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Abstract. Serverless computing brings another revolution to cloud computing as
function-as-a-service (FaaS), where the applications are abstracted as a group of
functions. Serverless applications are cost-effective and manage resources efficiently,
but the lack of performance modeling and energy optimization affects the poten-
tial users’ broad adoption of serverless computing. Performance enhancement and
energy optimization are necessary to guarantee serverless applications’ service level
agreement (SLA). This review paper presents various performance metrics in server-
less computing, including cost, scalability, latency, energy consumption, resource
utilization, fault tolerance, and response time. Based on these metrics, various
performance modeling and energy optimization techniques have been explored to
reduce energy consumption and improve system efficiency. Furthermore, the review
investigates software platforms for implementing serverless computing, including
AWS Lambda, Apache OpenWhisk, Azure Functions, and Google Cloud Func-
tions, highlighting key findings and limitations. This comprehensive review serves
as a guide for researchers, directing them toward new and promising research di-
rections in the field.
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1 INTRODUCTION

Serverless computing represents an emerging paradigm in cloud computing used
to deliver applications and services. This innovative approach involves executing
small code snippets in the cloud without managing the underlying resources on
which the code operates. Despite not eliminating the existence of servers, serverless
computing shifts operational tasks, such as scalability, fault tolerance, maintenance,
monitoring, and resource provisioning, to the cloud providers [I]. For the underlying
infrastructure of cloud service providers, serverless computing also shifts the whole
workload toward cloud vendors [2] and rapidly gains the attention of academics and
IT practitioners. Serverless computing is an emerging cloud computing model that
provides a platform to efficiently develop applications and bring them to market
without managing the underlying infrastructure [3].

Serverless computing differs from traditional cloud computing because the in-
frastructure and platform on which the program runs are hidden from the users. In
this way, users only have to do what their applications need, and the rest is left to
the service provider [4]. There are some benefits of using serverless computing com-
pared to cloud computing, such as cost savings, scalability, energy efficiency, ease of
application development, and better resource utilization, but the rise of serverless
computing has introduced some performance-related issues [5]. Unlike virtual ma-
chines and containers, serverless scenarios have a faster startup time but may still
suffer from unpredictable and low performance [6].

Performance models addressed various performance-related issues in serverless
computing. The performance modeling in serverless computing applications ensures
that the cost and performance metrics of the workload remain within an acceptable
range, thereby improving the quality of service [7].

1.1 Distinguishing Cloud Computing and Serverless Paradigms

Cloud computing is the traditional go-to solution for providing high performance
and managing demanding tasks. Cloud computing is known to be reliable and has
various options for delivering better user experiences. On the other hand, serverless
computing is the cloud technology that uses a network of remote servers to host
and manage data rather than a local server. Serverless computing refers to the
application of providing backend services on a use-per basis [§]. Table [1| depicts
the comparison between cloud computing and serverless computing. The companies
using serverless backend services are charged based on usage rather than the num-
ber of servers or a fixed bandwidth. The term serverless refers to a cloud service
that hides (or abstracts) the features of the cloud-based processor from the user.
Serverless does not imply that servers are not required; it simply means that they
are not defined or controlled by the user. In response to a request from the appli-
cation, serverless delivers exact units of resources. In traditional cloud computing,
resources must be allotted in advance to be available when needed [9]. Figure
compares cloud computing and serverless computing.
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Figure 1. Comparative analysis of cloud computing and serverless computing architec-

tures

1.2 Motivation and Our Contribution

The research motivation for this paper is outlined as follows:

e Recent studies have revealed that no surveys have been conducted to explore all

Factors Cloud Computing Serverless Computing
Autoscaling Unavailable Available
Server management Required Unavailable

Security

Less secure

More secure

Cloud provider handles load

Load balancing Manual .
balancing
Cost Expensive Reduced cost
Availability Low High
Implementation stage | Difficult Easy
Complexity High Less
Debugging Easy Difficult
Appropriate user Administrator and developer | Developer

Table 1. Comparison between cloud computing and serverless computing
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performance parameters [I0), TT]. This indicates a critical need to investigate all
performance parameters on a single platform.

e Some of the authors have published reviews on performance modeling in server-
less computing [6, [7, 12]. However, various performance models have yet to be
investigated by addressing the performance parameters.

e None of the authors have discussed the need for energy optimization in serverless
computing in their survey, and have not addressed the optimization techniques.
Hence, exploring optimization techniques for energy efficiency is required [I3,
14].

e Software platforms used in serverless computing are essential to explore [I5, [16].
The novel contributions of the review paper are also elaborated below:

e A comprehensive survey has been conducted to examine the existing literature in
serverless computing. A comparative analysis was performed, evaluating cloud
computing and serverless computing in terms of common factors.

e The survey has been explored based on various performance metrics used in
serverless computing, including cost, scalability, latency, energy consumption,
resource utilization, fault tolerance, and response time.

e The present review study has discussed in detail various modeling techniques
for enhancing performance in serverless computing based on the above metrics.

e The current review article has explored several energy optimization strategies
to reduce energy consumption and improve system efficiency.

e The investigation has been done on the software platforms used for implement-
ing serverless computing, including AWS Lambda, Apache OpenWhisk, Azure
Functions, and Google Cloud Functions, along with the key findings and limi-
tations.

e The complete review helps guide researchers toward new and promising research
directions.

