at different levels.

3.1.2 Construction of BiG

BiG divides a single-level graph structure into two subgraphs, representing the left
and right hemispheres, respectively. Nodes are assigned to the corresponding sub-
graph based on whether they belong to the left or right hemisphere. Connections
within each subgraph constitute intra-hemispheric connections, whereas connections
between the two subgraphs constitute inter-hemispheric connections.

Formally, we define BiG as a multi-relational graph Gy = (V, Eg, Rp), which
can be derived from a traditional single-level brain graph Giag = (Virad, Etrad) by
first partitioning it into left and right hemispheric subgraphs Gr, = (V1, Er) and
Gr = (Wi, Er), and then handling intra- and inter-hemispheric connections sepa-
rately.

Nodes in V;,.q are assigned to either V1, or Vg based on their anatomical locations.
For simplicity, we assume that each node in V;, has a corresponding node in Vg, thus
N;, = Ngr = %, where N is the total number of nodes in Gi,aq. Consequently, the
node set Vg of BiG is defined as the union of node sets from both hemispheres, and
it is identical to Vi aq:

Ve = Viraa = VLU VR. (8)

The edge set Eg contains both intra-hemispheric edges and inter-hemispheric edges,
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and the relation set Rp contains the corresponding relations:

EB = Eintra—hcmi U Eintcr—hcmb (9)

RB = Rintra—hemi U Rinter-hemi' (10)

Here, intra-hemispheric edge set Eintrahemi = Fr, U FR.

Let k € {L,R} denotes the left or right hemisphere, and the intra-hemispheric
adjacency matrix Ay € [0, 1]¥**Ne represents the connectivity within each hemi-
sphere. Specifically, for each hemisphere, Ay is directly derived from the original
adjacency matrix Agyaq € [0, 1]N *N of Guad by selecting the rows and columns cor-
responding to nodes in V:

A = AlVi, i, (11)

where A[Vj, V;] denotes the submatrix of A with rows and columns indexed by
the nodes in Vj. This ensures that the intra-hemispheric connectivity within each
subgraph remains consistent with the original graph.

The inter-hemispheric adjacency matrix Apr represents connectivity between
left and right hemispheres, as shown in Figure . When Ni, = Ng = N/2, we
can sort the nodes in V7, and Vg such that corresponding nodes in the left and right
hemispheres have the same index. With this setup, we define the inter-hemispheric
adjacency matrix Apr as a diagonal matrix:

. 1, ifi=y,
ALR(Zv.]) = (12)
0, otherwise,

where only the corresponding connections between left and right brain regions are
set to 1, whereas all other connections are set to 0.

By dividing the graph into left and right subgraphs and applying appropriate
adjacency matrices, BiG provides a clear framework for modeling both intra- and
inter-hemispheric interactions.

3.1.3 Combining HiG and BiG to Form HiBiG

As discussed above, HiG is a hierarchical composition of the traditional single-level
graph structure in previous studies, whereas BiG is a division of the single-level
graph into two subgraphs corresponding to the left and right hemispheres. These
two approaches provide complementary perspectives on brain connectivity: HiG
captures the hierarchical organization of brain regions, whereas BiG focuses on the
interaction between the left and right hemispheres.

Building on these concepts, HiBiG is a combination of the HiG and BiG struc-
tures, consisting of multi-level hierarchical subgraphs, with each hierarchical sub-
graph further divided into left and right hemispheric subgraphs. This design allows
HiBiG to consider both the hierarchical representation of the brain and the interac-
tion pattern between the left and right hemispheres simultaneously.
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Formally, we define HiBiG as a multi-relational graph Guyg = (Vig, Eus, Rus),
where Vgg is the node set, Eyg is the edge set, and Rpgg is the relation set. The
hierarchical subgraphs are denoted as G; = (V;, E;, R;), where i indexes different
hierarchical levels. Each hierarchical subgraph G; is divided into two hemispheric
subgraphs G;1, = (Vir, Ei, Rir) and Gig = (Vir, Eir, Rir), representing the left and
right hemispheres.

There are three types of connections in HiBiG, as shown in Figure , each
treated as a distinct type of relation:

Inter-level connections: These connections exist between the hierarchical sub-
graphs, capturing the hierarchical associations between different levels of brain
parcellations. For example, a connection might link a lobe-level brain region to
a gyrus-level region within that lobe.

Inter-hemispheric connections: These connections exist between the left and
right hemispheric subgraphs at the same level, modeling the interactions between
the two hemispheres. For example, a connection might link a brain region in
the left hemisphere to the corresponding region in the right hemisphere.

Intra-hemispheric connections: These connections exist within each hemisphe-
ric subgraph, representing the internal connectivity within each hemisphere. For
example, a connection might link two brain regions within the same hemisphere
that have a high correlation.

