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Abstract. Federated learning (FL) allows distributed devices to jointly train a glo-
bal model while safeguarding the privacy of their local data. However, selecting and
securing clients, especially in environments with potentially malicious participants,
remains a critical challenge. This study proposes an innovative participant selection
method to enhance both security and efficiency in centralized and decentralized FL
frameworks. In the centralized framework, this method effectively excludes clients
with weak privacy protections and optimization capabilities, thus increasing overall
system security. For decentralized FL, a blockchain-supported approach is intro-
duced, which further strengthens the robustness of the system. Using a dynamic
role assignment algorithm, roles such as worker, validator, and miner are allocated
based on security and performance metrics for each training round. The findings
show that this method performs on a par with the scenarios free of malicious clients,
demonstrating the value of blockchain technology in improving FL protocols. By
addressing security vulnerabilities and improving training efficiency, this research
contributes to the development of more secure and efficient FL systems, underscor-
ing the importance of advanced participant selection and role assignment strategies.
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1 INTRODUCTION

In the era of distributed machine learning, managing large volumes of training data
across multiple devices poses significant challenges. Traditional approaches rely on
centralized servers to handle data, raising concerns about privacy and security. Fed-
erated learning (FL) [1] emerged as a solution to these concerns, allowing devices to
collaboratively train a global model without exposing their local data [2]. However,
several vulnerabilities remain unaddressed in current FL implementations, particu-
larly with participant selection and the security of data transmitted during training
rounds.

Existing FL systems depend on participants periodically sharing model updates
with a central server [3], yet they lack strong guarantees regarding the integrity and
trustworthiness of these updates. Adverse conditions or malicious actors can corrupt
the data, leading to compromised models. The literature lacks robust solutions to
mitigate these risks and ensure both privacy and performance in FL.

To address this, we introduce a novel method that optimizes participant selec-
tion and role assignment in FL, leveraging blockchain technology to enhance security
in decentralized frameworks. In centralized FL, our proposed method filters partic-
ipants based on privacy and optimization capabilities, ensuring that only reliable
clients contribute to the model. For decentralized FL, a blockchain-assisted frame-
work ensures secure and dynamic role determination, assigning roles like worker,
validator, and miner based on clients’ security and performance levels. This ap-
proach guarantees robustness even in the presence of potential adversaries, providing
performance levels comparable to environments without malicious clients.

Blockchain [4], with its tamper-resistant and traceable nature, forms the back-
bone of our decentralized FL framework, ensuring secure and transparent interac-
tions between participants. By combining FL and blockchain, our system safeguards
model updates during training, preserving both the integrity of the data and the
privacy of participants.

The key contributions of this paper include:

• A participant selection algorithm that optimizes privacy and performance in
centralized FL;

• A role determination algorithm for decentralized FL, enhancing security and
performance using blockchain technology;

• A comprehensive evaluation of the proposed system in both centralized and de-
centralized settings, demonstrating its resilience against adversarial conditions.

The structure of the paper is as follows: Section 2 reviews the literature on FL
and blockchain integration. Section 3 defines the challenges in participant selection
and role determination in FL systems. Section 4 introduces the proposed participant
selection algorithm for centralized FL, while Section 5 delves into the blockchain-
assisted role determination method for decentralized FL. Finally, Section 6 presents
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experimental results, and Section 7 concludes the paper with a summary of key
findings and potential future research directions.

2 RELATED WORKS

In recent years, extensive research has been conducted to enhance the security, per-
formance, and reliability of Federated Learning (FL) systems. This section reviews
significant contributions in client selection methods, security and privacy mecha-
nisms, and the integration of blockchain technology into FL, highlighting gaps that
our proposed approach seeks to address.

2.1 Client Selection Methods

Client selection is a critical aspect of FL that influences model performance, con-
vergence speed, and resource efficiency. Various strategies have been developed to
optimize client selection, considering factors such as client heterogeneity, energy
constraints, and security requirements.

2.1.1 Reputation-Based and Heterogeneity-Aware Methods

The PIRATE framework [5] marks a significant advancement in decentralized fed-
erated learning (FL) by leveraging consortium blockchain technology to implement
a decentralized reputation system for client selection. This approach enhances the
reliability of participating clients, ensuring that only trusted contributors influence
the model training process.

In contrast, Oort [6] introduces an optimization mechanism designed for central-
ized FL, prioritizing participant selection based on processing time and accuracy.
By employing the Oort executor, the framework streamlines FL coordination and
enhances overall system performance. However, its centralized focus limits its appli-
cability in addressing the challenges posed by client heterogeneity in decentralized
settings.

Building upon Oort, the PISCES algorithm [7] introduces an asynchronous en-
hancement to the participant selection process, enabling straggling clients to con-
tribute to model training. While this modification improves inclusivity, it does not
adequately address privacy and security considerations, which are critical in many
FL deployments.