1.3 Related Surveys and Our Work

The most suitable studies published on serverless computing are briefly presented
here. The authors in [I7] and [I8] discussed the evolution of serverless comput-
ing. The implementation of serverless computing is not limited to the enhancement
of infrastructure but is also employed for big data [19], video processing [20], and
neural network training [21]. The authors in [22] covered white and grey litera-
ture. The paper [23] presented four use cases of FaaS and compared three serverless
computing platforms: AWS Lambda, Azure Functions, and Google Cloud Func-
tions. The authors in [24] evaluated FaaS platforms and performance features for
micro-benchmarks, benchmark types, and other standard features. They presented
function triggers, language runtimes, and external services. The authors in [25]
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modified or developed serverless tools and platforms and identified the challenges.
The authors in [20] covered the emergence of serverless along with limitations such
as inadequate performance, lack of coordination in functions, limited storage, and
functional performance. Also, they identified the difference between AWS serverless
and AWS server and five application areas that are suitable for serverless computing.

After completing an analysis of the existing surveys, it has been noticed that
there is a need to analyze performance enhancement and energy optimization in
serverless computing, which is included in this survey. This survey summarizes the
comparison of platforms based on common characteristics and combines the existing
research on serverless computing, and is an enhancement of existing surveys. Table 2]
summarizes the comparative study of the existing surveys with the proposed survey
in serverless computing.

Ref. Year -~ 2 3 4 5 6 7
[ 2018 v X X X X X X
[18] 2018 v X X X X X X
[10] 20200 v v vV X X vV V
27 2019 v X X X X X V
[4] 2022 v X v X v X vV
[11] 2020 v X X X X X X
[23] 2020 X X X X X v X
[24] 2020 v v v X X X X
[ 2017 v X X X X v v
[28] 2022 v X v v X X Y
[29] 2022 v X v v X v Y
[30] 2023 v v Vv vV X v Y
Our Survey v v v v v v v

1 — Serverless Computing, 2 — Cloud Computing vs. Serverless Computing,
3 — Performance Metrics, 4 — Performance Enhancement, 5 — Energy Optimization,
6 — Platforms in Serverless Computing, 7 — Research Directions

Table 2. Comparison of existing surveys with our survey

1.4 Structure of the Survey Paper

The survey paper has been organized into the following sections as shown in Fig-
ure In Section [2] several research questions and the review methods are discussed.
Section [3| explores the performance metrics addressed in serverless computing. Sec-
tion [] conducts a systematic review of performance modeling in serverless comput-
ing. Section [p] focuses on measuring energy optimization in serverless computing.
Section [f] presents and compares various existing platforms used for serverless com-
puting. Section [7] summarizes the review with potential gaps and future research
directions. Finally, Section [§] concludes the review and provides recommendations
for future research.
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Figure 2. Outline of the paper

2 REVIEW METHOD

The systematic review was conducted with relevant articles on serverless computing.
To provide a systematic, transparent, and understandable review of the paper, mul-
tiple journals, articles, and sites were visited for the various applications of serverless
computing. The main objective of a systematic review is to write an article to under-
stand, to find a good piece of information after reviewing, to identify the problem,
to repeat, or to distinguish between research. Various magazines, digital libraries,
and websites are accessed to find relevant articles.

2.1 Research Questions

To determine the scope of the systematic literature review, various research questions
were formulated, as shown in Table ]

2.2 Literature Sources

In this review, various search platforms are used as sources of literature presented
in Table @
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ID Review Questions Section
RQ1 What are the various performance metrics used Section |3
in serverless computing?
RQ2 How can performance in serverless computing be  Section |
enhanced based on these performance metrics?
RQ3 What are the possible measures for optimum en-  Section [5
ergy use in serverless computing?
RQ4 What software tools and platforms are used to  Section |6
implement serverless computing?
RQ5 What are the gaps and future research directions  Section |7
in serverless computing?

Table 3. Review questions

Source URL

IEEE https://ieeexplore.ieee.org |
Springer https://link.springer.com |
Elsevier ScienceDirect  https://www.sciencedirect.com |
ACM https://dl.acm.org ]

Table 4. Sources of knowledge

2.3 Search String

(\serverless" OR \function-as-a-service" OR \FaaS" ) AND (\computing"
OR \architecture" OR \model" OR \application" OR \tools"

OR \performance" OR \scalability" OR \energy" OR \platform"

OR \programming").