We denote the three types of connections as Einter-level, Finter-hemi, 1A Fintra-hemis
with the corresponding relation types being ringer-level, Tinter-hemi, 80d Tingra-hemi- 1 here-
fore, F and R in HiBiG can be expressed as:

E= Einter—level U Einter—hemi U Eintra—hemia (13)
R= Rinter»level U Rinter—hemi U Rintra—hemi~ (14)

Furthermore, the three types of connections can be defined by the following
formulas, where Level(-) and Hemi(+) represent the hierarchical level and hemisphere
of a node:

Eintertevel = {(vs,7,v;) | Level(v;) # Level(v;) (1)
15

A Hemi(v;) = Hemi(v;),r € Rinter-level }»

Einter-hemi = { (i, 7,v;) | Hemi(v;) # Hemi(v;)
(16)
A Level(v;) = Level(v;), 7 € Rinter-hemi }+

Eintra—hemi = {(Ui, T, Uj) ‘ Heml(vl) = Hemi(vj) ( )
17
A Level(v;) = Level(v;), T € Rintra-hemi }-

In short, HiBiG is a heterogeneous graph structure that contains multiple types
of nodes and relations. This allows the HiBiGNN architecture to effectively integrate
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multi-level information and facilitate interaction between the left and right brain
hemispheres.

3.2 Hierarchical Bilateral Graph Neural Network

In this section, we propose the Hierarchical Bilateral Graph Neural Network (Hi-
BiGNN) architecture, illustrated in Figure , which is developed to exploit the
hierarchical and bilateral structure of HiBiG.

To give an overview, HiBIGNN takes the HiBiGs constructed from fMRI data
as input, updates node features through graph convolution, and summarizes graph
features for graph classification. Two types of layers play crucial roles in this process:
the convolutional layer, denoted as HiBiG-Conv, and the readout layer, denoted as
HiBiG-Readout. The HiBiG-Conv layer facilitates information exchange between
nodes and their neighbors across multiple relations, and the HiBiG-Readout layer
aggregates node features from hemispheric and hierarchical subgraphs to obtain
graph-level representations.

Collectively, these components are tailored to take advantage of HiBiG’s unique
hierarchical and bilateral structure, improving the model’s ability to extract compre-
hensive features from complex fMRI data. The following parts will provide a detail
to the components of HiBiGNN.

3.2.1 HiBiG-Conv Layer

As shown in Figure 3], the HiBiG-Conv layer integrates the HiG convolutional layer
(HiG-Conv) and the BiG convolutional layer (BiG-Conv), thereby leveraging both
the hierarchical and bilateral structure of HiBiG. The HiG-Conv layer can facilitate
information exchange across different levels, and the BiG-Conv layer can manage
interaction within and between left and right hemispheres. Consequently, the HiBiG-
Conv layer can simultaneously handle all three types of relations: intra-hemisphere,
inter-hemisphere, and inter-level.

The computations performed by HiBiG-Conv, HiG-Conv, and BiG-Conv layers
can be described using unified formulas, where only the relation set R changes,
whereas the message passing process remains the same. Specifically, for HiBiG-
Conv, R = Rintra-hemi U Rinter-hemi U Rinter-level. The message passing process can be
divided into two steps:

Step 1: Generating messages under each relation.

Firstly, for each relation » € R, we use a specific graph convolution operation
GConv, to generate the node message under this relation:

a£m+1)(7') = GConv, (hgm)’ {him) | = M(U)}) , (18)

where GConv, is an instance of graph convolution operations from existing
GNNs (e.g., GCN, GIN, GAT, GraphSAGE), K™ is the feature of node v at
layer m, and N,.(v) is the neighborhood of node v under relation r.
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Figure 3. Framework of Hierarchical Bilateral Graph Neural Network (HiBiGNN). HiG-
Conv: Fusion of features from multiple hierarchical levels. BiG-Conv: Fusion of features
from the left and right hemispheres. HiBiG-Conv: Combination of HiG-Conv and BiG-
Conv, fusing features from multiple hierarchical levels and both hemispheres. HiBiGNN:
Two stacked HiBiG-Conv layers, each followed by a HiBiG-Readout layer, with the ex-
tracted graph feature passed through an MLP to produce the graph classification output
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Step 2: Aggregating messages from all relations.

Secondly, we aggregate messages from multiple relations to update node features:

(erl) <Z a(m+1) ) (19)

reER

where o is an activation function (e.g., ReLU).

Combining the above two steps, the complete formula for the multi-relational
graph convolution operation (HiBiG-Conv, HiG-Conv, or BiG-Conv) is:

Rt = & (Z GConv, (h{™, {h™ | u € Nr<v)})> : (20)

TrER

When drawing Figure [, we illustrated HiBiG-Conv as a nested structure of
HiG-Conv and BiG-Conv to make the diagram clearer, which first fuses intra-hemi
and inter-hemi features, and then fuses inter-level features. Since the fusion method
is addition, this nested fusion process is equivalent to summing the features from
several relations simultaneously, which is consistent with Equation .

