
Computing and Informatics, Vol. 44, 2025, 717–744, doi: 10.31577/cai 2025 3 717

KNOWLEDGE GRAPH REPRESENTATION LEARNING
BY TEXT ENCODING AND GRAPH STRUCTURE

Song Li∗, Chengyu Zhong, Liping Zhang

School of Computer Science and Technology
Harbin University of Science and Technology
150080 Harbin, China
e-mail: lisongbeifen@163.com

Abstract. Knowledge graph representation learning aims to embed entities and re-
lationships into low-dimensional space through knowledge graph embedding meth-
ods. Because knowledge graphs are incomplete, it is often necessary to complete the
knowledge graph through representation learning methods. With the development
of pre-trained language models, more and more research applies them to the field
of knowledge graph representation learning, using the powerful semantic represen-
tation capabilities of pre-trained language models to improve the performance of
knowledge graph embedding. Most of the existing methods make use of the semantic
information of the triple text but do not fully consider the structural information
of the triple and the graph structure information of the knowledge graph. The
triple structure reflects the semantic information and relationship pattern of the
triple, and the graph structure reflects the surrounding entity’s semantic features.
To address the above issues, this paper proposes a knowledge graph representation
learning method named PREGSE, which is based on pre-trained language models
and integrates graph structure information. Firstly, pre-trained language models
are employed to encode triplets through text encoding, obtaining vectors for the
triplets. Secondly, a graph attention network is utilized to learn various local graph
structure information. Lastly, a multi-task learning strategy is applied to simulta-
neously learn triplet structure information and semantic information. We trained
our model on the FB15k-237 and WN18RR datasets, and the results show that
on the FB15k-237 dataset, our model improved the MRR metric by 27% and the
Hits@10 metric by 8% compared to the StAR model. The experiments show that
our model can further improve the performance of knowledge graph representation
learning.

∗ Corresponding author

https://doi.org/10.31577/cai_2025_3_717


718 S. Li, C. Zhong, L. Zhang

Keywords: Knowledge graph, knowledge graph completion, knowledge graph rep-
resentation learning, language model, link prediction

Mathematics Subject Classification 2010: 68-T30

1 INTRODUCTION

Knowledge Graph [1] (KG) is a type of directed graph with multiple relations,
composed of nodes and edges. The nodes represent entities, such as “Leonardo
DiCaprio” and “Titanic”, while edges represent the relationships between entities,
such as “acted in”. Knowledge Graphs store information in a network-like structure,
where each piece of knowledge is represented in the form of a triple, including a head
entity, a relationship, and a tail entity. Knowledge Graphs have gained widespread
applications in various fields, including recommendation systems [2], question an-
swering systems [3], and knowledge inference [4], as an emerging knowledge storage
structure. In numerous domains, large-scale Knowledge Graphs like Freebase [5],
DBpedia [6], and YAGO [7] have been successfully created and applied in various
practical scenarios.

Knowledge graph representation learning [8, 9, 10, 11], also known as knowledge
graph embedding (KGE), is a technique that employs machine learning methods
to map entities and relationships in a knowledge graph to a low-dimensional vector
space. Due to the sparse nature of information within knowledge graphs, Knowledge
Graph Completion (KGC) has emerged as a significant research topic in this field.
KGC involves utilizing existing knowledge and structure within a KG to infer new
knowledge through a series of algorithms and models, thereby continuously enhanc-
ing the completeness of the knowledge graph. KGE is a subtask of KGC, where
KGE models assess the plausibility of given triples and subsequently add correct
triples to the knowledge graph. Specifically, KGE models first map entities and
relations into a unified low-dimensional vector space, with each entity and relation
corresponding to a low-dimensional vector. The completion of the knowledge graph
is then performed by calculating the plausibility of the triples based on their vector
representations.

Early methods in knowledge graph representation learning were predominantly
centered around the TransE [12] model and its variants. These models assess the
plausibility of triplets through a defined scoring function. While these methods
are relatively simple and applicable to large knowledge graphs, they only take into
account the information within the triplets. Additionally, these models exhibit weak
scalability; when encountering entities or relationships not present in the training
set, they struggle to accurately represent vectors. Pre-trained language models
(PLM), trained on extensive textual data, capture general features of language and
inherently contain rich semantic information. Utilizing pre-trained language models
as encoders can effectively enhance the scalability of knowledge graph representation



Knowledge Graph Representation Learning by Text Encoding and Graph Structure 719

learning models. With the introduction of the Transformer architecture and the
development of pre-trained language models, models such as BERT [13], GPT [14],
and BART [15] have achieved significant success in the field of natural language
processing. In various domains, the introduction of pre-trained language models
has become increasingly common to achieve improved results. KG-BERT [16] was
the first to apply the BERT model to the task of knowledge graph completion and
achieved superior results on the MR metric. However, KG-BERT’s scoring function
is overly simplistic, lacking modeling of the triplet structure itself. This limitation
prevents it from learning triplet structure information, making KG-BERT highly
dependent on text representation. When the textual expressions of different entities
are similar, KG-BERT faces challenges in correctly identifying the correct triplets.
Additionally, during the training process, KG-BERT does not reuse the embedding
vectors of triplets, resulting in a very slow inference speed.

Typically, knowledge graphs can be analyzed from two perspectives: the triplet
perspective and the graph structure perspective. The triplets in a knowledge graph
primarily reflect the semantic information and relationship patterns of the entities in-
volved. Traditional knowledge graph representation learning methods mainly model
the triplet structure and semantic information. When analyzed from the graph
structure perspective, a knowledge graph can be viewed as a directed graph with
multiple relations, where the characteristics of an entity are often influenced by the
surrounding nodes. Graph Neural Networks (GNN) have gained significant atten-
tion in recent years for their outstanding performance in modeling graph-structured
data. GNN possess remarkable capabilities in information aggregation and propa-
gation, enabling efficient handling of graph structure features. They can effectively
learn semantic relationships and latent information between nodes in a graph. Due
to the inherent graph structure of knowledge graphs, utilizing GNN for knowledge
graph processing has significant advantages. GNN can effectively capture node infor-
mation, relationships between nodes, and structural information within knowledge
graphs. Traditional knowledge graph embedding methods merely embed triplets
into a low-dimensional space to calculate their plausibility, neglecting the utiliza-
tion of graph structure information. In knowledge graphs, neighbouring nodes often
have close semantic relationships with the target entity. Integrating information
from neighbouring nodes can enhance the embedding vector of the target entity,
better capturing the semantic features of its surrounding entities. In knowledge
graphs, the local graph structure of a node can reveal the implicit semantic infor-
mation associated with that node. Current representation learning methods based
on Graph Neural Networks mainly focus on integrating information from neighbour-
ing nodes but often overlook the structural information expressed by different graph
structures.

Based on the above analysis, it is evident that incorporating a Pre-trained Lan-
guage Model can enhance the model’s scalability. However, most current PLM-based
approaches tend to overlook the structural information of triples, leading to poor
performance when handling similar texts. Therefore, we introduce PLM while simul-
taneously employing a scoring function based on translation models to score triples,



720 S. Li, C. Zhong, L. Zhang

thereby capturing the structural information of the triples. On the other hand, ex-
isting Graph Neural Network-based methods often focus on integrating information
from neighbouring nodes, neglecting the implicit structural information within dif-
ferent local structures. To address this, we define two distinct local structures to
learn the implicit structural information embedded within them.

In this paper, we propose a representation learning method named PREGSE,
which integrates both semantic and graph structure information. The method is
designed for knowledge graph completion tasks. The main contributions of this
paper are as follows:

• Addressing the scalability issues of traditional representation learning methods
and the performance shortcomings of KG-BERT, we leverage the powerful se-
mantic learning capabilities of pre-trained language models. We employ the
BERT model to map entities and relationships in the knowledge graph to vector
representations, facilitating the learning of deep semantic connections between
entities and relationships. This enhancement contributes to an overall improve-
ment in the quality of knowledge graph embedding representations.