The AFL framework [8] takes a probability-based approach to client selection
in FL by evaluating the utility of each client’s data. This method effectively re-
duces communication costs and improves the model efficiency while maintaining
differential privacy to protect client data.

To address communication costs and data heterogeneity in mobile devices, the
Hermes framework [9] provides a novel solution for federated learning. Hermes en-
ables devices to learn personalized, structured sparse deep neural networks through
structured pruning, significantly reducing communication overhead and improving
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inference efficiency. Additionally, it incorporates a participant selection strategy by
grouping devices based on their communication capabilities and data characteristics,
optimizing participation for both efficiency and personalization.

The control mechanism proposed by [10] addresses client heterogeneity by dy-
namically adjusting the frequency of client selection, allowing lower-capacity clients
to participate more frequently. Experiments on deep neural network (DNN) tasks
using large-scale FEMNIST datasets demonstrate that including such clients en-
hances participation rates and improves model accuracy, particularly in centralized
FL scenarios.

Finally, the approach described by [11] tackles the challenge of training federated
deep learning models on mobile devices while preserving data privacy. This method
introduces an optimal user selection strategy based on reputation scores, improving
the efficiency and stability of federated learning, particularly in scenarios with non-
IID and imbalanced data distributions.

2.1.2 Blockchain-Based Participant Selection

Blockchain technology has been increasingly integrated into FL to address trust
and transparency challenges in participant selection. The decentralized nature of
blockchain allows for secure and transparent client selection without relying on a cen-
tralized authority.

One example is the work by [12], which presents a blockchain-based approach
to optimize edge node selection in FL settings. This method uses a consensus
algorithm to evaluate the trustworthiness of clients based on their past performance
and behavior, thereby ensuring that only reliable participants are selected. Using
blockchain in this context enhances security and promotes fairness in the selection
process.

Another significant contribution is by [13], which introduces a blockchain-based
framework for secure and transparent participant selection in healthcare FL envi-
ronments. Maintaining an immutable record of client contributions ensures that
only legitimate participants are involved in the training process, thereby reducing
the risk of adversarial attacks.

The Lotto framework [14] also leverages blockchain to implement secure random
and informed selection algorithms. This method aligns client selection with honest
behaviors while maintaining low computational overhead, making it resilient against
malicious clients.

The article [15] examined the development of a federated learning (FL) frame-
work that integrated blockchain technology to improve participant selection, au-
ditability, and privacy. The framework addressed key challenges using blockchain
and smart contracts to create a transparent and verifiable selection process. In
this process, participants anonymously submitted their training losses, allowing for
evaluation without compromising private information. The framework ensured that
participants could not falsify their contributions or impersonate others by employ-
ing cryptographic methods such as commitment schemes and zero-knowledge proofs.
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This approach not only balanced auditability and privacy but also enhanced train-
ing efficiency and model accuracy, making it a valuable contribution to the study of
trust and privacy in decentralized machine learning.

2.1.3 Energy-Aware Methods

Energy efficiency is crucial, especially in mobile and edge FL environments. The
REWAFL approach [16] optimizes participant selection by considering residual en-
ergy levels and wireless conditions. This method minimizes energy consumption
while maintaining effective training, making it suitable for heterogeneous mobile
networks. However, it primarily targets decentralized FL scenarios, with limited
applicability to centralized systems.

2.1.4 Security-Enhanced Methods

Security in FL has been a growing concern, particularly in ensuring the integrity of
model updates and protecting against adversarial attacks. VerifyNet [17] addresses
this by providing a robust verification mechanism for server results, capable of han-
dling user dropouts and operating under honest-but-curious settings. This central-
ized approach ensures data integrity but does not fully integrate privacy-preserving
mechanisms.

FedRank [18], on the other hand, employs imitation learning to optimize client
selection. By ranking clients based on their contributions through pairwise training,
FedRank accelerates model convergence and enhances selection efficiency, prioritiz-
ing high-performing clients while reducing energy consumption.

2.1.5 Adaptive Resource Management

Managing resources efficiently in FL is critical for large-scale deployments. The Se-
lective Aggregation of Models (SAM) approach [19] mitigates communication bot-
tlenecks by allowing clients to selectively upload models, reducing overhead while
maintaining accuracy. SAM is particularly effective in centralized FL, where com-
munication costs are a significant constraint.

The FLOAT framework [20] further enhances resource management by dynami-
cally optimizing FL parameters through multi-objective reinforcement learning. By
reducing client dropouts and managing stragglers, FLOAT improves the efficiency
of FL systems, particularly in environments with heterogeneous resources.