From the above description, it can be seen that HiBiG-Conv (as well as HiG-
Conv and BiG-Conv) allows for various existing graph convolution operations to be
used as GConv,.. This flexibility makes HiBiG-Conv a versatile convolution method,
adaptable to different graph datasets without being confined to a specific computa-
tion process. Specifically, GConv, for each relation r € R can either be identical or
distinct across all relations depending on the specific requirements of the dataset.

Furthermore, we can easily adapt existing GNN models by replacing their graph
convolutional layers with HiBiG-Conv layers, thereby enabling them to handle the
HiBiG structure as input. To achieve this, one only needs to apply the same con-
volution operation across all relations in Equation (20]). For instance, to replace
the graph convolutional layers in GraphSAGE with HiBiG-Conv, one could set
GConv, = SAGE-Conv,.

When constructing a HiBiGNN, a simple approach is to first build an ordinary
GNN, referred to as the base GNN, which accepts traditional single-level graphs
without hierarchical composition or bilateral division, and then transform it into
HiBiGNN by modifying its convolutional layers and readout layers. For example, if
a HiBiGNN instance is constructed based on GraphSAGE, we denote it as HIBIGNN-
SAGE.

In this study, we first construct several base GNNs and then transform them
into HiBiGNNs, where all relations use the same type of GConv, operation, rather
than selecting different GConv, operations for different relations.

The choice of GConv, is crucial for HiBiG-Conv, and different datasets may
be better suited to different base GNNs. Moreover, combining multiple types of
GConv, might yield better performance.
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3.2.2 HiBiG-Readout Layer

The HiBiG-Readout layer is applied after each HiBiG-Conv layers to aggregate the
node features of the HiBiG and obtain a graph-level feature representation. For
each HiBiG-Readout layer, the readout process involves three steps:

Step 1: Global pooling of hemispheric subgraphs.

Firstly, to summarize the feature of each hemispheric subgraph after the m-th
convolutional layer, we adopt two types of global pooling methods: mean pooling
and max pooling. The two pooling results are then concatenated to form the
feature of the hemispheric subgraph:

gi(;m = mean (Hf?) || max (Hi(,z")) , (21)

where gi(,z,n) denotes the feature of the hemispheric subgraph G, obtained from
the m-th readout layer, ¢ € {1,...,N;} denotes the hierarchical level, and

k € {L,R} denotes the hemisphere (left or right). H(™ = {h;m) | v; € Wk}

is the node feature set of node set Vj; after the m'™ convolutional layer. The
mean pooling function mean(-) computes the channel-wise average of the node
features, and the max pooling function max(-) computes the channel-wise max-
imum. The operator || denotes the concatenation operation.

Step 2: Aggregation of subgraph features from the left and right hemi-
spheres.

Considering the different contributions of the left and right hemispheres to graph
classification tasks, we employ a weighted average approach to fuse the features
of the left and right hemispheric subgraphs at each hierarchical level, thereby
obtaining the feature for each hierarchical subgraph:

(m)

o = wrgy” + wrgsh )) ; (22)

‘ wL—i—wR(

where gi(m) denotes the feature of the hierarchical subgraph G; obtained from the
m'™ readout layer, and wy,, wg are learnable weights representing the importance
of the left and right hemispheres. The normalization factor 1/(wy, +wg) ensures
that the scale of the final feature vector remains consistent. The same set of wr,
and wg is shared across all hierarchical levels to ensure a consistent contribution
from the left and right hemispheres to all hierarchical subgraphs.

Step 3: Aggregation of subgraph features from multiple hierarchical
levels.

After obtaining the features of hierarchical subgraphs, we concatenate them to
obtain the feature of the overall HiBiG:

g = g™ | g™ - ) gt (23)



Hierarchical Bilateral Graph Neural Network 1055

where ¢(™ is the feature of the HiBiG obtained from the m™ readout layer, and
L is the number of hierarchical levels.

Once the above three steps are completed, we concatenate the graph features
obtained from all readout layers to get the feature for graph classification:

ganal = g | g® |- || g, (24)

where M is the number of readout layers.

Finally, we input gan. into a Multilayer Perceptron (MLP) to obtain the classi-
fication result:
zZ = NILP(gﬁnal), (25)

where z € R represents the probability distribution over the C classes, and the
class with the highest probability is selected as the predicted class.

3.2.3 Loss Function

In this study, we simply use the cross-entropy loss for training, which is a common
choice for classification tasks. The cross-entropy loss measures the discrepancy be-
tween the predicted probability distributions and the true labels. For a given sample
with true label y and predicted probability distribution z, the cross-entropy loss is
defined as:

c
L=— Z y; log(z), (26)

where y; is the binary indicator (0 or 1) for class i, z; is the predicted probability
for class i, and C is the number of classes.