• To address the issue of current language model-based representation learning
methods neglecting graph structure information, we define two distinct sub-
graph structures: loop-structure and star-structure. Subsequently, we introduce
a triplet-based attention mechanism to capture various graph structure features
within the knowledge graph.

• To expedite model convergence and enhance performance, we propose a multi-
task learning strategy to assist in the model training process. Training results on
several benchmark datasets indicate that our approach achieves state-of-the-art
results in both link prediction and triplet classification tasks.

2 LITERATURE

Knowledge graph representation learning is a crucial method for knowledge graph
completion. Based on different underlying principles, models can be categorized
into four types: translation models, tensor decomposition models, neural network-
based methods, and language model-based methods. Translation models and tensor
decomposition models are earlier approaches, both of which compute the score of
a triple by performing operations on the entities and relations within the triple. The
main idea behind translation models is that the relation can transform the head
entity vector into the tail entity vector, while tensor decomposition models typically
employ multiplicative operators to establish interactions between entity and relation
embedding vectors. As a result, many scholars refer to translation models as additive
models and tensor decomposition models as multiplicative models. Neural network-
based methods introduce neural networks such as convolutional neural networks and
graph neural networks into knowledge graph representation learning, leveraging the
powerful feature capture capabilities of neural networks to learn the representations



Knowledge Graph Representation Learning by Text Encoding and Graph Structure 721

of entities and relations. Language model-based methods have emerged with the rise
of large language models, leading to research that incorporates language models into
knowledge graph embedding tasks. This approach takes full advantage of the strong
learning capabilities of language models, as well as the rich semantic information
and knowledge acquired by the models from upstream tasks.

2.1 Translation-Based Models

The translation model is inspired by word vectors and mainly consists of TransE and
its derivative models. TransE considers each triple (h, r, t) as a directed transfer in
the embedding space from the head entity to the tail entity. By mapping the head
entity, tail entity, and relation to a low-dimensional vector space, and modeling the
triple using an energy function h+ r ≈ t. The energy function indicates that when
a triple holds, the sum of the head entity vector and the relation vector should be
close to the tail entity vector. TransE has lower complexity and can be applied
to large knowledge graphs. Although TransE performs well in handling one-to-one
relationships, it faces challenges in distinguishing entities on the side with multiple
entities for more complex one-to-many or many-to-many relationships, as the vec-
tors of entities on the side with more entities become very close and are difficult
to differentiate. TransM [17] improves upon TransE by introducing an additional
weight matrix, enabling it to handle complex relationship mappings while main-
taining a parameter complexity similar to TransE. TransH [18], built upon TransE,
introduces the concept of hyperplanes. Each relation corresponds to the normal
vector of a hyperplane, and by using these normal vectors, the embedding vectors
of the head and tail entities are projected onto the respective hyperplanes. This en-
ables TransH to handle cases involving reflexive and complex relationship mappings.
TransR [19] argues that both TransE and TransH embed entities and relations into
the same semantic space. However, an entity may have multiple aspects, and each
relation may focus on different aspects. In TransR, each relation corresponds to
a relation space, which includes a relation matrix Mr and an embedding vector r for
this relation space. The embedding vectors of the head and tail entities are mapped
into the relation space through the relation matrix. TransD [20] is an improvement
based on TransR. In TransR, during the projection, entities are mapped through
the mapping matrix corresponding to the relation. However, entities connected by
a relation typically have various types and attributes, and the diversity of entities
should be considered during the projection process. On the other hand, in TransR,
the mapping operations for the head and tail entities are obtained through matrix
multiplication, resulting in a problem of excessive parameters and computational
complexity. In TransD, each entity and relation are associated with two vectors:
an embedding vector and a projection vector. The embedding vector represents
the meaning of the entity or relation, while the projection vector indicates how to
embed the entity into the vector space of the relation. This way, the projection
matrices Mrh and Mrt can be jointly determined by both the relation and the en-
tity. Moreover, matrix operations can be replaced by vector operations, addressing



722 S. Li, C. Zhong, L. Zhang

the issue of excessive parameters and computational complexity. RotatE [21] views
the transformation from the head entity to the tail entity as a rotation operation
in the complex plane space. This approach can capture more relational features,
such as direction, symmetry, antisymmetry, and combination. Compared to other
translation-based models, RotatE achieves the best performance in link prediction
tasks.

2.2 Tensor Decomposition Models

The tensor decomposition model treats the knowledge graph as a three-dimensional
tensor, where each third-order tensor corresponds to a triple, and the tensor val-
ues represent the likelihood of the triple’s existence. RESCAL [22], also known as
a bilinear model, considers a triple (h, r, t) fundamentally as binary relational data.
RESCAL employs a three-dimensional tensor factorization method to model this
binary relationship. If there is a relationship between entities, the corresponding
point in the three-dimensional tensor is 1; otherwise, it is 0. DistMult [23] builds
upon RESCAL by constraining the relation matrix Mr to a diagonal matrix to re-
duce complexity. DistMult has the same scalability as TransE and exhibits better
performance in link prediction tasks. HolE [24] proposes a holographic embedding
method that utilizes circular correlation operations for entity vector interactions.
Similar to DistMult, HolE simplifies the computational complexity of RESCAL.
However, since circular correlation operations are asymmetric, HolE can model non-
symmetric relationships.

2.3 Neural Network-Based Methods

In recent years, there have been many attempts in knowledge graph representa-
tion learning to achieve better performance by introducing neural networks, such as
convolutional neural networks and graph neural networks. ConvE [25] introduces
a convolutional neural network, reshaping the head and tail entities into a two-
dimensional matrix, concatenating them, and then inputting them into a CNN for
computation. ConvKB [26] merges the embedding vectors of the triples into a k× 3
matrix and then inputs the matrix into a convolutional neural network for computa-
tion. ConvR [27] reshapes the embedding vector h of the head entity into a matrix
as the input to the convolutional layer. The embedding vector r of the relation is
then split and reshaped into a set of convolutional kernels. This convolution oper-
ation allows the kernels to interact with each region of the input matrix, capturing
the interactions between the head entity and the relation effectively.

R-GCN [28] introduces an Encoder-Decoder framework, associating a weight
matrix with each relationship and using Graph Convolutional Networks (GCN) to
aggregate neighbor node information. CompGCN [29] considers relationship embed-
dings, aggregating entities and relationships in the Encoder phase using a composi-
tional approach, and decoding the triples in the Decoder phase using methods like
TransE, TransH, or ConvE. MRGAT [30] integrates attention mechanisms in both



Knowledge Graph Representation Learning by Text Encoding and Graph Structure 723

entity-level and relationship-level aggregation processes, hierarchically learning en-
tity and relationship embeddings. GATFCN [31] uses the GCN model as an encoder
to fuse graph structural information and then decodes the information encoded by
GCN using tensor decomposition.

2.4 Language Model-Based Methods

KG-BERT fine-tunes BERT through triple classification. Initially, the triple is con-
catenated into a sentence and input into the BERT model. The output from the
[CLS] position in BERT’s results is used as the sequential representation of the triple,
projected into the scoring function space. Compared to existing models, KG-BERT
achieves relatively good results but still falls short of RotatE, and KG-BERT’s in-
ference efficiency is lower than RotatE. Addressing the issues of the explosion of
combinations in the KG-BERT model and the inability to learn structured knowl-
edge, StAR divides each triple into two parts. It utilizes a Siamese-style text encoder
to encode the relation and head entity together and the tail entity separately. The
final representation of the triple is calculated interactively, considering the reason-
ableness of the encoding. Additionally, since the triple is divided into two parts,
graph embedding methods can also be employed to model the triple. Compared to
KG-BERT, StAR’s entity embeddings are reusable and can learn structured knowl-
edge effectively.