2.2 Blockchain-Enhanced FL Solutions

Blockchain technology is a decentralized and distributed ledger system that allows
for secure and transparent record-keeping across a network of nodes. Originally
introduced as the underlying technology for cryptocurrencies like Bitcoin, blockchain
has since expanded its applications to various fields due to its unique properties.
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At its core, a blockchain comprises blocks, each containing a set of transaction
data. These blocks are linked together in a chronological chain using cryptographic
hashes, which ensure that once data is added, it cannot be altered without impacting
the entire chain. This feature guarantees the immutability and security of data,
making blockchain highly resistant to tampering and fraud.

One of the key components of a blockchain network is its consensus mechanism.
Since there is no central authority, consensus algorithms are used to ensure agree-
ment among the distributed nodes. Common consensus models include Proof of
Work (PoW), where participants solve complex mathematical problems to validate
transactions, and Proof of Stake (PoS), where validators are chosen based on the
number of tokens they hold. Both mechanisms play a critical role in ensuring the
security and integrity of the network.

Blockchain’s decentralized, transparent, and immutable nature has made it suit-
able for applications beyond digital currencies. It is widely used in industries such
as finance, supply chain management, and healthcare. In particular, blockchain
is essential for developing smart contracts and decentralized applications (dApps),
which rely on these core features for secure and automated transactions.

In specialized fields like federated learning, blockchain offers additional benefits.
For instance, it can provide a verifiable record of actions, such as unlearning requests,
ensuring data compliance and privacy requirements are met in distributed learning
frameworks. This enhances transparency and trust, two critical factors in managing
sensitive data.

2.2.1 Reputation and Privacy Mechanisms

FedCure [21] introduces a personalized FL framework for Internet of Medical Things
(IoMT) applications, leveraging blockchain to ensure data privacy while addressing
device heterogeneity through edge computing. This approach reduces latency and
improves model performance in healthcare scenarios, demonstrating blockchain’s
potential in privacy-preserving FL.

The PIRATE framework [5] also employs blockchain to create a decentralized,
reputation-based client selection system, enhancing trust and transparency in FL
processes. These solutions highlight the role of blockchain in promoting secure and
reliable collaboration in FL environments.

2.2.2 Mitigating Adversarial Attacks and Dropouts

Lotto [14] addresses the vulnerability of FL to adversarial servers by using secure
random and informed selection algorithms. This approach ensures that client selec-
tion aligns with honest behaviors, maintaining low computational overhead while
safeguarding against manipulation. This method enhances the resilience of FL sys-
tems against malicious clients.
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2.3 Security and Privacy Mechanisms in FL

Blockchain’s decentralized, transparent, and immutable nature makes it well-suited
for enhancing security and privacy in FL. By providing a verifiable record of ac-
tions, blockchain ensures data integrity and compliance, which is crucial in privacy-
preserving FL frameworks. The work [22] introduces SLMFed as a mechanism for
Incremental and FL (IFL) to update AI models in dynamic IoT environments, man-
aging stage transitions and client selection by adopting a stage-based and layer-wise
approach to periodic learning. The article [23] introduced FLIPS (FL using Intel-
ligent Participant Selection), an innovative solution to improve the efficiency and
accuracy of FL systems. Jia et al. [24] introduced a blockchain-enabled scheme for
securely aggregating FL data in Industrial Internet of Things (IIoT) environments,
incorporating differential privacy to protect data while optimizing model updates.
This demonstrates blockchain’s capability to enhance both security and privacy in
FL.

The work [25] proposed a taxonomy for evaluating the trustworthiness of FL
models, focusing on privacy, fairness, robustness, and accountability. This frame-
work underscores the importance of secure and transparent mechanisms in FL, which
blockchain can facilitate. The work [26] introduces the Privacy-aware Task Assign-
ment (PA-TA) Problem, which aims to allocate tasks to workers while prioritizing
privacy and utility maximization. Wang et al. [27] explored an unbiased client sam-
pling strategy to accelerate the convergence speed of FL. The work [28] aimed to
solve the problem of data heterogeneity in FL, suggesting a one-pass distribution
sketch to fill this gap, maintaining ϵ-differential privacy.

Further, several studies [26, 5, 17] have shown that privacy preservation is a crit-
ical issue in FL. Techniques like homomorphic encryption (HE) and secure multi-
party computation (SMC) have been proposed within FL frameworks to protect
data privacy, as seen in the articles [29] and [24].

The article [12] introduced a blockchain-based approach to optimize edge node
selection while preserving privacy in FL settings, while authors of [13] focused on
ensuring security and reliability in sharing medical records, prioritizing patient pri-
vacy.

The works [24] and [30] extensively studied the integration of differential pri-
vacy into blockchain technology, highlighting its practical implications for enhancing
privacy in various applications.

Building on these studies, our work seeks to enhance the security and privacy
of FL systems by integrating synchronous FL protocols with proven blockchain
methodologies. Our approach aims to provide a unified framework that balances
performance, privacy, and security, addressing the limitations of existing methods.