Minimizing this loss helps the model adjust parameters, boost correct class prob-
abilities, and penalize errors, improving classification performance.

4 EXPERIMENTS AND RESULTS
4.1 Dataset

We used a self-collected event-related fMRI dataset from a response inhibition task,
specifically a Go/No-Go lexical decision task, to assess the effectiveness of our pro-
posed model. In this task, subjects were presented with a series of two-character
Chinese words, including real words and pseudowords, and were instructed to press
a key when a real word occurred (Go trial) and to stop key press when a pseudoword
occurred (No-Go trial). The Go and No-Go trials correspond to the response and
inhibition states, respectively.

Data were collected from 20 subjects, each completing four sessions. Each session
contained 150 trials, including 120 Go trials and 30 No-Go trials. The trials were
arranged in a designed order, with a No-Go trial occurring after a variable-length
sequence of Go trials.
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4.1.1 Data Preprocessing and Transformation

We first applied standard preprocessing to the fMRI data using SPM12 under MAT-
LAB, including slice timing correction, motion correction, spatial normalization, and
spatial smoothing. Since event-related fMRI data cannot be directly used as input
in trial-based brain state classification, we transformed the preprocessed fMRI time
series into beta series using the Least Squares All (LSA) method [I9], applying
a General Linear Model (GLM) to estimate trial-wise beta values. Specifically, after
this transformation, each trial corresponds to a 3D beta map composed of beta val-
ues, similar to how each time point corresponds to a 3D fMRI volume. As a result,
each session produced 120 beta maps for Go trials and 30 beta maps for No-Go
trials.

4.1.2 Data Cleaning and Balancing

To ensure data quality, we removed the error trials, including error Go trials and
error No-Go trials. Error Go trials refer to trials in which subjects failed to press the
key when a real word occurred, whereas error No-Go trials refer to trials in which
subjects pressed the key when a pseudoword occurred.

Since Go trials were more frequent than No-Go trials, we then performed data
balancing by downsampling the beta maps of Go trials to achieve a 1:1 ratio. Specif-
ically, we retained 24 Go and 24 No-Go beta maps for each session, as the accuracy
of the 30 No-Go trials in most sessions is above 80 %, and the accuracy of the 120 Go
trials in most sessions is above 90 %. For sessions with more correct No-Go trials, we
only selected a subset of them, whereas for sessions with insufficient correct No-Go
trials, we resampled the correct trials to ensure that the number of beta maps was
consistent across all sessions and all subjects. The Go trials we selected were the
ones immediately preceding the No-Go trials, as choosing these trials better avoids
subjects predicting whether to press the key based on the pattern of Go and No-Go
trial occurrences, and instead ensures that their decision to press the key is based
on the word presented.

4.1.3 Graph Construction

We then constructed a graph dataset from the beta maps, using the Brainnetome
Atlas [20] to define regions at multiple hierarchical levels, and extracting average
beta series from each region. Specifically, there are 246 brain regions at the subregion
level, 48 at the gyrus level, and 14 at the lobe level, with the number of regions in
the left and right hemispheres being half of these amounts, respectively.

Since graph construction requires sequential data to compute connections, a sin-
gle beta map cannot be used to construct a graph. Therefore, we concatenated beta
maps from multiple trials with the same label (response or inhibition) to obtain a
4D beta map, and then constructed the graph in the same way as for 4D fMRI data,
as detailed in Section 3] Specifically, we concatenated 5 beta maps to form one
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sample, applying a sliding window with a stride of 2 on the balanced data, producing
10 samples per session for each label. Thus, each subject contributed 40 response
samples from the Go trials and 40 inhibition samples from the No-Go trials, result-
ing in a total of 800 response samples and 800 inhibition samples across the entire
dataset, with 1600 samples in total.

4.2 Experimental Setup

4.2.1 Model Implementation

We implemented HiBiGNN using the PyTorch library in a Python environment,
with PyTorch Geometric utilized for efficient graph data processing and graph neural
network operations. The HiBiGNN model consists of two HiBiG-Conv layers and
two HiBiG-Readout layers for feature extraction, followed by an MLP module for
the final graph classification. The output dimension of HiBiG-Conv layers is 32, and
the MLP includes two fully connected layers, each with a hidden dimension of 32.

4.2.2 Dataset Splitting and Cross-Validation

To ensure reliable evaluation, the dataset in Section 1] was split into 5 folds for
cross-validation. The split was based on subject, with each fold containing data
from 4 subjects (320 graphs). Specifically, in each iteration of cross-validation, 1
fold was used as the test set, and the remaining 4 folds were further divided, with
3 folds forming the training set and 1 fold forming the validation set. This setup
ensured that the overall ratio of training, validation, and test sets remained 3 :1: 1
across all iterations, resulting in 960 graphs for training, 320 for validation, and 320
for testing, with a balanced 1 : 1 ratio of response and inhibition samples in all
sets.