3 METHODOLOGY

This section introduces detailed information on the PREGSE model, which mainly
consists of three modules: the triplet encoding module based on pre-trained language
models, the graph structure feature fusion module, and the multi-task learning strat-
egy module, where the triplet encoding module is responsible for encoding triplets
into initial embedding vectors, the graph structure feature module is responsible for
integrating various graph structure information, and the multi-task learning strat-
egy module acts as a decoder using structural methods to model triplets, while also
accelerating the convergence speed of the model. The overall architecture of the
model is shown in Figure 1. First, BERT is used as an encoder to encode the enti-
ties and relations in the triples into embedding vectors, where the orange represents
the embedding vector of the relation, and the blue represents the embedding vectors
of the head and tail entities. The embedding vectors of the entities are then fed into
the graph structure feature module, where two types of local structural informa-
tion are integrated. Finally, the resulting entity embedding vectors and the relation
embedding vectors are input into the translation model-based decoder.

3.1 Notation

The set of triplets in the knowledge graph is denoted as G, and the set of negative
triplets is denoted as G′. The set of all entities is represented as E, and the set of all



724 S. Li, C. Zhong, L. Zhang

lo
o
p
-s
tr
u
ct
u
re

st
ar
-s
tr
u
ct
u
re

E
n
co

d
er

D
ec

o
d
er

(
, 

, 
)

h
r

t

Figure 1. Overall architectural design of the PREGSE



Knowledge Graph Representation Learning by Text Encoding and Graph Structure 725

relations is represented as R. Each triplet is represented as (h, r, t), where h, r ∈ E,
and r ∈ R. Each negative triplet is represented as (h′, r′, t′). The embedding vectors
for triplets are represented as (eh, er, et). Given an entity v, its set of neighbouring
nodes is represented as N(v), and the set of triplets formed by entity v and its
neighbouring nodes N(v) is represented as Gv. The representation of entity v as
a node in the graph is denoted as ev, and the relationship between entities is denoted
as ri.

3.2 Triplet Encoding with Pre-Trained Language Models

In this section, the primary objective is to map the triplets from the knowledge
graph to their corresponding text representations. Subsequently, we employ pre-
trained language models to map the entities and relations of the triplets to initial
embedding vectors.

During training, KG-BERT requires each triple to be input into the BERT
model, and then the hidden state output by BERT is used to determine whether
the triple is correct. In the inference process, repeatedly occurring entities and
relations are calculated multiple times without effective reuse, leading to the problem
of combinatorial explosion. In this paper, we use BERT to encode the text of
the triplets. Each part of the BERT output is processed individually to obtain
the corresponding vector representations. We then utilize the obtained embedding
vectors for structured modeling, thereby enhancing the performance of the model.

As shown in Figure 2, we use BERT for text encoding by concatenating the
text representations of the head entity, relation, and tail entity of each factual
triplet into a token sequence. The token sequence for the head entity is denoted
as T h = (th1 , t

h
2 , . . . , t

h
n), and similarly, the token sequence for the relation is T r =

(tr1, t
r
2, . . . , t

r
n), and the token sequence for the tail entity is T t = (tt1, t

t
2, . . . , t

t
n). We

separate the head entity, tail entity, and relation using [CLS] and [SEP] tokens to
construct an input sequence compatible with the BERT model, with the specific
format: [CLS]T h[SEP]T r[SEP]T t[SEP], where [CLS] and [SEP] are token markers
for model input.

BERT

··· ··· ··· t

nt1

ttr

nt1

rth

nt1

ht

··· ··· ···
t

ne1

ter

ne1

reh

ne1

he [SEP]

[SEP] [SEP]

[SEP][SEP]

[SEP]

[CLS]

[CLS]

Figure 2. Triples are encoded as primitive embedding vector schematics via BERT

We use the output corresponding to the position of [CLS] as the sequence repre-
sentation for the entire triplet. The output corresponding to the positions of input



726 S. Li, C. Zhong, L. Zhang

tokens is used as the sequence representation for the head entity, relation, and tail
entity in the triplet. Subsequently, each part of the BERT output is projected into
the corresponding embedding vectors through average pooling. We denote the ob-
tained embedding vectors for the head entity, relation, and tail entity as eh, er, and
et, respectively.

3.3 Graph Structure Feature Fusion

In this section, we provide detailed information on the method for integrating graph
structure features. The knowledge graph is a network composed of a large number
of factual triplets, and different structures in the graph contain distinct semantic
information. As shown in Figure 3, we define two types of graph structures: the
loop-structure and the star-structure.

Loop-Structure: A loop-structure refers to a configuration where all nodes are
connected in a circular manner. Starting from the original node, moving along
the edges, and eventually returning to the original node forms a loop-structure.
This structure contains inferential information about triplets. For example,
through triplets like (Leonardo DiCaprio, father, George DiCaprio) and (George
DiCaprio, spouse, Eileen), one can infer the triplet (Leonardo DiCaprio, mother,
Eileen). In loop-structure, the number of hops represents the number of triplets
involved in the inference.

Star-Structure: A star-structure indicates that all nodes in the graph are directly
connected to a central node. In a knowledge graph, a set of triplets sharing the
same head entity or tail entity can form a star-structure. By integrating infor-
mation from neighbouring nodes, the target entity can better understand the
contextual semantics. The neighbouring nodes provide contextual information
around the target entity.

1r 2r

3e

2e

3r

1e

a) loop-structure

4e5e

6e 7e

7r

1e

6r

4r
5r

b) star-structure

Figure 3. Graph structures

In the PREGSE model, we integrate graph structure information separately from
loop-structure and star-structure using Graph Attention Networks (GAT). A typi-
cal GAT consists of multiple layers, where each layer aggregates information from



Knowledge Graph Representation Learning by Text Encoding and Graph Structure 727

neighbouring nodes and updates the nodes. The final layer’s output node vector
is the result of multiple layers of propagation, encompassing a broader range of
neighbor information. However, this introduces high computational complexity. In
this paper, we consider only first-order neighbors and use a single-layer GAT to
aggregate graph structure information, aiming to reduce the model’s computational
complexity.

3.3.1 Attention Mechanism Based on Triplets

We design an attention mechanism to enable entities to more effectively integrate
graph structure information. For a given entity v in the knowledge graph, the set of
neighbouring entitiesN(v) can form a triplet setGv. Since the vector representations
of each triplet in Gv can express different and varying amounts of information, the
attention coefficients when fusing neighbor node information for entity v are often
highly correlated with the vector representations of the triplets. For example, in
the triplets (Leonardo DiCaprio, profession, actor) and (Leonardo DiCaprio, acted
in, Titanic), the second triplet contains more information, not only about acting in
a movie but also implicitly implies information about the profession.

In summary, when calculating the attention weight coefficients between two
entities, consideration should be given to the information in the embedding vectors
of triplets. We concatenate the embedding vectors of the head entity, tail entity,
and relation, followed by a linear transformation to represent the embedding vector
of the triplet. Finally, we use softmax for normalization. The following formula is
used to compute the attention weight coefficients between entities:

e(h,r,t) = W1 · concat
(
eh, er, et

)
, (1)

α = σ
(
LeakyRELU

(
e(h,r,t)

))
, (2)

where eh, er, et represent the embedding vectors of the head entity, relation, and
tail entity in the triplet, respectively. e(h,r,t) represents the embedding vector of the
triplet. The operation concat denotes concatenation, W1 ∈ Rd×3d is the linear trans-
formation matrix, LeakyRELU represents the activation function, and σ represents
the softmax function.