2.4 Selection Criteria

The study selection process followed in this study is shown in Figure [3] using a PRIS-
MA-style flow diagram. Initially, 2624 records were identified through database
searching using relevant keywords. After removing 177 duplicate records, a total
of 2447 unique records were subjected to screening, which was conducted in three
stages:

e First, titles were reviewed, and 557 irrelevant records were excluded.

e Next, 1890 abstracts were assessed, leading to the exclusion of 242 additional
records.

e Finally, the full text of the remaining 1648 articles was evaluated for eligibility.
During full-text screening, 226 articles were excluded for the following reasons:

e Not focused on serverless computing (n = 120).

e No energy optimization methodology (n = 85).
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e Not peer-reviewed (n = 50).
e Other reasons, such as incomplete or duplicate content (n = 53).
A total of 93 studies were included in the final analysis. To determine whether

the publication is suitable for the topic of this research, the inclusion and exclusion
criteria were developed and applied as follows:

Records identified through database searching (n = 2624)

|

Records after duplicates removed (n = 2447)

|

Records screened by title (n = 2447)

|

Records excluded by title (n = 557)

|

Records screened by abstract (n = 1890)

|

Records excluded by abstract (n = 242)

|

Full-text articles assessed for eligibility (n = 1648)

|

Full-text articles excluded (n = 226)

|

Studies included in final analysis (n = 93)

Figure 3. PRISMA flow diagram representing the selection process of studies for inclusion

Inclusion criteria:

e Articles published in peer-reviewed journals, conference proceedings, and
articles published in reputed journals.

e Publications published online from 2016 to 2024.

e Articles that are written in notable journals in English.
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Exclusion criteria:

e Publications not published in English.
e Publications that are duplicates of other previous publications.
e Publications without accessible full text.

3 PERFORMANCE METRICS: SERVERLESS COMPUTING (RQ1)

As serverless computing is gaining popularity in the modern world, researchers and
practitioners have come across various performance metrics related to serverless
computing. In the following, some of the most critical factors that can be used to
demonstrate the performance of serverless computing will be discussed.

3.1 Cost

Cost is a fundamental parameter to consider. It helps reduce resource usage when
a serverless function is idle and while it is executing. Another important factor is
the pricing model, which includes comparisons to other cloud computing procedures.
For example, serverless functions are currently less expensive for CPU-bound com-
putations, whereas I/O-bound functions may be cheaper on dedicated containers
and VMs [31].

3.2 Scalability

Serverless computing must provide operational scalability. For example, when there
are many requests for a serverless application, these incoming requests need to be
processed. The serverless provider must provide the necessary resources to execute
all these requests by scaling up the resources [32].

3.3 Cold Start

Serverless computing has many performance issues; they need to be activated when
called upon. This activation process takes some time and leads to a delay in exe-
cuting applications, which is known as a cold start. So to improve performance, it
is important to reduce the cold start by keeping the functions warm [33, [34].

3.4 Energy Consumption

Energy-aware scheduling is done to reduce energy consumption [35]. The main
purpose of this type of scheduling is to put the execution environment or inactive
containers in a cold state. The transformation from a cold state to active mode
experiences delays in the execution of invoked functions, which may go beyond the
time limit defined by the customer [4].



1018 J. Kaur, I. Chana, A. Bala
3.5 Resource Utilization

Serverless computing automatically scales resources and clarifies the evolution of
online services with stateless functions. However, it is still significant for users
to allocate relevant resources due to the numerous function types and input sizes.
Lack of resource allocation management leaves functions either over-provisioned or
under-provisioned and causes low resource utilization [36]. There is a need to effi-
ciently increase the resource utilization for the provider while managing resources
dynamically to improve function response times [37].

3.6 Fault Tolerance

In recent years, serverless computing has gained popularity with increasing applica-
tions built on Functions as a Service (FaaS) platforms. FaaS platforms encourage
retry-based fault tolerance, which is insufficient for programs that change shared
states [38].

3.7 Response Time

Response time is a crucial performance metric in serverless computing, measuring
the time from when a client requests a serverless function to when the response is
received. Optimizing response time ensures that users experience minimal delays
when interacting with serverless applications, enhancing overall user satisfaction
and experience. Factors such as function execution time, cold start latency, network
latency, and workload fluctuations influenced response time. For maintaining the
efficiency and reliability of serverless applications, there is a need to improve response
time [39].

3.8 Throughput

Throughput refers to the rate at which serverless functions can process a specific
volume of requests within a specified time. High throughput indicates that the
serverless architecture can handle many concurrent requests efficiently. Optimiz-
ing function execution time, concurrency settings, resource allocation, and network
performance can achieve optimal throughput. Monitoring throughput ensures that
serverless applications can scale effectively to meet varying workloads and maintain
consistent performance under heavy loads [40].