2.4 Summary of Gaps and Contributions

The reviewed literature highlights significant advancements in federated learning
(FL), particularly in client selection, energy efficiency, and security mechanisms.
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However, most existing methods either prioritize performance optimization or pri-
vacy preservation, and fail to provide a comprehensive framework that balances
both objectives in both centralized and decentralized FL environments. Notably,
there is a lack of algorithms that simultaneously address both optimization and
security in client selection. To fill this gap, we propose a novel algorithm that in-
tegrates optimization and security considerations, ensuring a robust and efficient
participant selection process. Our approach also incorporates blockchain-enhanced
role determination, enabling secure and dynamic participant selection while opti-
mizing for privacy and system performance. Through extensive experiments using
MNIST datasets, we demonstrate that our method not only improves model conver-
gence but also enhances the overall security and privacy of FL systems, especially
in heterogeneous environments.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 Problem Formulation

In centralized Federated Learning (FL) methods, selecting devices with malicious
intent or poor performance can significantly delay the training process. These issues
often arise from devices with inferior hardware, unreliable connections, or frequent
dropouts. To mitigate these challenges, we propose an algorithm to identify and
exclude malicious or underperforming devices. The primary objective is to ensure
the selection of the most secure and effective devices, thereby enhancing both the
efficiency and security of the FL framework.

In blockchain-enabled FL systems, nodes assume distinct roles that are crucial
for maintaining system integrity. Validators ensure compliance with standards and
authenticate updates through cryptographic methods, while miners are responsible
for creating new blocks for FL transactions, a process that demands substantial
computational resources. Workers train machine learning models on local datasets,
preserving data privacy, and subsequently send their updates to a central aggrega-
tor or validator for integration into the global model. A key priority is to select
secure and proficient nodes as workers, aligning role allocation with the system’s
requirements. Notably, in decentralized systems, this role determination method is
executed following the consensus process within the blockchain, ensuring that role
assignments are consistent with the system’s validated state.

Building on recent research [24, 30, 32], which emphasizes the importance of
privacy preservation in blockchain-based FL systems, we propose incorporating dif-
ferential privacy into our algorithm. This enhancement aims to secure data transac-
tions and foster the development of privacy-preserving methodologies in decentral-
ized learning environments.
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3.2 System Model

Our simulation models the dynamics of FL in both centralized and decentralized set-
tings. Participants, called nodes, are tasked with training a neural network model on
the MNIST dataset. The simulation dynamically assigns roles – workers, validators,
miners, and potential adversaries – based on privacy and optimization levels condi-
tions, with the role determination method in decentralized systems being contingent
on the successful completion of blockchain consensus.

The iterative nature of FL is captured over multiple rounds. Workers contribute
training updates, validators assess the quality of these updates, and miners aggregate
them to improve the model. A blockchain securely records and stores these updates,
ensuring both traceability and security.

Throughout the simulation, the system continuously monitors the model’s accu-
racy, providing valuable insights into its performance over time. Bar charts visually
depict the distribution of roles (workers, validators, miners) in each round, illustrat-
ing the collaborative efforts within the system.

The flexibility of our simulation framework allows researchers and practitioners
to explore a variety of FL scenarios in both centralized and decentralized models.
This adaptability is essential for experimenting with different aspects of FL and
tailoring simulations to specific use cases and deployment scenarios.

4 PARTICIPANT SELECTION IN CENTRALIZED FL:
BALANCING OPTIMIZATION AND PRIVACY

4.1 Overview of Participant Selection Process

In centralized Federated Learning (FL), the selection of participants is critical, bal-
ancing system performance and data privacy preservation. Potential participants
are assessed by the FL server, acting as the coordinator, based on their technical
capabilities and privacy safeguards. This process is summarized in Figure 1.

The selection metrics listed in Tables 2 and 3 were derived after an extensive
review of related work in Section 2. Research consistently emphasizes that the
technical and privacy criteria of devices significantly influence their performance
in FL [6, 7, 11, 8]. The most commonly cited metrics in the literature include
connectivity, computational resources, and security measures, which serve as the
foundation for the metrics selected in this study.

4.2 Optimization Metrics

The optimization criteria focus on the technical aspects that influence a participant’s
ability to contribute effectively to the FL process. These include connectivity, bat-
tery life, storage capacity, and computational resources (RAM and CPU). The server
evaluates these factors to ensure that selected participants can handle the resource-
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Figure 1. Graphical overview of the main steps of proposed participant selection method
in centralized FL

intensive tasks involved in model training. Table 2 details the optimization metrics
used in this evaluation.

Metric Description

Connectivity Level The type and strength of the de-
vice’s network connection.

Battery Life Battery level, with a threshold of
70% as a key indicator.

Storage Capacity Availability of sufficient storage
space for the training process.

RAM Adequacy of random-access mem-
ory for training tasks.

CPU Suitability of the central process-
ing unit for training requirements.