For a given entity v in the knowledge graph, we analyze its local graph structure
through both star-structure and loop-structure. The star-structure can be consid-
ered as a set of triplets formed by the entity v and its neighbouring entities. The
loop-structure can be viewed as comprising two triplets: one directly connecting
entity v to the target entity and another formed by v traversing a series of triplets
in an inferential path to reach the target entity. Avi,vj indicates the connection re-
lationship between two entities, with a value of 1 when there is a connection and 0
when there is none:

Avi,vj =

1, vi = vj or vj ∈ Ng(vi),

0, otherwise,
(3)



728 S. Li, C. Zhong, L. Zhang

where vi, vj represent entities. Value Ng(vi) represents the set of nodes adjacent to
entity vi under the condition of satisfying the graph structure.

3.3.2 Fusion of Loop-Structural Information

Representation of loop-structure starts from the initial node, progresses along re-
lationships and entities, and eventually returns to the initial node. This structure
includes two relation paths: the first path involves multi-hop relationships start-
ing from the head entity, passing through a series of relationships and entities, and
reaching the tail entity; the second path is a one-hop relationship directly from
the head entity to the tail entity, representing the triplets in the knowledge graph.
As illustrated in Figure 3, there are two paths starting from e1 and reaching e3:
(e1,r1,e2,r2,e3) and (e1,r3,e3). These two paths share a considerable degree of se-
mantic relationships.

Learning various representations of paths between two entity nodes can enhance
the model’s predictive ability for triplets. For multi-hop relational paths, embedding
representations of these paths can be obtained through a combinatorial approach,
treating relationships and entities along the path as a sequence of words. Current
pre-trained language models often struggle to effectively capture the meaning of such
word sequences. This limitation arises because pre-trained language models typi-
cally rely on the compositionality of words, and the combination of different words
may deviate significantly from the meaning of each individual word, lacking com-
positionality. Therefore, we employ Long Short-Term Memory (LSTM) Recurrent
Neural Networks to combine multi-hop paths, obtaining the embedded representa-
tion of the combined relationships. Subsequently, the embedded representation of
the combined path is used as the final relationship embedding vector.

The process of identifying loop-structures in a knowledge graph is a breadth-
first search process, where the results are represented using a relational path. The
processing of the relational path is shown in Algorithm 1. The input to the algorithm
includes the entity node e and the set of neighbouring nodes N for all nodes, while
the output is a list of identified relational paths. In steps 2 and 3, two nodes e2
and e3 are selected from N(e), respectively. Steps 4 and 5 determine whether e3 is
a neighbouring node of e2. If it is, the path is added to the path list.

We represent the relationship paths in the form of text sequences, replacing the
triplet relationship in BERT’s input with the text of the relationship path. Taking
the loop-structure in Figure 3 as an example, the token sequence for the relationship
path is

T lr = concat(T r1 , T e2 , T r2), (4)

where T r1 , T e2 and T r2 represent sequences composed of tokens corresponding to
entities and relationships in the relationship path.

When using T lr as the relationship sequence, the input representation corre-
sponding to the BERT model is

[CLS]T h[SEP ]T lr[SEP ]T t[SEP ]. (5)



Knowledge Graph Representation Learning by Text Encoding and Graph Structure 729

Algorithm 1 Algorithm for Processing of Loop-Structure Paths

Input: Entity e, Neighbor Node Set N .
Output: Path list listpath.

1: listpath ← []
2: for each e2 in N(e) do
3: for each e3 in N(e) do
4: if e3 in N(e2) then
5: listpath.add([e2, r2, e3, r3])
6: end if
7: end for
8: end for
9: return listpath

LSTM LSTM LSTM

1r 2r2e

LSTM LSTM LSTM

... ... ...

elr

Figure 4. Relational path embedding

As shown in Figure 4, after obtaining the sequential representations of the parts
composed of r1, e2 and r2 in the relationship path, we use a unidirectional LSTM to
combine the relationship path. Sequential representations corresponding to entities
and relationships on the path are sequentially used as inputs to the LSTM. After
passing through multiple layers of LSTM, we select the output of the last LSTM unit
as the embedding vector for the entire relationship path. The calculation process of
the path embedding vector is represented by the following formula:

ecr = LSTM(er1 , ee2 , er2) , (6)

where er1 , ee2 and er2 represent the embedding vectors of entities and relationships
on the relationship path, respectively.

For a given entity ei, we aggregate a set of triplets, where the path embedding
serves as the triplet relationship embedding, using a multi-head attention mecha-
nism. This aggregation allows the target entity to incorporate information from



730 S. Li, C. Zhong, L. Zhang

relationship paths within the loop-structure:

ehc =
1

M

(
M∑

K=1

σ
(∑

ej∈Nc(ei)
αk
ij · (W2 · concat (eei , ercij , eej))

))
, (7)

where M represents the number of attention heads, σ denotes the softmax function,
eei and eej are the embedding vectors for the head and tail entities, respectively. ercij

represents the embedding vector for the relationship path or relationship between
entities ei and ej, W2 ∈ Rd×3d is the weight matrix, Nc(ei) represents the set of
neighbouring nodes that can form a loop-structure with ei and αk

ij denotes the
attention weight computed based on the triplet.

3.3.3 Fusion of Star-Structural Information

Star-structure is a common graph structure in knowledge graphs, where the rela-
tionships between a node (head entity) and its neighbouring nodes (tail entities) can
be considered as a star-structure, the star-structure is shown in Figure 3.

Star-structure can provide contextual semantic information for the target entity.
To better understand the meaning of the target entity, it is essential to consider this
contextual information and integrate it into the embedding representation. We can
view the star-structure as a set of triplets composed of nodes and their neighbouring
nodes.

For a given target entity ei, we employ a multi-head attention mechanism with
weighted summation to aggregate features from neighbouring nodes:

ehc =
1

M

(
M∑

K=1

σ
(∑

ej∈Nc(ei)
αk
ij · (W3 · concat (eei , erij , eej))

))
, (8)

where M represents the number of attention heads, σ denotes the softmax function,
eei and eej are the embedding vectors for the head and tail entities, respectively.
erij represents the embedding vector for the relationship between entities ei and ej,
W3 ∈ Rd×3d is the weight matrix, Ns(ei) represents the set of neighbouring nodes
that can form a star-structure with ei and αk

ij denotes the attention weight computed
based on the triplet.

3.3.4 Entity Feature Fusion

For the head entity h in a triplet (h, r, t) in the knowledge graph, two embedding
vectors, each fused with different graph structure information, can be obtained using
the methods described above. By integrating these two embedding vectors with
learnable weight parameters and adding the initial vector to avoid losing the entity’s
original information, the final embedding vector for entity h is calculated as follows:

ehf = ace
h
c + ase

h
s + aheh, (9)



Knowledge Graph Representation Learning by Text Encoding and Graph Structure 731

where ac, as and ah represent learnable weight parameters, eh represents the initial
embedding vector for the entity. ech and esh represent the final embedding vectors
fused with loop and star-structural information, respectively. Similarly, the final
embedding vector etf for the tail entity in the triplet can be obtained.

3.4 Multi-Task Learning Strategy

In this section, we propose two tasks to assist model training through a multi-task
feature learning approach, thereby improving the learning efficiency of the model.
The knowledge representation learning method based on pre-trained language mod-
els leverages rich semantic information learned during the pre-training process, mak-
ing it more convenient to extend to new entities and relationships without being
affected by the incompleteness of the knowledge graph. However, this approach
overlooks the learning of structural information in the triplet structure, which is
crucial in traditional knowledge graph embedding tasks. To address this, we design
a multi-task learning strategy for knowledge graph representation learning tasks to
jointly learn semantic and structural information from triplets. These tasks share
the output vectors from BERT.