After obtaining the split dataset in each iteration of cross-validation, we repeated
the training and evaluation process using 5 different random seeds for each data
split to ensure the reliability of the results, yielding a total of 25 runs (5 data
splits x 5 random seeds). The performance metrics of each model in the subsequent
comparison and ablation studies are based on the averages of these 25 runs.

4.2.3 Training Settings

The batch size was set to 32, and the maximum number of training epochs was
set to 50, with early stopping applied if validation accuracy did not improve for 20
consecutive epochs. The model with the highest validation accuracy was saved and
evaluated on the test set. We used the Adam optimizer for model optimization,
setting the learning rate to be—3 and the weight decay to le—3. In addition, we
used the StepLR scheduler to adjust the learning rate, with a step size of 5 epochs
and a gamma of 0.5, which helps the model converge more effectively.
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4.3 Comparison with Baseline Models

Accuracy | Precision | Recall | F1 Score
I T Meth
nput ype ethod (%) (%) (%) (%)
86.39 85.79 | 89.10 87.00
GON 6.56) | (9.21) | (549) |  (5.41)
GIN 76.65 7758 | 77.23 76.84
Generic (5.53) (7.74) | (7.75) (4.79)
GNNs | 0 87.00 87.89 | 87.48 87.22
Traditional (5.11) (8.33) | (6.06) (4.22)
Graph 90.43 90.63 | 91.33 90.61
GraphSAGE | a0y | (7.78) | (5.99) | (4.24)
. 59.46 60.27 | 58.70 58.61
GNNs | DrainGNN (3.90) (4.62) | (11.95) (6.17)
for fMRI 60.89 62.10 | 62.10 60.73
FBNetGen (4.14) (6.19) | (13.48) |  (6.01)
83.68 8319 | 86.28 84.33
GCN 6.21) | (383) | (468) |  (4.93)
GIN 83.38 83.06 | 86.28 84.18
HiBiG Generic (7.02) (9.80) | (4.44) (5.30)
(Homo) GNNs | 0 86.83 87.38 | 87.65 87.07
(4.60) (8.06) | (5.59) (3.69)
90.49 91.49 | 90.33 90.52
GraphSAGE (3.66) (7.02) | (6.04) (3.26)
HiBiGNN- 94.68 93.97 | 96.15 94.89
GCN (4.19) (6.85) | (2.38) (3.71)
HiBiGNN- 85.33 85.57 | 87.70 86.00
. GIN (6.89) | (10.34) | (5.74) (5.27)
HiBiG Ours HiBiGNN- 94.75 93.96 | 96.35 94.98
GAT (4.49) (7.02) | (2.18) (3.97)
HiBiGNN- 94.84 94.34 | 96.10 | 95.04
SAGE (4.17) (6.92) | (2.53) (3.71)

Table 1. Performance comparison with baseline models

We compared our HiBiGNN with multiple baseline models, including generic
GNNs and fMRI-specific GNNs, to evaluate the overall performance of HiBiGNN.
The generic GNNs included GCN, GIN, GAT, and GraphSAGE, each consisting
of two convolutional layers with an output dimension of 32 and two readout layers
using a concatenation of mean pooling and max pooling, consistent with the set-
tings of our HiBiGNN. The fMRI-specific GNNs included two popular open-source
models:

1. BrainGNN, whose structure was consistent with the original implementation,
and
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Figure 4. Comparison of models within convolutional method groups on accuracy. Mod-
els are grouped into four categories based on convolutional methods (GCN, GIN, GAT,
GraphSAGE), within each of which the accuracies of three models over 25 runs are com-
pared: (1) GNNs (Trad) — generic GNNs with traditional graph structure; (2) GNNs
(HiBiG) — generic GNNs with HiBiG (Homo); (3) HiBiGNNs (Ours) — our proposed
models.

2. FBNetGen, which employed a version with Bi-GRU as the time series encoder.

The comparison results are summarized in Table [T, reflecting the average scores
and standard deviations of four metrics from 25 runs described in Section 2.2 with
accuracy, precision, recall, and Fl-score as evaluation metrics. A more intuitive
comparison of accuracy is shown in Figure @l which presents the comparison of
models within four convolutional method groups.