Priority Preference given to devices based
on proximity or other factors.

Table 2. Optimization metrics for participant selection

4.3 Privacy Metrics

Equally important are the privacy considerations, which ensure that participant
data remains secure throughout the FL process. The server assesses various pri-
vacy metrics, including encryption strength, security protocols, firewall robustness,
and attack vulnerability. These metrics help determine the privacy level of each
participant, as outlined in Table 3.



694 W. Bouras, K. Heraguemi, M. Benouis, B. Bouderah, S. Akrouf

Metric Description

Encryption Algorithms The effectiveness and strength of
the encryption methods used.

Security Protocols The security level provided by de-
vice and network protocols.

Firewall Robustness The firewall’s capability to control
access and protect resources.

Vulnerability The presence of known security
weaknesses in the device.

Last Update Time Recency of the last security up-
date, indicating the currency of
protective measures.

Table 3. Privacy metrics for participant selection

4.4 Refined Probabilistic Participant Selection Model

Beyond the basic participant selection algorithm, we propose a probabilistic model
that adds complexity to the process, allowing for a more nuanced evaluation based
on optimization and privacy levels. The probability P (selected) that a client will be
selected is determined by the following formula:

P (selected) =
1

2

(
1

1 + exp(−(privacyLevel− 8))
(1)

+
1

1 + exp(−(optimizationLevel− 8))

)
.

This formula incorporates:

• Sigmoid Function: The sigmoid function is used to model the transition of
selection probabilities based on ‘privacyLevel’ and ‘optimizationLevel’, providing
a smooth, non-linear response to these metrics.

• Thresholds: Thresholds at θ1 = 8 and θ2 = 8 define significant cut-off points,
marking where the probability of selection changes sharply.

• Normalization: A factor of 1
2
ensures the combined probability remains within

the range [0, 1], balancing the impact of both privacy and optimization on se-
lection.

4.5 Clarification of Threshold Basis (θ1 = 8 and θ2 = 8)

The thresholds θ1 = 8 and θ2 = 8 were chosen based on empirical evaluation and
practical considerations. Here, we outline the reasoning behind this decision:
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1. Normalized Scale and Interpretation: Devices are scored on a normalized
scale of 0 to 10 across various metrics. A threshold of 8 reflects an 80% perfor-
mance level, which is a reasonable benchmark for identifying high-performing
devices while accommodating slight imperfections.

2. Empirical Validation: During experimental trials, devices with scores ≥ 8
demonstrated consistent reliability in optimization and privacy:

• Optimization Level: Ensures the device contributes effectively to model
training.

• Privacy Level: Meets necessary standards to safeguard data.

Devices scoring below 8 showed deficiencies, leading to potential risks or ineffi-
ciencies.

3. Balancing Inclusivity and Robustness:

• Lowering the threshold (e.g., θ < 8) risks including devices with suboptimal
capabilities.

• Raising the threshold (e.g., θ > 8) may exclude devices that are sufficiently
capable, reducing overall participation.

The choice of 8 balances these competing priorities.

4. Practical Impact on Selection Probability: The sigmoid function used in
the formula emphasizes the transition around the threshold. At x = 8, the
selection probability is 0.5, representing a moderate likelihood. Scores above 8
increase this probability, while those below 8 result in a rapid decline, reflecting
their reduced suitability.

5. Cumulative Metric Aggregation: Each metric (e.g., battery life, encryption
strength) contributes to the overall optimization and privacy levels:

Optimization Level = (Battery + Storage + RAM+CPU+ Priority)/5,

Privacy Level = (Encryption + Security Protocols + Firewall

+ Vulnerability + Update Time)/5.

Devices scoring below 8 in either metric are less likely to meet the system’s
reliability and security requirements.

6. Example to Illustrate Threshold Application: Consider a device with the
following scores:

• Optimization Metrics: Battery = 8.0, Storage = 9.0, RAM = 7.0, CPU =
6.5, Priority = 8.5.

• Privacy Metrics: Encryption = 7.0, Security Protocols = 7.5, Firewall =
8.0, Vulnerability = 9.0, Update Time = 8.5.
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The aggregated scores are:

Optimization Level =
8.0 + 9.0 + 7.0 + 6.5 + 8.5

5
= 7.8,

Privacy Level =
7.0 + 7.5 + 8.0 + 9.0 + 8.5

5
= 8.0.

Since the optimization level is below 8, the selection probability is lower:

P (selected) =
1

2

(
1

1 + exp(−(7.8− 8))
+

1

1 + exp(−(8.0− 8))

)
≈ 0.4636.

This reflects the importance of meeting the thresholds to ensure both system
reliability and security.

Algorithmic Integration: This model mirrors the selection process by assigning
higher probabilities to clients with ‘privacyLevel’ and ‘optimizationLevel’ above 8.
Clients with intermediate levels (4 to 8) have moderate probabilities, while those
below the thresholds are unlikely to be selected. This probabilistic approach adds
flexibility to the selection process, improving its robustness.