3.4.1 Triplet Structure Prediction

The embedding method based on triplet structure learns the structural information
of triplets by embedding entities and relationships into a low-dimensional space.
However, this approach has limited scalability and may not be applicable to new
entities and relationships. Additionally, it could be weakened in predictive ability
due to the incompleteness of the knowledge graph.

On the other hand, embedding methods based on pre-trained language mod-
els exhibit strong scalability and can be applied to previously unseen entities and
relationships. However, they may lack effectiveness in learning triplet structures,
potentially leading to issues such as missing structural information and entity am-
biguity. Therefore, introducing structural information into the model is necessary.

Inspired by RotatE, we consider the process of mapping the head entity to
the tail entity through the relationship in a triplet as a rotation from the head
entity to the tail entity in the complex vector space. This approach is capable of
modeling various relationship patterns, including symmetric, asymmetric, inversion
and composition. For a given triplet (h, r, t), the distance formula is given by:

d(h, r, t) = h ◦ r − t, (10)

where ◦ denotes the Hadamard product.
For a given triplet (h, r, t), firstly, we obtain the embedding vectors for each

part of the triplet through triplet encoding and feature fusion. Next, we split the
head entity, relationship, and tail entity into real and imaginary parts. Finally, we
calculate the triplet score using the distance formula.



732 S. Li, C. Zhong, L. Zhang

The specific algorithm is shown in Algorithm 2. The input to the algorithm is
the embedding vectors corresponding to the triplet (h, r, t). Steps 2 and 3 calculate
the real and imaginary parts based on the embedding vectors of the head and tail
entities. while steps 4 and 5 compute the real and imaginary parts of the relationship
using sine and cosine functions. Steps 6 and 7 involve calculating scores for the real
and imaginary parts through rotation. Finally, steps 8 merge the scoresof the real
and imaginary parts to compute the final score.

After calculating the score for a triplet according to the algorithm, we use a loss
function similar to cross-entropy to compute the loss:

L1 = −
∑

t∈G∪G−

(yt log σ (γ − st) + (1− yt) log σ (s′t − γ)), (11)

where γ is a fixed margin used to prevent overfitting, σ represents the sigmoid
function, st is the score for a positive triplet, s′t is the score for a negative triplet,
yt ∈ {0, 1} indicates the correctness of the triplet.

Algorithm 2 Algorithm for Triple Structure Score

Input: Triple embedding vectors (eh, er, et).
Output: Triple score st.

1: pi← 3.141592653589
2: hre, him ← split eh into real and imaginary parts
3: tre, tim ← split et into real and imaginary parts
4: rre ← cos(r)
5: rim ← sin(r)
6: sre ← rre ∗ tre + rim ∗ tim − hre

7: sim ← rre ∗ tim − rim ∗ tre − him

8: st ← norm and sum (sre, sim)
9: return st

3.4.2 Triplet Semantic Prediction

We observed that using a triplet semantic prediction classifier during the training
phase can help the BERT model converge faster and achieve better performance.
We extract the hidden state ec corresponding to the [CLS] position in the output
sequence of BERT’s last layer, considering it as the semantic representation of the
entire triplet sequence. Subsequently, we calculate the triplet loss through the triplet
classification task. Initially, we introduce a weight matrix to linearly transform ec,
then compute the score for the triplet, and finally use the cross-entropy loss function
to calculate the loss:

sr = σ (W4e
c) , (12)

L2 = −
∑

t∈G∪G′

(yt log (sr) + (1− yt) log (s
′
r)), (13)



Knowledge Graph Representation Learning by Text Encoding and Graph Structure 733

where sr is the score for a positive triplet, s′r is the score for a negative triplet,
W4 ∈ R2×H represents the weight matrix, σ represents the sigmoid function and
yr ∈ {0, 1} indicates the correctness of the triplet.

3.4.3 Model Training

During the training process, negative examples are typically generated using nega-
tive sampling. Specifically, given a triplet (h, r, t), negative triplets are generated by
randomly replacing either the head entity or tail entity. The set of negative triplets
is represented as:

G′ ={(h′, r, t)|h′ ∈ E ∧ h′ ̸= h ∧ (h′, r, t) /∈ G}

∪ {(h, r, t′)|t′ ∈ E ∧ t′ ̸= t ∧ (h, r, t′) /∈ G}.
(14)

We combine the scores from both tasks to calculate the final score for better
training effectiveness. This is because the triplet semantic prediction task directly
operates on the output of BERT, which helps the model overcome issues such as
gradient vanishing or excessive smoothing, leading to improved performance. The
final loss for the model is computed based on the losses obtained from the two tasks
as described earlier:

L = λL1 + (1− λ)L2, (15)

where λ ∈ (0, 1) represents the weight of the two losses. When λ = 1, it indicates
that only the structural embedding loss is used, and when λ = 0, it indicates that
only the BERT module is used.

4 EXPERIMENTS

In this section, we evaluate the model using both the link prediction task and the
triplet classification task.

4.1 Datasets

We conducted benchmark tests on four datasets to evaluate the performance of our
approach (Table 1).

FB15k-237: Due to the presence of a large number of reversible triples in FB15k,
there is a risk of leakage between the training and test sets. FB15k-237 is
a dataset created from FB15k for link prediction, containing 14,541 entities and
237 relations, which can avoid the leakage issue present in FB15k.

FB13: FB13 is a subset of Freebase, containing 75,043 entities and 13 relations.
These entities cover a diverse range of topics, including people, places, events,
and works. The 13 relations are among the most representative and widely used
in Freebase.



734 S. Li, C. Zhong, L. Zhang

WN18RR: WN18RR is a dataset created from WN18 for the link prediction task,
containing 40 943 entities and 11 relations. It ensures that there is no leakage
between the training and test sets.

WN11: WN11 is a dataset specifically designed for knowledge graph research, con-
taining 38 696 entities and 11 relations. WN11 is a subset of WordNet and has
been refined to facilitate research on specific tasks such as knowledge graph
construction, reasoning, and link prediction.

Dataset Entity Relation Train Dev Test

FB15k-237 14 541 237 272 115 17 535 20 466

FB13 75 043 13 316 232 5 908 23 733

WN18RR 40 943 11 86 835 3 034 3 134

WN11 38 696 11 112 581 2 609 10 544

Table 1. The summary statistics of the datasets used in the experiments

4.2 Evaluation Metrics

This paper uses three performance metrics for evaluating knowledge graph comple-
tion:

Hits@N: Hits@N is a metric used to evaluate the performance of knowledge graph
completion models. It focuses on whether the model can correctly find the true
entity, relationship, or attribute within the top N candidates. Specifically, for
each test sample, the model’s predictions are ranked, and it is checked whether
the true value is within the top N predictions. If yes, the count is 1; otherwise,
the count is 0. Finally, the counts for all test samples are summed and divided
by the total number of test samples to obtain the value of Hits@N. Typically,
a higher Hits@N value indicates that the model more accurately predicts the
true value within the top N candidates.

MR (Mean Rank): MR is a metric used to measure the performance of knowl-
edge graph completion models. It represents the average rank of the entities,
relationships, or attributes predicted by the model for each test sample among
all possible candidates in the test dataset. Specifically, for each test sample,
the model’s predictions are ranked, and the average rank across all test sam-
ples is computed. A lower MR value is better, as it indicates that the model’s
predictions are closer to the true values.

MRR (Mean Reciprocal Rank): MRR is a metric used to evaluate the ranking
performance of a model, commonly used in information retrieval tasks. For
each query, MRR considers the reciprocal rank of the highest-ranked correct
answer returned by the model. The calculation involves finding the position
of the correct answer in the ranking for each query and taking the reciprocal.



Knowledge Graph Representation Learning by Text Encoding and Graph Structure 735

Finally, the average of the reciprocals for all queries is computed, resulting in
the MRR value. The MRR value ranges between 0 and 1, where a value closer
to 1 indicates better model performance.