3.9 Latency

Serverless applications operate independently of a fixed server location; their code
can run on any server. Therefore, cloud vendors can run the application on servers
close to the end user’s location. The end user requests do not have to travel across
the Internet to access the original server, thereby decreasing latency [10].
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Ref. Year 1 2 3 4 5 6 7 8 9
[40] 2021 v X v X v X X v X
[41] 2019 X v X X X X X X X
[39] 2020 v X X X X X v X v
[42] 2020 X v X X v X X X X
[43] 2018 v X X X X X X v X
[4] 2022 X X X v X X X X X
[44] 2021 X v X X v X X X X
[45] 2022 v Vv X v v X v X V
[46] 2021 v vV X X Vv X X X X
[28] 2022 v VX X X X X x Vv
|41 2020 v Vv X X X X X X X
[48] 2021 X X X X X X X X X
[49] 2022 v vV X X X X v X v
[50] 2022 v X Vv X X X X X X
[25] 2019 v X X X X v X X X
[17] 2018 v X X X X X X X X
[31] 2020 v X X X X X X X X
[51] 2018 X X v X X X v X Vv
[43] 2018 v X v X X X X X X
[52] 208 v v v X v v X X X
53] 2020 v X X X X X X X X
[54] 2022 X X v X X X X X X
[55] 2023 X X v X X X X X Vv
[56] 2021 X X v X X X X X X
oy 2023 v X v X v X v v Vv
58] 2023 v v X X v X X X X
[59] 2024 X X X v X X X X X
[60] 2019 X X X X v X X X X
Proposed Survey v v v v v v v v Y

1 — Cost, 2 — Scalability, 3 — Cold Start, 4 — Energy Consumption,
5 — Resource Utilization, 6 — Fault Tolerance, 7 — Response Time, 8 — Throughput,
9 — Latency

Table 5. Summary of the related works based on the performance parameters in serverless
computing

Table [f] concluded that these parameters could significantly impact system per-
formance. As per our literature review, some authors have considered specific met-
rics in their studies. Wen et al. [2] evaluated cost, cold start, and resource utilization.
Perez et al. [61] considered scalability and resource utilization. Kim and Lee [39)
examined cost, response time, and latency. These parameters have been researched,
but some issues remain for further investigation. Section [] identifies the existing
performance metrics, then overviews the studies on them, and finally analyzes each
performance metric for subsequent research.
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4 ENHANCING PERFORMANCE:
SERVERLESS COMPUTING (RQ2)

Serverless applications and Function-as-a-Service(FaaS) have gained popularity be-
cause of resource management, scalability, and a pay-as-you-go pricing model. In
this paper, the prediction and optimization of cost and performance of serverless
applications have been analyzed [62].

The authors in [7] proposed a performance model to improve serverless systems’
resource usage and quality of service by lowering operational costs. The study con-
firmed the proposed model’s applicability and correctness through extensive testing
on AWS Lambda. It demonstrated that the proposed model can compute critical
performance measures such as the steady state’s average response time and number
of function instances.

HotC is a container-based runtime management framework that develops light-
weight containers to improve network performance and reduce cold start. The result
indicated that HotC has a lesser overhead and improved performance [63].

A performance model is proposed by performing experimentation on AWS Lamb-
da that can measure various performance parameters based on cold and warm query
response time [6]. Several implementation issues, including reusability, lifecycle
management, container discovery, and function scalability, are covered in depth.
The result indicated that the proposed prototype achieves greater throughput than
other platforms [64].

According to [65], latency can be within an acceptable range by extending de-
lays caused by cold starts by breaking more strict SLAs. This paper analyzed the
performance of serving deep learning models. In this finding, warm serverless func-
tion executions are acceptable regarding latency, but cold starts produce substantial
overhead. In [66], FaaS platforms enable users to run random functions without be-
ing concerned about operational issues. However, there are several performance
issues. By considering these issues, the author identified six performance challenges
and presented a roadmap to solve them in the future.

The authors in [43] stated that applications have multiple independent functions
that can be implemented in various programming languages. This paper explained
the influence of the choice of language runtime on the performance and cost of
serverless function execution. The authors analyzed cost and performance metrics
for Azure Functions and AWS Lambda. For optimum cost management and perfor-
mance of serverless applications, Python is a clear choice on AWS Lambda.

Serverless computing is gaining popularity among cloud providers. As a result,
the Function-as-a-Service programming model boosts the popularity of stateless
function calls to create a service. The existing technologies are suitable for data
centers, but they cannot deliver the same level of performance in edge computing
systems. The authors in [67] addressed the issue by offering a system for efficiently
dispatching stateless tasks to network executors while maintaining short and long-
term fairness. In [68], it is stated that disaggregating compute and storage services
allows for an attractive separation of issues around autoscaling resources in a server-
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less environment. However, it introduced consistency and performance challenges
for applications written on FaaS platforms. In this paper, HydroCache is presented,
which is a distributed cache co-located with a FaaS compute layer that overcomes
these limitations.

The authors in [69] stated that FaaS is a novel, but promising service model in
cloud computing. The importance of FaaS can be seen in public service providers
with their own FaaS infrastructures. Also, the open-source community makes the
best efforts to implement FaaS initiatives. This paper showed the performance
differences between Python 3, Fission Kubeless, Node.js of OpenFaaS, and Knative
platforms. It also showed how the supported auto-scaling algorithms of the examined
FaaS systems affect the performance of the function runtimes. Finally, it proposed
solutions to increase the performance of the Python 3 runtime of Kubeless and
OpenFaaS.