Optimization
Level

Privacy
Level > 8

4 < Privacy
Level < 8

Privacy
Level < 4

Level > 8 Selected (time = 0) Selected (time = 0) Eliminated

4 < Level < 8 Selected (time = +1) Selected (time = +1) Eliminated

Level < 4 Selected (time = +2) Selected (time = +2) Eliminated

Table 4. Participant selection based on optimization and privacy levels

As illustrated by Algorithm 1, the server selects clients based on optimization
and privacy metrics derived from the probabilistic model outlined previously. This
algorithm evaluates each client’s suitability by considering their optimization and
privacy levels, as specified by the problem formulation. Clients are then categorized
into different selection tiers based on these metrics. The assignment of these tiers is
intended to enhance the overall performance of the Federated Learning system by
strategically allocating more time to clients with higher metrics, thereby improving
system efficiency and effectiveness.

4.6 Experimental Scenarios and Results

The experiment delineates four distinct scenarios, each involving a cohort of 100
clients over 20 rounds. The first scenario embodies a centralized FL approach, where
clients collaboratively train a global model under a unified and coordinated frame-
work. In contrast, the second scenario introduces a more adversarial environment by
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Algorithm 1 Participant Selection in FL

1: function SelectParticipants(clients)
2: selectedClients ← []
3: for client in clients do
4: privacyLevel ← GetPrivacyLevel(client)
5: optimizationLevel ← GetOptimizationLevel(client)
6: if privacyLevel > 8 then
7: selectedClients .append((client , t1)) ▷ Worker with requested time
8: else if 4 < privacyLevel ≤ 8 then
9: selectedClients .append((client , t2)) ▷ Worker with requested time +

1
10: else ▷ Eliminated
11: end if
12: if optimizationLevel > 8 then
13: selectedClients .append((client , t1)) ▷ Worker with requested time
14: else if 4 < optimizationLevel ≤ 8 then
15: selectedClients .append((client , t2)) ▷ Worker with requested time+1
16: else ▷ Eliminated
17: end if
18: end for
19: return selectedClients
20: end function

incorporating malicious clients into the centralized FL paradigm. These malicious
clients aim to disrupt the training process or manipulate the model parameters,
thereby challenging the integrity and efficacy of the FL setup.

Expanding upon this adversarial scenario, the third experimental setup incorpo-
rates differential privacy techniques. Differential privacy serves as a robust privacy-
preserving mechanism by introducing controlled noise or perturbations to the model
updates, thereby safeguarding the privacy of individual client data while still allow-
ing for meaningful model training and inference. By integrating differential privacy
into the centralized FL process, the study aims to evaluate its effectiveness in miti-
gating the privacy risks associated with data aggregation and model updates.

Furthermore, the fourth scenario introduces an innovative participant selection
method alongside the utilization of differential privacy. This approach involves dy-
namically selecting participants for model training based on various criteria, such as
trustworthiness, performance history, or adherence to privacy-preserving protocols.
By incorporating participant selection mechanisms into the FL framework, the ex-
periment seeks to optimize the participant pool’s composition while simultaneously
preserving individual client data’s privacy through integrating differential privacy
techniques.

These experimental scenarios comprehensively explore diverse strategies for en-
hancing FL systems’ robustness, privacy, and security. Through rigorous experimen-
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tation and analysis, the study aims to elucidate effective approaches for mitigating
the impact of malicious adversaries, preserving data privacy, and optimizing partic-
ipant selection in centralized FL settings.

4.6.1 Experimental Setup and Evaluation Metrics

To provide a clear understanding of the experimental process, we describe the hard-
ware/software environments, key parameters, and evaluation metrics used. The
experiments were conducted on a system equipped with an Intel Core i7 processor,
16GB RAM, and an NVIDIA RTX 3070 GPU, running Windows 11. The framework
was implemented using Python 3.9, with PyTorch for model training. A custom,
self-implemented private blockchain was designed specifically for this study, ensuring
full control over the blockchain’s consensus mechanism, structure, and integration
with the federated learning framework. Differential privacy mechanisms were incor-
porated using the Opacus library.

Key experimental parameters include a learning rate of 0.01, batch size of 64, and
10 epochs for each client in every round. Evaluation metrics include model accuracy,
robustness against adversarial attacks, and privacy preservation efficiency across all
scenarios. While these details are secondary to the study’s main findings, they
provide important context for the experimental process and results interpretation.

4.7 Results Analysis: A Formal Examination of Findings

As shown in Figures 2 and 3, the method used to choose clients in FL plays a critical
role in achieving optimal performance while protecting data privacy. By employ-
ing sophisticated optimization algorithms and privacy-preserving mechanisms, FL
systems can choose clients whose data helps the model perform better, all while
minimizing the risk of privacy breaches.