4.3 Parameter Settings

The model is implemented based on PyTorch and the Transformers library. BERT-
base is used as the base model, with a batch size of 16, a learning rate of 3× 10−5,
and a linear decay rate set to 0.01. The number of training epochs is set to 5, and
the fixed margin γ ∈ {6, 9, 12, 24}.

4.4 Link Prediction

The link prediction task involves predicting the missing entity in a given triplet
(h, r, t) when the head entity is missing (denoted as (?, r, t)), or predicting the miss-
ing entity when the tail entity is missing (denoted as (h, r, ?)). The model is then
used to calculate scores for entities in the candidate set as potential missing entities.
We use three common evaluation metrics, MR, MRR and Hits@10, to assess the
effectiveness of the model in link prediction.

FB15k-237 WN18RR

Method Hits@10 MR MRR Hits@10 MR MRR

TransE* 0.465 347 0.294 0.501 3 384 0.226

DisMult* 0.419 254 0.241 0.490 5 110 0.430

ConvE 0.491 246 0.316 0.480 5 277 0.460

ConvKB* 0.517 257 0.396 0.525 2 554 0.248

RotatE 0.533 177 0.338 0.571 3 340 0.476

KG-BERT 0.420 153 – 0.524 97 –

CompGCN 0.535 197 0.355 0.546 3 533 0.479

BLP-TransE 0.363 – 0.195 0.580 – 0.285

StAR 0.482 117 0.296 0.709 51 0.401

MRGAT 0.539 – 0.355 0.544 – 0.481

PREGSE 0.525 120 0.410 0.714 54 0.440

Table 2. Link prediction results on FB15k-237 and WN18RR

We use PREGSE for the link prediction task on the FB15k-237 and WN18RR
datasets. Table 2 presents the results of link prediction on these two datasets. The
[*] results are taken from the ConvKB paper, while the results of other baseline
models are taken from the original papers. Based on the experimental results, the
following conclusions can be drawn:

• Compared to other models, our proposed PREGSE model achieves better re-
sults in most metrics, indicating stronger representation learning capabilities on
knowledge graphs. It can be observed that our model exhibits more significant



736 S. Li, C. Zhong, L. Zhang

improvements in the Hits@10 metric on the FB15k-237 dataset. This is because
the FB15k-237 dataset has more relationship types and fewer entities, leading to
a more complex graph with richer structural information. Our model can better
learn the graph structure information in such scenarios. The improvement on
WN18RR is relatively lower because of its lower graph complexity and relatively
similar structures, resulting in fewer graph structure information learned by the
model.

• Compared to early translation models and tensor decomposition models, meth-
ods based on pre-trained language models show better performance. This is
because knowledge graph representation learning methods based on translation
models are limited by training only on the triplet structure, making it challeng-
ing to distinguish different relationships adequately. In contrast, pre-trained
language models can learn rich semantic information from the text, allowing
them to exclude many unreasonable triplets. For example, for two triplets (Jack,
born in, London) and (Jack, graduated from, London), using the TransE model
would likely result in embeddings for the relationships “born in” and “graduated
from” being closer in the vector space projection, potentially leading to incorrect
results when predicting similar triplets.

• Compared to the KG-BERTmodel, PREGSE shows a 10.5% improvement in the
Hits@11 metric on the FB15k-237 dataset. On the WN18RR dataset, PREGSE
achieves a 19% improvement in the Hits@10 metric. This is because, relative
to the KG-BERT model, PREGSE model calculates the loss using structured
methods, giving due consideration to triplet structure information and achieving
better results in terms of Hits@N metrics.

• Compared to CompGCN and MRGAT, PREGSE achieves a higher MRR metric
on the FB15k-237 dataset. The MRR improvement on the WN18RR dataset
is lower due to the limited local structural information in WN18RR, which
hinders the full learning of implicit information from different local structures.
However, there is still a significant improvement in the Hits@10 metric, as the
introduction of the PLM effectively mitigates the lack of local structural infor-
mation.

4.5 Triplet Classification

The triplet classification task aims to determine whether a given factual triplet is
correct, typically treated as a binary classification problem. The decision rule is
based on a scoring function with a specific threshold. The structured embedding
methods calculate the triplet score, and if the score is below the threshold, the
factual triplet is deemed correct; otherwise, it is considered incorrect. We conducted
the triplet classification task on two datasets, WN11 and FB13. Table 3 presents
the results of the triplet classification task, and the following conclusions can be
drawn:



Knowledge Graph Representation Learning by Text Encoding and Graph Structure 737

• Compared to traditional knowledge graph embedding models, using text encod-
ing methods yields better results, with a more significant improvement on the
WN11 dataset. This is because pre-trained models have already learned rich
semantic information in upstream tasks, providing better support for model
reasoning.

• Compared to the KG-BERT model, our approach produces slightly better re-
sults. This is because the scoring function of the PREGSE model can better
learn semantic and structural information, providing enhanced capability in han-
dling complex semantic relationships.

Model WN11 FB13 Avg

TransE 75.9 81.5 78.7

TransD 86.4 89.1 87.8

DistMult 87.1 86.2 86.7

ConvKB 87.6 88.8 88.2

KG-BERT 93.5 90.4 91.9

PREGSE 93.2 91.6 92.4

Table 3. Triple classification accuracy for different embedding methods

4.6 The Effectiveness of Graph Structure Feature Fusion

In this section, we conduct ablation experiments to assess the impact of integrating
local graph structure features on the model’s performance. Specifically, on the
FB15k-237 dataset, we individually remove either loop-structure or star-structure,
retaining the other for training. We then compare these scenarios with the method
that does not utilize graph structure embeddings. The experimental results are
presented in Figure 5, where PREGSE represents the original model, PREGSE-S
denotes retaining star structures, PREGSE-L denotes retaining loop-structure, and
PREGSE- signifies removing both types of graph structures.

The results indicate that when removing either star-structure or loop-structure,
the model’s performance is inferior to the original model. This suggests that simul-
taneously integrating loop-structure and star-structure leads to better results. The
experimental outcomes with integrated loop-structure or star-structure are notably
superior to these without integrated graph structures, indicating that both types
of graph structures contribute positively. Moreover, when using only star-structure,
the experimental results outperform those using only loop-structure, suggesting that
incorporating information from entity neighbors plays a more crucial role.

4.7 Model Complexity

Traditional translation-based methods typically have fewer parameters and are less
complex. Knowledge graph representation learning methods based on PLM can



738 S. Li, C. Zhong, L. Zhang

Figure 5. Experimental results on the FB15K-237 dataset

leverage the semantic information learned during the pre-training phase of the model
to obtain better vector representations, but this also leads to larger parameter sizes.
We analyzed the complexity and parameter scale of current models, with results
shown in Table 4. Here, n denotes the number of triples, ne denotes the number
of entities, nr denotes the number of relations, np denotes the number of relational
paths, de denotes the dimensionality of entities, dr denotes the dimensionality of
relations, and M denotes the number of attention heads. As shown in Table 4, it



Knowledge Graph Representation Learning by Text Encoding and Graph Structure 739

can be observed that the PREGSE method has lower spatial complexity, similar to
TransE, but it has higher computational complexity due to the inclusion of multiple
modules. In terms of model parameter scale, the introduction of the PLM results in
a larger parameter scale for PREGSE compared to other traditional representation
learning methods. According to research in BERT for Link Prediction (BLP) [32],
initializing entities with only BERT can reduce the complexity of model training
while fully utilizing semantic information.