Table [f] evaluated the performance parameters along with the contribution of
existing research, its results, and the scope of improvement in terms of performance.
So to improve performance, there is a need to optimize energy consumption in
serverless computing as discussed in Section [f

5 ENERGY OPTIMIZATION: SERVERLESS COMPUTING (RQ3)

Autoscaling always needs to make a deal between optimizing for cost-allocated re-
sources and optimizing for application performance [71]. Serverless platforms are
designed to respond to requests by offloading processing to edge nodes quickly [67].
Over the last 10 years, data center energy consumption has only grown by 6 % de-
spite an increase in usage [72]. The power draw is loosely correlated to the CPU
load, although this has been improving in recent years. Even so, the utilization of
servers is poor — only 50 % in the best hyper-scale facilities [73].

The authors in [74] explained the efficiency of the serverless computing paradigm.
The survey aimed to extend the internal mechanics of serverless computing and
explore the scope for efficiency within the paradigm by studying approximation
approaches and function reuse. From the analysis, it was visualized that the fu-
ture generation of highly scalable applications will mostly rely on the serverless
computing paradigm, identifying the extent of efficiency that could bring signif-
icant benefits to the providers, developers, and users. The authors in [75] de-
scribed the energy-aware resource scheduling for serverless edge computing. The
authors evaluated the well-known benchmarks using real-world implementations on
a Raspberry Pi. Experimental results achieved outstanding improvements of up
to 33% in helping the bottleneck node’s operational availability while preserving
the quality of service. Serverless can unconditionally offer its portability and re-
source efficiency at the edge with energy awareness. Decentralization of the sched-
uler was essential to cover the mobile edge computing area. The authors in [76]
explained the energy-efficient serverless on bare-metal single-board computers. Sys-
tematically designed implementation of MicroFaaS was presented, and a thorough
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Author Parameters Technique Contribution Results Future Scope
[Ref.]
Lin  and | Cost Analytical Model Analysis of serverless system’s | Accurate analytical model | Addressing cold start
Khaz- Scalability performance, usage, and cost | and scalability demonstration | latency and communi-
ael [62] cation overhead
Mahmoudi | Cost Analytical Model Improved quality of service | Predicted application’s | Enhancement in perfor-
and Khaz- | Cold start and  cost-effectiveness  of | cost/performance and | mance, cost, and energy
aei [7] Response Time serverless platforms achieved savings in cost | efficiency
Resource Utilization and energy
Suo Cold start Exponential Smooth- | Mitigation of cold start and | Reduced overhead and im- | Execution time reduc-
et al. [63] ing Model improved network perfor- | proved performance. tion.
Markov Chain Model | mance
Mahmoudi | Cold start Analytical Model Prediction of performance | Preemptive workload han- | Enhanced services and
and Khaz- | Response time metrics for improved quality | dling, diverse function | scalability
aei [6] of service instances, and  improved
scaling strategies
McGrath Scalability Performance Evalua- | Evaluation of serverless plat- | Greater throughput and scal- | Improving serverless
and Bren- | Throughput tion form’s execution performance | ing trends were observed platform quality and
ner [64] maximizing potential
Ishakian Cold start Deep Learning Assessment of serverless com- | Impact of cold starts on la- | Addressing cost and
et al. [65) Latency puting for large neural net- | tency distribution and SLA | memory allocation is-
work models risks sues

Van Eyk [ Cost SPEC RG Cloud | Identification of performance- | Plotting a roadmap for over- | Addressing new
et al. [66] Group related challenges coming performance issues performance-related

challenges
Jackson Cost Performance Testing | Analysis of cost and per- | Identification of Python as | Developing cost-
and Framework formance metrics for AWS | the optimum choice for AWS | effective solutions
Clynch [43] Lambda and Azure Functions | Lambda
Cicconetti | Response time Efficient Dispatching Efficient dispatching of tasks | Mobility and service request | Long-term  allocation
et al. [67) to minimize response time pattern variations observed improvements
Wu Consistency Distributed Cache Mitigation of performance | Significant performance im- | Dynamic scheduling
et al. [68] and consistency challenges provements and consistency | and metadata manage-

protection ment improvements

Balla Scalability Auto-scaling Algo- | Influence of auto-scaling algo- | Performance enhancements | Improving runtime per-
et al. [69] Consistency rithms rithms on function runtimes for specific runtimes. formance further
Khatri Cost Machine Learning Identification of bottlenecks | Areas of improvement iden- | Leveraging AI/ML for
et al. [70] and performance measure- | tified with performance mea- | improved performance

ment scope

surement

Table 6. Summary of the related works on enhancing performance in serverless computing
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evaluation and cost analysis were conducted. Results showed a 5.6 X increase in
energy efficiency and a 34.2% decrease in the total cost of ownership compared
to the baseline. The MicroFaaS cluster was 32.5-34.2% cheaper than a conven-
tional cluster with equivalent throughput. The node was put into a low-energy
sleep state if the computational capacity offered by a node was not required at any
given time.