In particular, we considered the impact of the input graph structure. Traditional
graph structure used in previous fMRI-based studies employed only a single level
(subregion-level) of brain regions as nodes, whereas the proposed HiBiG structure
employs multi-level brain regions, resulting in more nodes and different connectivity
patterns. If baseline models are compared using only traditional graph structure as
input, whereas HiBiGNN uses HiBiG, the observed performance differences could
result from either the graph structure or the model architecture. To ensure a fair
evaluation, we transformed the heterogeneous HiBiG into homogeneous graph struc-
ture, denoted as HiBiG (Homo), preserving all nodes and edges though converting
them into a single type. Specifically, both HiBiG and HiBiG (Homo) use all three
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levels (subregion-level, gyrus-level, and lobe-level) of brain regions, and a discussion
on the number of hierarchical levels is provided in Section [f.4.1]

In our experiment, generic GNN models use both the traditional graph struc-
ture and HiBiG (Homo) as input, whereas fMRI-specific GNN models use only the
traditional graph structure, as they are incompatible with the HiBiG (Homo) struc-
ture. In contrast, our proposed HiBiGNN model use the heterogeneous HiBiG as
input. Since HiBiGNN can be instantiated with different graph convolution opera-
tions, we applied those from GCN, GIN, GAT, and GraphSAGE to create different
HiBiGNN instances, denoted as HiBiGNN-GCN, HiBiGNN-GIN, HiBiGNN-GAT,
and HiBiGNN-SAGE;, respectively.

Notably, the convolution operations of GIN, GAT, and GraphSAGE support
message passing between different types of source and target nodes, whereas GCN
does not inherently support this functionality. Inspired by R-GCN, we modified the
GCN-Conv operation, replacing the degree normalization with a simple averaging
operation to support message passing in heterogeneous graphs.

The results in Table[I] and Figure [f] indicate that all HIBIGNN instances outper-
form their corresponding generic GNN models, whether the input of the generic GNN
models is traditional graph structure or HiBiG (Homo). In particular, HiBIGNN-
GCN, HiBiGNN-GAT and HiBiGNN-SAGE surpass all baseline models, with an
accuracy improvement of over 4%. The two fMRI-specific models (BrainGNN and
FBNetGen) perform poorly on this task, which may be due to their use of node
correlations from FC as node features, whereas other models (generic GNNs and Hi-
BiGNNs) use data series as node features. Since we constructed graph samples using
short data series, more information is embedded in the series themselves rather than
in the correlations calculated from them. Therefore, using data series themselves as
features is more effective.

It is noteworthy that HiBIGNN-SAGE and GraphSAGE achieve the highest
accuracy within their corresponding groups (HiBiGNNs and generic GNNs), whereas
HiBiGNN-GIN and GIN show the lowest accuracy. Specifically, HIBIGNN-GIN and
GIN with traditional graph structure perform considerably worse than other models
in their respective groups, with accuracy declining by more than 9%, suggesting
that GIN is much less effective in extracting relevant features for this task.

To assess the impact of input graph structures, we compared generic GNNs using
traditional graph structure with those using HiBiG (Homo) as input. However, the
results in Table [l] and Figure [4| indicate that, on its own, the use of HiBiG (Homo)
instead of traditional graph structure does not lead to consistent improvements or
declines. Specifically, when using HiBiG (Homo), GIN show a substantial improve-
ment, GCN show a slight decrease, whereas GAT and GraphSAGE show minimal
change.

In contrast, pairing HiBiG with HiBiGNNs rather than generic GNNs leads to
improvements across all metrics, highlighting HiBiGNNs’ ability to better leverage
the rich information in HiBiG. Similarly, it can be concluded that complex input
structures, such as HiBiG, require specialized models like HiIBiGNN to unlock their
full potential.
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4.4 Ablation Study

In this section, we conducted comprehensive experiments to evaluate the impact of
the HiBiG structure and the components of HiBiGNN.

4.4.1 Convolutional Layer and Input Graph Structure

Input Method Levels | Bilateral Accur(i;)})/ Premb(l(;j)l Re(c(;(,)l)l Fl SC((;S
Traditional | Graph- 1 90.49 91.49 | 90.33 90.52
Graph SAGE (3.66) (7.02) | (6.04) (3.26)
9 92.34 92.16 93.10 92.44

HiG HiGNN- (3.57) (5.72) | (4.55) (3.25)
SAGE 3 93.63 93.37 | 94.25 93.70

(2.87) (4.76) | (3.35) (2.70)

BiG BiGNN- 1 v 93.49 94.05 | 93.53 93.61
SAGE (4.07) (6.80) | (3.23) (3.65)

9 v 94.21 93.73 | 95.63 94.45

HiBiG HiBiGNN- (4.52) (7.46) | (3.07) (3.97)
SAGE 3 v 94.84 94.34 | 96.10 95.04

(4.17) | (6.92) | (2.53) | (3.71)

Table 2. Ablation experiments on convolutional layer

The proposed HiBiG incorporates both hierarchical and bilateral structures, and
the design of the HiBiG-Conv layer in HiBiGNN is closely related to this approach.
Therefore, the impacts of the two structures should be examined separately. Since
the comparison experiments revealed that HIBIGNN-SAGE performed the best, we
subsequently conducted ablation using models with SAGE-Conv.