When comparing test accuracy across FL iterations, both the “FL with Client
Selection” and “Standard FL” scenarios show similar performance, but the “FL with
Client Selection” scenario shows steady improvement in accuracy over time. This
highlights the effectiveness of the client selection process, which uses optimization
strategies to choose clients whose data improves model accuracy without compro-
mising privacy.

Overall, these findings highlight the importance of optimizing and prioritiz-
ing privacy in the client selection process in FL. FL systems can maintain client
data confidentiality while identifying clients and contributing to model refinement
through optimization and privacy-preserving mechanisms. By integrating various
elements, we achieve optimal performance and foster trust and collaboration among
participants, ultimately enhancing FL’s effectiveness and dependability in real-world
scenarios.
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Figure 2. Results of centralized participant selection under IID-data

Figure 3. Results of centralized participant selection under non-IID-data

4.8 Comparison with Previous Work

The proposed method integrates both privacy and optimization objectives, marking
a significant departure from previous approaches that focused on either one or the
other. The experiments were conducted using the MNIST dataset, a widely used
benchmark for image classification. A simple neural network (SimpleNN) with two
hidden layers was employed to evaluate the performance of the participant selection
methods. The scenario involved malicious clients intentionally providing incorrect
updates, simulating a real-world federated learning challenge.



700 W. Bouras, K. Heraguemi, M. Benouis, B. Bouderah, S. Akrouf

Table 5 presents a comparison between our centralized method and previous
works. The algorithms compared, including Random Selection, Oort, Pisces, and
Hermes, were chosen because they also aim to optimize federated learning by col-
lecting and utilizing device information, such as computational efficiency and data
quality, for participant selection. However, these methods focus primarily on opti-
mization without considering privacy or security.

By contrast, our proposed method balances security and optimization, demon-
strating its effectiveness in scenarios with malicious clients. The results show that
our approach achieves substantial improvements, with an accuracy of 90.39%, sig-
nificantly outperforming state-of-the-art optimization-focused methods.

Experiments conducted under a scenario with malicious clients

Algorithm Objective Accuracy

Random selection [1] Optimization 68.9%

Oort [6] Optimization 16.7%

Pisces [7] Optimization 28.2%

Hermes [9] Optimization 23.8%

Our proposed work Security+Optimization 90.39%

Table 5. Comparison between our centralized method and previous works

4.9 Discussion and Future Work

The experimental results confirm that our probabilistic participant selection model,
which balances optimization and privacy metrics, significantly improves the per-
formance and security of centralized FL systems. While the current model shows
promising results, it opens avenues for future research. These include extending the
model to decentralized FL environments, exploring the impact of dynamic threshold
adjustments, and integrating additional security layers such as homomorphic encryp-
tion or secure multi-party computation. Further, real-world applications could be
explored, particularly in domains where both performance and privacy are critical,
such as healthcare and finance. As FL continues to evolve, the ability to dynamically
adapt participant selection criteria based on real-time data and evolving threats will
become increasingly important.

This section presents an enhanced participant selection method for centralized
FL that simultaneously optimizes system performance and maintains high privacy
standards. By introducing a probabilistic model, we have demonstrated how careful
consideration of both optimization and privacy metrics can significantly improve
the security and effectiveness of FL systems. The approach shows potential for
broader applications and lays the groundwork for future enhancements in participant
selection methods.

Section 5 elaborates on this proposed framework, detailing how blockchain tech-
nology can be leveraged to facilitate decentralized decision-making in client selection.
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By decentralizing the process, the framework aims to improve transparency, security,
and efficiency in node selection, ultimately leading to improved model performance
and data privacy preservation.

5 ROLE DETERMINATION IN BLOCKCHAIN FL:
ENHANCING PARTICIPANT SELECTION
WITHIN THE BLOCKCHAIN FRAMEWORK

5.1 Introduction to the Proposed Work

Building upon the Blockchain-Assisted Federated Learning (FL) methodology out-
lined in the previous section, this section introduces a dynamic role determination
method. This method categorizes nodes based on their privacy and optimization
levels, enhancing the efficiency and security of the FL process (see Figure 4). The
mechanism is implemented on a private permissioned blockchain, which ensures en-
hanced security and privacy throughout the FL process. The choice of a private
blockchain is critical as it provides controlled access and governance, which is es-
sential for maintaining system integrity. Notably, experiments have shown that the
consensus algorithm choice does not significantly impact the effectiveness of the role
determination mechanism. The main steps are illustrated in Figure 1.

Figure 4. Graphical overview of the main steps of the proposed Role Determination
method in Blockchain FL

5.2 Role Assignment Based on Optimization and Privacy Levels

Nodes are categorized according to their optimization and privacy values. Optimiza-
tion factors such as connectivity, battery life, storage, RAM, and CPU are assessed
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alongside privacy considerations, including encryption, security measures, authenti-
cation protocols, firewall integrity, and vulnerability resistance. These criteria form
the basis for stratifying nodes into distinct roles within the FL framework.