Model Space Complexity Time Complexity

TransE O(nede + nrdr) O(n)

TransR O(nede + nr(1 + de)dr) O(2dedrn)

DistMult O((nede + nrdr)
2) O(ndedr)

ConvE O(nede + nrdr) O(nde)

PREGSE O(nede + (nr + np)dr) O((n+ np)dedr)

Table 4. Time and space complexity of models used in the experiments

4.8 Further Analyses

Compared to existing baseline models, the PREGSE model demonstrates stronger
robustness and generalization capabilities when handling input data under various
conditions. First, when the input entities or relations are absent from the training
set, as indicated by the research in StAR, PLM-based models can still encode entities
or relations into relatively appropriate embedding vectors due to the rich semantic
information learned by the PLM in upstream tasks. This gives PLM-based models
a more powerful capacity for extension compared to other types of models. Second,
when structural information is missing, PLM can better compensate for this issue.
Finally, in KG-BERT, only BERT is used for link prediction tasks, which can lead
to difficulties in distinguishing between entities or relations with similar textual
semantics. Research in LASS [33] shows that introducing the scoring function from
the translation model can effectively address this problem.

5 CONCLUSIONS

In this paper, we propose a representation learning method, Pretrained Language
Model-based Graph Structure Enhanced Embedding (PREGSE), which incorpo-
rates text encoding and graph structure information for improved knowledge graph
completion tasks.

Firstly, we utilize a pretrained language model (BERT) to map entities and rela-
tions in the knowledge graph into vector representations, leveraging the deep seman-
tic information learned by the pretrained language model on large-scale text data.
Secondly, we introduce a graph attention network to capture various graph struc-
ture information among entities. Finally, employing a multi-task learning strategy,



740 S. Li, C. Zhong, L. Zhang

we structurally model triplets to accelerate the model’s convergence. Experimental
results on FB15k-237, FB13, WN18RR, and WN11 datasets demonstrate that our
approach enhances the understanding of deep semantic connections between entities.
It effectively considers both semantic and structural information, resulting in im-
proved accuracy and effectiveness in knowledge graph completion. Future research
directions include incorporating more types of graph structures to further enhance
the performance of knowledge graph representation learning.

6 DECLARATIONS

This research was supported by the National Natural Science Foundation of China
under Grant No. 62072136, the Natural Science Foundation of Heilongjiang Province
No. LH2023F031, the National Key R&D Program of China under Grant No.
2020YFB1710200.

REFERENCES

[1] Wang, M.—Wang, H.—Li, B.—Zhao, X.—Wang, X.: Survey on Key Tech-
nologies of New Generation Knowledge Graph. Journal of Computer Research and
Development, Vol. 59, 2022, No. 9, pp. 1947–1965 (in Chinese).

[2] Chen, J.—Yu, J.—Yang, X.: A Feature Extraction Based Recommender Algo-
rithm Fusing Semantic Analysis. Journal of Computer Research and Development,
Vol. 57, 2020, No. 3, pp. 562–575 (in Chinese).

[3] Qiao, S.—Yang, G.—Yu, Y.—Han, N.—Qin, X.—Qu, L.—Ran, L.—
Li, H.: QA-Kgnet: Language Model-Driven Knowledge Graph Question-Answering
Model. Journal of Software, Vol. 34, 2023, No. 10, pp. 4584–4600, doi:
10.13328/j.cnki.jos.006882 (in Chinese).

[4] Hou, Z.—Jin, X.—Chen, J.—Guan, S.—Wang, Y.—Cheng, X.: Survey of
Interpretable Reasoning on Knowledge Graphs. Journal of Software, Vol. 33, 2022,
No. 12, pp. 4644–4667, doi: 10.13328/j.cnki.jos.006522 (in Chinese).

[5] Bollacker, K.—Evans, C.—Paritosh, P.—Sturge, T.—Taylor, J.: Free-
base: A Collaboratively Created Graph Database for Structuring Human Knowledge.
Proceedings of the 2008 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’08), 2008, pp. 1247–1249, doi: 10.1145/1376616.1376746.

[6] Auer, S.—Bizer, C.—Kobilarov, G.—Lehmann, J.—Cyganiak, R.—
Ives, Z.: DBpedia: A Nucleus for a Web of Open Data. In: Aberer, K., Choi, K. S.,
Noy, N. et al. (Eds.): The Semantic Web (ISWC 2007, ASWC 2007). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 4825, 2007, pp. 722–735, doi:
10.1007/978-3-540-76298-0 52.

[7] Suchanek, F.M.—Kasneci, G.—Weikum, G.: Yago: A Core of Semantic
Knowledge. Proceedings of the 16th International Conference on World Wide Web
(WWW’07), ACM, 2007, pp. 697–706, doi: 10.1145/1242572.1242667.

https://doi.org/10.13328/j.cnki.jos.006882
https://doi.org/10.13328/j.cnki.jos.006522
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1145/1242572.1242667


Knowledge Graph Representation Learning by Text Encoding and Graph Structure 741

[8] Yang, D.—He, T.—Wang, H.—Wang, J.: Survey on Knowledge Graph Embed-
ding Learning. Journal of Software, Vol. 33, No. 9, pp. 3370–3390 (in Chinese).

[9] Li, S.—Shu, S.—Hao, X.—Hao, Z.: Knowledge Representation Learning Method
Integrating Textual Description and Hierarchical Type. Journal of Zhejiang University
(Engineering Science), Vol. 57, 2023, No. 5, pp. 911–920 (in Chinese).

[10] Shu, S.—Li, S.—Hao, X.—Zhang, L.: Knowledge Graph Embedding Technology:
A Review. Journal of Frontiers of Computer Science and Technology, Vol. 15, 2021,
No. 11, pp. 2048–2062 (in Chinese).

[11] Du, X.—Liu, M.—Shen, L.—Peng, X.: Survey on Representation Learning Meth-
ods of Knowledge Graph for Link Prediction. Journal of Software, Vol. 35, 2024, No. 1,
pp. 87–117, doi: 10.13328/j.cnki.jos.006902 (in Chinese).

[12] Bordes, A.—Usunier, N.—Garcia-Duran, A.—Weston, J.—
Yakhnenko, O.: Translating Embeddings for Modeling Multi-Relational Data.
In: Burges, C. J., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q.
(Eds.): Advances in Neural Information Processing Systems 26 (NIPS 2013). Curran
Associates, Inc., 2013, pp. 2787–2795, https://proceedings.neurips.cc/paper_
files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

[13] Devlin, J.—Chang, M.W.—Lee, K.—Toutanova, K.: BERT: Pre-Training
of Deep Bidirectional Transformers for Language Understanding. In: Burstein, J.,
Doran, C., Solorio, T. (Eds.): Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (NAACL 2019), Volume 1 (Long and Short Papers). ACL, 2019,
pp. 4171–4186, doi: 10.18653/v1/N19-1423.

[14] Brown, T.—Mann, B.—Ryder, N.—Subbiah, M.—Kaplan, J.D. et al.:
Language Models Are Few-Shot Learners. In: Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M.F., Lin, H. (Eds.): Advances in Neural Infor-
mation Processing Systems 33 (NeurIPS 2020). Curran Associates, Inc.,
2020, pp. 1877–1901, https://proceedings.neurips.cc/paper_files/paper/

2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[15] Lewis, M.—Liu, Y.—Goyal, N.—Ghazvininejad, M.—Mohamed, A.—
Levy, O.—Stoyanov, V.—Zettlemoyer, L.: BART: Denoising Sequence-to-
Sequence Pre-Training for Natural Language Generation, Translation, and Compre-
hension. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (Eds.): Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics (ACL
2020). ACL, 2020, pp. 7871–7880, doi: 10.18653/v1/2020.acl-main.703.

[16] Yao, L.—Mao, C.—Luo, Y.: KG-BERT: BERT for Knowledge Graph Completion.
CoRR, 2019, doi: 10.48550/arXiv.1909.03193.