The authors in [77] presented energy consumption as a significant challenge in
the green cloud environment, because of which the Dynamic Voltage Frequency
Scaling (DVFS) scheduling strategy is the most promising. DVFS saved energy by
lowering the processor frequency for virtual machines (VMs), which increases errors
during workflow execution, thus decreasing the system’s reliability. As a result, this
article addressed the DVFS issue by providing a novel Smart Energy and Reliability
Aware Scheduling algorithm (SERAS) for cloud-based workflow execution. The
SERAS technique divided the workflow’s target deadline into tasks. The suggested
algorithm used the DVFS technique to reduce the frequency of processors for VMs
without violating task deadlines. As a result, the SERAS algorithm assigned jobs
to the most relevant VMs with the necessary frequency levels while ensuring the
green cloud system’s reliability and completion time requirements. The SERAS
algorithm outperforms its competitors while meeting the required dependability and
completion time levels.

The authors in [I3] stated that energy consumption is one of the fundamen-
tal design requirements for heterogeneous distributed systems. Numerous algo-
rithms are used to study the problem of minimizing the energy consumption of
a real-time parallel application. This study used combined global DVFS-enabled
and non-DVFS energy-efficient scheduling algorithms. In [4], the authors presented
energy-aware scheduling, and the main idea in this type of scheduling is to put
the inactive containers or execution environment in a cold-state mode to reduce
energy consumption. In [78], the authors introduced FaaS to heterogeneous com-
puting and supports heterogeneous platforms, i.e., FDN (Function Delivery). FDN
offered energy efficiency and Service Level Objective (SLO) requirements. The au-
thors in [79] optimized energy consumption by dynamic consolidation of Virtual
Machines (VMs) using live migration of the VMs and switching idle servers to sleep
mode or shutdown. Table [7] depicts the energy optimization analysis in serverless
computing.

To conduct performance enhancement and energy optimization analysis, re-
searchers have access to open-source platforms in serverless computing, as mentioned
in Section

6 SOFTWARE PLATFORMS:
IMPLEMENTATION OF SERVERLESS COMPUTING (RQ4)

Serverless computing can simplify application deployment and thus alleviate devel-
opers’ efforts from tedious and error-prone server management. Various commodity
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Author Parameters Technique Contribution Results Future Scope
[Ref.]
Aslanpour Energy Energy Aware | Reduced energy consumption with- | Up to 33 % improvement | Need to address scalability
et al. [75) Throughput Scheduling out overhead in node availability
Evaluated on Raspberry Pis
Kallam Energy Linear Opti- | Reduced energy consumption Reduced energy by 16 % | Integrate energy efficiency
et al. [80] Time mization Lower execution time and execution time by | Consider data distribution
20 %
Gunasekaran Energy Optimization Reduced response latency 31% reduction in energy | Need for comparison
et al. [14] Latency Improved container utilization consumption
Aslanpour Energy Energy Mod- | Enhanced consumption efficiency 95% accuracy in energy | Address edge computing
et al. [81] Cost eling Validated in Smart Agriculture model needs
Consider renewable sources
Hassan Energy Scheduling Smart Energy and Reliability Aware | Improved reliability Need to enhance energy con-
et al. [77] Time Scheduling algorithm for workflow sumption
execution in the cloud environment. Consider additional metrics
Xie et al. [13] | Energy Optimization Minimized energy usage Saved 36.25-55.65% of | Minimize energy consump-
Scalability energy tion.
Shafiei Energy - Comprehensive review Overview of advance- | Focus on security, privacy,
et al. [] Resource Uti- Classified applications ments and cost prediction
lization
Jindal Energy FDN Introduced Function Delivery Net- | Improved performance Expand to other heteroge-
et al. [78] Response work neous computing devices
Time
Denninnart Energy Efficiency Improved efficiency by function | identified scope for im- | Maintaining all the func-
and Salehi Cost reuse and approximation approaches | provements tions in memory for the
74 large-scale serverless cloud
Byrne Energy MicroFaaS Energy-efficient serverless on single- | Increased energy ef- | Consider low-energy sleep
et al. [76] Cost board computers ficiency and reduced | state
cost

Table 7. Summary of related works on energy optimization in serverless computing
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serverless platforms, including AWS Lambda, Google Cloud Functions, Azure Func-
tions, and Apache OpenWhisk Compute, have emerged [82]. These commodity
serverless computing platforms frequently act in a black-box fashion, and devel-
opers do not need to pay attention to the underlying implementation details [2].
Different companies have already started combining the power of edge with the op-
erational simplicity of serverless, providing edge platforms for deploying serverless
functions [83]. Different scenarios make it challenging for a service developer to
differentiate and select the proper serverless platform [84]. Figure [l shows different
platforms that are used in serverless computing.

7 AN ‘ f 3
AWS Azure Apache Google Cloud
Lambda Functions OpenWhisk Functions

Figure 4. Serverless platforms

6.1 AWS Lambda

AWS Lambda is an event-driven, serverless computing platform provided by Amazon
as a part of Amazon Web Services. Lambda is named after functions from the
lambda calculus and programming. Those functions act as a good analogy for the
service.