Specifically, we compared the performance of the following models: GraphSAGE
with traditional graph structure (single-level, no hierarchical or bilateral structure),
HiGNN-SAGE with HiG (multi-level, hierarchical structure only), BiIGNN-SAGE
with BiG (single-level, bilateral structure only), and HiBIGNN-SAGE with HiBiG
(multi-level, both hierarchical and bilateral structures). We also explored the effect
of adding hierarchical levels by sequentially incorporating the gyrus-level and lobe-
level regions into the subregion-level graph.

As shown in Table B} both HIGNN-SAGE and BiGNN-SAGE outperform the
baseline GraphSAGE, and HiBiGNN-SAGE perform the best. This demonstrates
that both hierarchical and bilateral designs are effective in this task, and their
combination is more effective than either alone.

Furthermore, we also found that increasing hierarchical levels can improve model
performance. Specifically, a generic GNN can be viewed as a single-level HIGNN,
and a BiGNN can be viewed as a single-level HiBiGNN. In this perspective, both
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HiGNN and HiBiGNN show a gradual improvement in accuracy and other metrics
as the number of hierarchical levels increased from 1 to 3.

4.4.2 Readout Layer

Accuracy | Precision | Recall | F1 Score

Type Method (%) (%) (%) (%)
Substitution | Mean Pooling Only (%30?;5)) (%2;? (?))542? (i?)li:;)
of Global . 94.53 94.48 | 95.10 94.62
Pooling Max Pooling Only (3.78) (5.98) | (4.14) (3.52)
Substitution Average for Both 94.15 93.61 95.35 94.33
f Suberanh Hemi and Level (4.32) (6.58) | (3.20) (3.92)
OA ube Ep Average for Hemi 94.55 94.17 | 95.58 94.70
BETCBAUON | and Concat for Level (4.21) (6.56) | (3.72) (3.87)
Standard i 94.84 94.34 | 96.10 95.04
Method HiBiG-Readout (4.17) (6.92) | (2.53) (3.71)

Table 3. Ablation experiments on readout layer

The computation in the proposed HiBiG-Readout layer includes three steps:
global pooling of hemispheric subgraphs, aggregation of the left and right hemi-
spheric subgraph features, and aggregation of hierarchical subgraph features. The
global pooling step employs both mean pooling and max pooling, the hemispheric
aggregation step employs weighted average, and the hierarchical aggregation step
employs concatenation.

To assess the impact of the global pooling and aggregation methods, we replaced
them with alternative methods and compared the results to the proposed standard
model.

As shown in Table [3 for the global pooling step, using both mean pooling
and max pooling (as in our standard model) yields better results than using one
alone, and max pooling makes a greater contribution than mean pooling in this
task. For the aggregation steps, the hemispheric aggregation using weighted average
outperforms the one using simple average (denoted as ‘average’), the hierarchical
aggregation using concatenation (denoted as ‘concat’) performs better than using
average, and our standard model adopts the optimal methods in these steps.

Notably, for hierarchical aggregation, if the subgraph feature sizes of different
levels are not the same, additive aggregation (such as simple or weighted average)
cannot be used. As a result, concatenation offers better versatility in such scenarios.
However, for hemispheric aggregation, concatenation is unnatural since the left and
right subgraphs are simply splits of a traditional graph, and additive aggregation
can maintain consistency with the graph feature size extracted from a traditional
graph by generic GNNs, so we did not consider using concatenation for hemispheric
aggregation.
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4.4.3 Inter-Hemispheric Connectivity
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Figure 5. Comparison of inter-hemispheric connectivity methods on accuracy. Two con-
nectivity methods are compared: 1) corr — brain region signal correlation, and 2) diag
diagonal matrix which connects corresponding regions in the left and right hemispheres.

In the proposed HiBiG structure, the connections between the left and right
hemispheric subgraphs are defined using a diagonal matrix, with connections existing
only between corresponding left and right brain regions. Whereas in the traditional
graph structure, there is no distinction between the left and right brain regions, and
all connections are derived from the correlation matrix.

We assessed the impact of the two inter-hemispheric connectivity method. For
both traditional graph structure and HiBiG, we constructed the inter-hemispheric
connections using both a diagonal matrix and a correlation matrix (denoted as ‘diag’
and ‘corr’).

To assess the impact of the two inter-hemispheric connectivity methods, we con-
structed the inter-hemispheric connections for both the traditional graph structure
and HiBiG using a diagonal matrix and a correlation matrix (denoted as ‘diag’ and
‘corr’). We then compared the performance of GraphSAGE with the two types of
traditional graphs and the performance of HiBIGNN-SAGE with the two types of
HiBiGs.