[17] Fan, M.—Zhou, Q.—Chang, E.—Zheng, T. F.: Transition-Based Knowledge
Graph Embedding with Relational Mapping Properties. Proceedings of the 28th Pa-
cific Asia Conference on Language, Information and Computation (PACLIC 2014),
2014, pp. 328–337, https://aclanthology.org/Y14-1039.pdf.

[18] Wang, Z.—Zhang, J.—Feng, J.—Chen, Z.: Knowledge Graph Embedding by
Translating on Hyperplanes. Proceedings of the AAAI Conference on Artificial Intel-
ligence, Vol. 28, 2014, No. 1, pp. 1112–1119, doi: 10.1609/aaai.v28i1.8870.

https://doi.org/10.13328/j.cnki.jos.006902
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.48550/arXiv.1909.03193
https://aclanthology.org/Y14-1039.pdf
https://doi.org/10.1609/aaai.v28i1.8870


742 S. Li, C. Zhong, L. Zhang

[19] Lin, Y.—Liu, Z.—Sun, M.—liu, Y.—Zhu, X.: Learning Entity and Rela-
tion Embeddings for Knowledge Graph Completion. Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 29, 2015, No. 1, pp. 2181–2187, doi:
10.1609/aaai.v29i1.9491.

[20] Ji, G.—He, S.—Xu, L.—Liu, K.—Zhao, J.: Knowledge Graph Embedding via
Dynamic Mapping Matrix. In: Zong, C., Strube, M. (Eds.): Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language Processing (ACL-IJCNLP 2015).
2015, pp. 687–696, doi: 10.3115/v1/P15-1067.

[21] Sun, Z.—Deng, Z.H.—Nie, J. Y.—Tang, J.: RotatE: Knowledge Graph
Embedding by Relational Rotation in Complex Space. Proceedings of the In-
ternational Conference on Learning Representations (ICLR 2019), 2018, doi:
10.48550/arXiv.1902.10197.

[22] Nickel, M.—Tresp, V.—Kriegel, H. P.: A Three-Way Model for Collective
Learning on Multi-Relational Data. Proceedings of the 28th International Conference
on Machine Learning (ICML 2011), 2011, pp. 809–816.

[23] Yang, B.—Yih, W.—He, X.—Gao, J.—Deng, L.: Embedding Entities
and Relations for Learning and Inference in Knowledge Bases. Proceedings of
the 3rd International Conference on Learning Representations (ICLR), 2015, doi:
10.48550/arXiv.1412.6575.

[24] Nickel, M.—Rosasco, L.—Poggio, T.: Holographic Embeddings of Knowledge
Graphs. Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30, 2016,
No. 1, pp. 1955–1961, doi: 10.1609/aaai.v30i1.10314.

[25] Dettmers, T.—Minervini, P.—Stenetorp, P.—Riedel, S.: Convolutional 2D
Knowledge Graph Embeddings. Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32, 2018, No. 1, pp. 1811–1818, doi: 10.1609/aaai.v32i1.11573.

[26] Nguyen, D.Q.—Nguyen, T.D.—Nguyen, D.Q.—Phung, D.: A Novel Em-
bedding Model for Knowledge Base Completion Based on Convolutional Neural Net-
work. In: Walker, M., Ji, H., Stent, A. (Eds.): Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (NAACL 2018), Volume 2 (Short Papers). 2018,
pp. 327–333, doi: 10.18653/v1/N18-2053.

[27] Jiang, X.—Wang, Q.—Wang, B.: Adaptive Convolution for Multi-Relational
Learning. In: Burstein, J., Doran, C., Solorio, T. (Eds.): Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL 2019), Volume 1 (Long and
Short Papers). 2019, pp. 978–987, doi: 10.18653/v1/N19-1103.

[28] Schlichtkrull, M.—Kipf, T.N.—Bloem, P.—van den Berg, R.—
Titov, I.—Welling, M.: Modeling Relational Data with Graph Convolutional
Networks. In: Gangemi, A., Navigli, R., Vidal, M.E. et al. (Eds.): The Semantic
Web (ESWC 2018). Springer, Cham, Lecture Notes in Computer Science, Vol. 10843,
2018, pp. 593–607, doi: 10.1007/978-3-319-93417-4 38.

[29] Vashishth, S.—Sanyal, S.—Nitin, V.—Talukdar, P.: Composition-Based
Multi-Relational Graph Convolutional Networks. Proceedings of the 8th In-

https://doi.org/10.1609/aaai.v29i1.9491
https://doi.org/10.3115/v1/P15-1067
https://doi.org/10.48550/arXiv.1902.10197
https://doi.org/10.48550/arXiv.1412.6575
https://doi.org/10.1609/aaai.v30i1.10314
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.18653/v1/N18-2053
https://doi.org/10.18653/v1/N19-1103
https://doi.org/10.1007/978-3-319-93417-4_38


Knowledge Graph Representation Learning by Text Encoding and Graph Structure 743

ternational Conference on Learning Representations (ICLR 2020), 2020, doi:
10.48550/arXiv.1911.03082.

[30] Li, Z.—Zhao, Y.—Zhang, Y.—Zhang, Z.: Multi-Relational Graph Attention
Networks for Knowledge Graph Completion. Knowledge-Based Systems, Vol. 251,
2022, Art. No. 109262, doi: 10.1016/j.knosys.2022.109262.

[31] Jin, Y.—Yang, L.: Graph-Aware Tensor Factorization Convolutional Network for
Knowledge Graph Completion. International Journal of Machine Learning and Cy-
bernetics, Vol. 15, 2024, No. 5, pp. 1755–1766, doi: 10.1007/s13042-023-01995-3.

[32] Daza, D.—Cochez, M.—Groth, P.: Inductive Entity Representations from Text
via Link Prediction. Proceedings of the Web Conference 2021 (WWW’21), ACM,
2021, pp. 798–808, doi: 10.1145/3442381.3450141.

[33] Shen, J.—Wang, C.—Gong, L.—Song, D.: Joint Language Semantic and Struc-
ture Embedding for Knowledge Graph Completion. In: Calzolari, N., Huang, C.R.,
Kim, H., Pustejovsky, J. et al. (Eds.): Proceedings of the 29th International Con-
ference on Computational Linguistics (COLING 2022). 2022, pp. 1965–1978, https:
//aclanthology.org/2022.coling-1.171.pdf.

https://doi.org/10.48550/arXiv.1911.03082
https://doi.org/10.1016/j.knosys.2022.109262
https://doi.org/10.1007/s13042-023-01995-3
https://doi.org/10.1145/3442381.3450141
https://aclanthology.org/2022.coling-1.171.pdf
https://aclanthology.org/2022.coling-1.171.pdf


744 S. Li, C. Zhong, L. Zhang

Song Li received his Ph.D. degree in computer application tech-
nology from the Harbin University of Science and Technology,
Harbin, China, in 2009. He is currently Professor with the Col-
lege of Computer Science and Technology, Harbin University of
Science and Technology. He is the author of two books, more
than 60 articles. His research interests include spatial database,
data mining, big data and information privacy protection, knowl-
edge graph.

Chengyu Zhong received his B.Sc. degree in software engi-
neering from the Harbin University of Science and Technology,
in 2022. He is currently pursuing a M.Sc. degree in the Depart-
ment of Computer Science and Technology, Harbin University
of Science and Technology, China. His current research interests
include knowledge graph and knowledge representation learning.

Liping Zhang received her M.Sc. degree in computer appli-
cation technology from the Harbin University of Science and
Technology, Harbin, China, in 2006. She is currently Professor
with the College of Computer Science and Technology, Harbin
University of Science and Technology. She is the author of two
books, more than 40 articles. Her research interests include spa-
tial database, data mining, knowledge graph, big data and in-
formation privacy protection.