The author in [I5] explained the analysis of serverless computing techniques in
the cloud software framework, in which AWS Lambda and Azure platforms were
used. The user gets access to the serverless model through a mobile phone, the
HTTP request is passed through the domain name server routing, and the request
outcome is provided through the content delivery network, which communicates
to the object store. Serverless cloud computing includes specific challenges, such as
a process that takes a long time to run. The authors in [I6] explained the framework
and a performance assessment for serverless map-reduce on AWS Lambda in which
HyperFlow and AWS Lambda platforms were used. The results indicated that AWS
Lambda provided a convenient computing platform for general-purpose applications
that fit within the constraints of the service (3008 MB of RAM, 512MB of disk
space, and 15 minutes of maximum execution time). Architecture did not fit in the
Lambda memory (maximum of 1536 MB at that time), and they did not proceed
to compute the final output.

6.2 Apache OpenWhisk

Apache OpenWhisk is an open-source and serverless cloud platform that performs
functions responding to events. The platform used a function-as-a-service (FaaS)
model to manage infrastructure and servers for cloud-based applications.



1026 J. Kaur, I. Chana, A. Bala

The authors in [85] explained the distributed analysis and benchmarking frame-
work for the Apache OpenWhisk serverless platform. OpenWhisk functions are
written in JavaScript and Java, compared to the Spring web-based application,
which executes the same function. The analysis indicated that the latency of the
OpenWhisk functions had increased the number of requests compared with the
spring-based application. The automatic scaling recommended by OpenWhisk was
not predictable by the user, which can cause latency bottlenecks [86]. The results of
each experiment showed that OpenWhisk could outperform a solution that employed
the same functionality through container-based virtualization. It also demonstrated
how close Open Whisk was performance-wise to being a more outstanding solution
that did not suffer from the overheads of virtualization. The cold start problem
arose and highlighted the impact of the choice of language runtime [87].

6.3 Azure Functions

Microsoft Azure, formerly known as Windows Azure, is Microsoft’s public cloud
computing platform. It provides a range of cloud services including computing,
analytics, storage, and networking. The authors in [88] explored Azure Functions
and showed how to set up the development environment and then develop a simple
program with Azure Functions.

6.4 Google Cloud Functions

Google Cloud Functions is a serverless execution environment for connecting and
building cloud services. Simple single-purpose functions attached to events emitted
from cloud infrastructure and services can be written with cloud functions. The
function is triggered when an event being watched is fired. The authors in [89]
explained the efficient processing of latency-sensitive serverless DAGs at the edge
of the Google Cloud functions. From the results, the earliest deadline first (EDF)
achieved better deadline miss rates than SRSF for DAGs with smaller inputs of 5
KB and 40 KB, and performance gets very close for DAGs with inputs of 105 KB.
For DAG functions, each sub-function shares the same deadline. The EDF order was
based on the deadlines of the tasks, i.e., it did not consider the function’s execution
time.

The serverless execution of scientific workflows with experiments using Google
Cloud functions is described. Prototype workflow executor functions using Google
Cloud Functions are developed and coupled with the HyperFlow workflow engine.
Findings indicated that the simple mode of operation makes this approach easy to
use, although there were costs involved in preparing portable application binaries for
execution in a remote environment. There was a need to develop custom binaries
or execution time limits [90]. The authors in [01] described the fast provisioning
and scalable custom serverless container runtimes at Alibaba Cloud Function Com-
pute. Evaluation results showed that FAASNET finished provisioning 2 500 function
containers on 1000 virtual machines in 8.3 seconds, scales 13.4x and 16.3 x faster
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than Alibaba Cloud’s current FaaS platform. Solutions cannot fundamentally solve
the high costs incurred during function environment provisioning. The comparative
analysis of existing platforms for serverless computing is given below in Table

7 FUTURE RESEARCH DIRECTIONS:
SERVERLESS COMPUTING (RQ5)

Serverless computing is an innovative concept that simplifies the development of ap-
plications globally. However, a literature review revealed certain gaps that have not
been adequately recognized by researchers. Recent studies have identified various
challenges that serverless computing faces, as illustrated in Figure

| Addressing the Cold Start Problem in |
' Serverless Computing '

Energy-Efficient System Design in
Serverless Computing

Enhanced Quality of Service
Management for Serverless

Legacy System Migration to Function-
as-a-Service (FaaS)