As shown in Figure [5] the performance of GraphSAGE models with traditional
graph structure is comparable between the two connectivity methods, whereas the
performance of HiBiGNN models with HiBiG is evidently better with ‘diag’ con-
nectivity than with ‘corr’ connectivity, which indicates that the ‘diag’ connectivity
is more useful for HiBiGNN with HiBiG, supporting better information exchange
between the left and right hemispheric subgraphs.
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4.5 Visualization of t-SNE Results

To compare the feature extraction ability of different models, we used t-SNE to
visualize the input graph data as well as the features extracted by HiBiGNNs and
generic GNNs from both the training and test sets.

To prepare the input features for t-SNE, since graph data cannot be directly
used by t-SNE, we concatenated the feature vectors of all nodes, and visualized the
resulting vector. For the models, we visualized the graph-level feature obtained after
the readout operation, which serves as the input to the classification MLP.

As shown in Figure 6] regardless of whether the input graph data have a single-
level traditional graph structure or a multi-level HiBiG structure, the two classes
are not well separated in the 2D projection space.

Among generic GNNs, GraphSAGE extracts features with a clearer boundary
between the two classes compared to other models. This is consistent with the results
in Table[T] where GraphSAGE outperforms the other generic GNNs on accuracy and
other metrics.

Among HiBiGNNs; all instances except HiBiGNN-GIN extract features that
distinctly separate the two classes, outperforming generic GNNs in this regard and
demonstrating good generalization on the test set, with HiBiGNN-SAGE showing
the clearest separation between the classes. In contrast, HiIBIGNN-GIN fails to
achieve a clear separation, which is consistent with its lower accuracy compared to
the other HiBiGNN instances.

5 DISCUSSION
5.1 Implications and Applications

This study highlights the potential of HiBiGNN in improving fMRI-based brain
network analysis by incorporating both hierarchical and bilateral structures. It is
worth noting that HiBiGNN is a generic architecture that can be instantiated with
different graph convolution operations, providing greater flexibility for adapting to
a wider range of datasets.

Since the input HiBiG of HiBiGNN differs from traditional graphs only in struc-
ture, and the data for HiBiG construction are still average time series of brain
regions, HiBiGNN can be naturally applied to various graph classification tasks
from previous studies, such as gender classification, cognitive state classification,
and disease prediction. Therefore, similar to previous models, HiBIGNN can also
bring benefits to neuroscience, psychology, clinical medicine, and other fields.

5.2 Limitations and Future Work
Despite its advantages, HiBiGNN has several limitations. One key limitation is that

the process of graph construction and feature extraction is not end-to-end. Conse-
quently, the quality of the constructed graph data may significantly influence the
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performance of the model. Future work could explore methods for incorporating
the graph construction process into the training pipeline, enabling the generation
of connections between nodes through learnable methods, and automatically iden-
tifying multi-level brain regions to overcome the constraints of predefined brain
atlases.

Another limitation is that, due to the multiple types of nodes and relations
in heterogeneous graphs, HiBiGNN cannot directly apply node selection methods
used in homogeneous graphs, such as top-k pooling, to preserve important nodes
for graph classification tasks. The diversity of nodes and edges necessitates tailored
node selection techniques for effective feature extraction. Future work could focus
on developing specialized node selection methods tailored to the HiBiG structure,
enabling HiBiGNN to preserve important nodes when handling the diversity of nodes
and relations.

The interpretability of HiBiGNN is also a challenge, as HiBiGNN does not in-
herently compute node-level importance, making it difficult to analyze the contri-
butions of different brain regions to the model’s prediction. Future work could inte-
grate attention mechanisms or techniques for improving interpretability to enhance
the understanding of learned representations, thereby facilitating neuroscientific in-
sights.

Additionaly, extending HiBiG and HiBiGNN to othter brain imaging modalities,
such as electroencephalography (EEG), is a promising research direction. Similar
to fIMRI, EEG data can also be used to construct brain networks, with nodes rep-
resenting electrodes and edges defined by signal correlations. Consequently, we can
aggregate EEG electrodes into coarser regions to create multi-level brain nodes, and
then assign these nodes to hemispheric subgraphs based on their location, which
yields HiBiG and enables the application of HiBIGNN to EEG data.

6 CONCLUSION

In this paper, we propose the novel HiBiG structure and the innovative HiBiIGNN
architecture to address the underutilization of hierarchical and bilateral informa-
tion in fMRI-based brain network analysis. Evaluation on a self-collected fMRI
dataset from a response inhibition task demonstrates the superiority of HiBiGNN
over several generic and fMRI-specific GNN models, emphasizing the importance of
considering both hierarchical and bilateral aspects in brain network analysis.

Future research could focus on how to automatically identify multi-level brain
regions without relying on predefined brain atlases, and how to construct inter-
hemispheric and inter-level connections in HiBiG using learnable methods. Fur-
thermore, we believe that the hierarchical and bilateral structures are not just
beneficial for fMRI analysis, and it is also a promising direction for extending Hi-
BiG and HiBiGNN to other modalities of brain imaging data for further explo-
ration.
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