Development of Performance Models
for Workload Optimization

Performance Enhancement

Figure 5. Serverless computing future research directions

7.1 Addressing the Cold Start Problem in Serverless Computing

The cold start problem remains a significant challenge in serverless computing, caus-
ing delayed response times for users due to the initialization of functions. However,
resolving this issue without compromising the primary features of serverless archi-
tecture is essential. There is a need to explore innovative solutions that mitigate cold
start delays while preserving the primary features of serverless, such as scalability
and cost-effectiveness. By investigating techniques such as container reuse or pre-
warming, researchers can enhance user experience without sacrificing the inherent
advantages of serverless computing [6, [7, 62, [63], 65].
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Author [Ref.] Parameters | Platforms Findings Limitations
Andi [15] Time AWS Lambda No limited functionality in Azure and | Processes are taking a long time to
Cost Azure Functions AWS Lambda run.
Google Cloud Google Cloud had a limit of 1000 per
project.
Kuntsevich Scalability Apache OpenWhisk Latency increased compared to spring- | Automatic scaling by OpenWhisk
et al. [85) Cold start based applications due to OpenWhisk | is causing unexpected latency bot-
functions. tlenecks.
Perez et al. [92] Cost AWS Lambda AWS provided 1 million invocations or | Lambda is not a significant drain
Throughput Azure Functions 400,000 GB-seconds free per month. on infrastructure yet.
OpenWhisk
Malawski et al. [90] | Scalability AWS Lambda Simple mode of operation Need for creation of execution time
Cost HyperFlow Costs involved in preparing portable | limits or custom binaries.
Google Cloud Functions application binaries
Gimenez et al. [16] | Throughput AWS Lambda Specifications: 3008 MB RAM, 512MB | Architecture is not fitting Lambda
Time disk space, 15 minutes maximum exe- | memory
cution time. Failure to compute the final result.
Wang et al. [91] Scalability Alibaba Cloud Function | FAASNET provisioned 2500 function | High costs incurred during func-
Cost containers on 1000 virtual machines in | tion environment provisioning
8.3 seconds
Lyu et al. [9] Latency Google Cloud Functions | EDF achieved higher deadline miss | Function execution time

rates than SRSF for smaller DAG sizes
Performance closer for larger DAG sizes

Table 8. Summary of related works on targeted software platforms for serverless computing
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7.2 Energy-Efficient System Design in Serverless Computing

An efficient technique, such as dynamic resource allocation, workload consolidation,
and power-aware scheduling, can be developed that reduces energy consumption
while keeping the reliability requirement of the system [7, [77]. The methods need to
be developed for energy-aware scheduling to help delay non-latency-sensitive tasks
to reduce overall energy consumption [4].

7.3 Enhanced Quality of Service Management for Serverless Applications

Efficient resource allocation and quality of service (QoS) management are essential
in ensuring optimal performance in serverless environments. Auto-scaling mecha-
nisms must be developed to effectively manage function resources without affecting
costs or fault tolerance. By implementing workload prediction and resource provi-
sioning algorithms, researchers can maintain high QoS standards while mitigating
operational costs and enhancing fault tolerance [I0]. Different degrees of QoS will
be evaluated for stateful serverless applications, as current serverless platforms are
mostly stateless [I].

7.4 Legacy System Migration to Function-as-a-Service (FaaS)

Researchers are working on the open question of how to decompose legacy systems
into FaaS without degrading performance. Finding optimal automatic migration
solutions for legacy systems is an interesting research direction [I]. Moreover, re-
search on tools for checking whether a legacy system will fit the serverless paradigm
is crucial. Also, developing and enhancing automatic and semi-automatic analysis
strategies based on artificial intelligence could be another future research field [10].

7.5 Development of Performance Models for Workload Optimization

Developing autonomous middleware for workload optimization is one of the research
challenges in serverless computing. This middleware will incorporate preemptive
workload handling, support heterogeneous function instances, and integrate both
FaaS and laaS paradigms. Additionally, expanding performance models by us-
ing various auto-scaling patterns will enhance overall performance management in
serverless computing [6].

7.6 Performance Enhancement

In future research, enhancing performance across various dimensions such as scalabil-
ity, cost-effectiveness, energy efficiency, mitigation of cold start issues, fault tolerance
mechanisms, and optimizing resource utilization are promising directions. Exploring
various approaches and technologies to comprehensively address these aspects can
greatly enhance the advancement of the field [7, 43 66 [70, 93]
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7.7 Emerging Technologies and Approaches in Serverless Computing

Recent advancements are defining the future of serverless computing through new
technologies and methodologies focused on performance and energy optimization.
One notable direction is the integration of edge computing with serverless architec-
tures [89], enabling reduced latency and energy consumption by executing functions
closer to the data source. Platforms such as AWS Greengrass and Cloudflare Work-
ers support these capabilities.

Another innovation involves lightweight virtualization technologies like Fire-
cracker microVMs, which enable faster startup times and better resource isolation.
Similarly, WebAssembly (WASM)-based serverless runtimes are emerging as efficient
and secure alternatives for function execution. Moreover, Al-driven autoscaling and
scheduling, particularly using deep reinforcement learning [54], is being explored to
optimize function invocation, reduce cold start, and balance workloads dynamically.
Finally, tools like Knative and OpenFaaS provide enhanced orchestration and hybrid
deployment options, marking a shift toward more flexible and intelligent serverless
ecosystems.These emerging technologies represent promising paths toward address-
ing key challenges in serverless environments and should be explored further in both
academia and industry.

8 CONCLUSION

In this paper, a comprehensive review has been conducted to study specific per-
formance metrics related to serverless computing. Based on these parameters, an
analysis has been carried out to enhance performance and optimize energy consump-
tion in serverless computing. Researchers have evaluated open-source platforms to
analyze performance enhancement and energy optimization comprehensively. The
paper concludes with suggestions for future directions.
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