5.3 Blockchain-Aided Role Assignment

Nodes are assigned the roles based on their optimization and privacy levels, as shown
in Table 6. This role assignment is executed within the framework of a private
permissioned blockchain. Nodes with higher optimization and privacy values are
assigned critical roles such as model training (worker role), while nodes with lower
privacy values are excluded from certain tasks. Nodes with intermediate privacy
values assume roles with extended responsibilities. A private blockchain ensures
controlled and secure role assignments, safeguarding data privacy and system in-
tegrity.

Levels Privacy Level > 8 4 < Privacy Level < 8 Privacy Level < 3

optimization level > 8 worker worker worker

4 < optimization level < 8 miner worker worker

optimization level < 3 validator worker eliminated

Table 6. Role assignment based on optimization and privacy levels in blockchain-assisted
decentralized FL

5.4 Probabilistic Role Assignment Formula

To assign roles probabilistically based on ‘privacyLevel’ and ‘optimizationLevel’, we
define the following formula. This formula incorporates the conditions from the
algorithm and integrates probabilistic elements for a more nuanced role assignment.

Let:

• θprivacy = 8 (threshold for privacy level),

• θoptimization = 8 (threshold for optimization level),

• α = 4 (lower threshold for privacy and optimization levels).

The probability of each role R is defined as follows.

5.4.1 Worker

P (worker) =
1

2

(
1

1 + exp(−(privacyLevel− θprivacy))

+
1

1 + exp(−(optimizationLevel− θoptimization))

)
. (2)
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5.4.2 Miner

P (miner) =
1

2

(
1

1 + exp(−(privacyLevel− θprivacy))

· 1

1 + exp(−(optimizationLevel− α))

)
. (3)

5.4.3 Validator

P (validator) =
1

2

(
1

1 + exp(−(privacyLevel− θprivacy))

· 1

1 + exp(−(optimizationLevel− α))

)
. (4)

5.4.4 Eliminated

P (eliminated) = 1− (P (worker) + P (miner) + P (validator)) . (5)

5.5 Algorithm for Dynamic Role Assignment

Algorithm 2 formalizes the role assignment process within the Blockchain-Assisted
FL (BAFL) context. This algorithm dynamically determines participant roles based
on optimization and privacy levels, contributing to the orchestration of roles within
the FL paradigm.

5.6 Detailed Overview of Roles and System Integration

5.6.1 Validator Role and Privacy Integrity

The validator plays a critical role in maintaining system privacy integrity by vali-
dating local updates and establishing a trust layer within the blockchain framework.
This process ensures that only authenticated and secure information permeates the
FL ecosystem, enhancing the overall reliability of the model training process.

5.6.2 Miner Role and Data Aggregation Efficiency

Miners aggregate validated data, tailoring the aggregation process to the optimiza-
tion and privacy levels of participating devices. By effectively managing computa-
tional resources, miners contribute to overall system optimization.
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Algorithm 2 Assign Role Algorithm for Blockchain-Assisted FL

1: function assignRole(optimizationLevel, privacyLevel)
2: if optimizationLevel > 8 then
3: if privacyLevel > 8 then
4: return ”worker”
5: else if 4 < privacyLevel < 8 then
6: return ”worker”
7: else
8: return ”worker”
9: end if

10: else if 4 < optimizationLevel < 8 then
11: if privacyLevel > 8 then
12: return ”miner”
13: else if 4 < privacyLevel < 8 then
14: return ”worker”
15: else
16: return ”worker”
17: end if
18: else
19: if privacyLevel > 8 then
20: return ”validator”
21: else if 4 < privacyLevel < 8 then
22: return ”worker”
23: else
24: return ”eliminated”
25: end if
26: end if
27: end function

5.6.3 Worker Role and Temporal Resource Allocation

Workers responsible for model training engage in tasks commensurate with their
optimization and privacy levels. This allocation ensures meaningful contributions
to the FL process, leveraging the collective computational prowess of participating
devices.

5.6.4 Computational Interplay and System Synergy with Election Process

The computational interplay between validators and miners is facilitated through
an election process, aligning collaboration with specific device characteristics. This
election fosters a synergistic system architecture, ensuring optimized computational
efforts and privacy considerations.
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5.6.5 Adaptive Role Adjustment and System Resilience

The dynamic approach adjusts to changing circumstances, altering roles in line with
evolving techniques and security concerns. This adaptability ensures that the FL
process remains responsive and maintains continued optimization and compliance
with privacy.

5.6.6 Blockchain-Aided Trust Establishment and System Governance

Blockchain integration within the FL architecture fosters a collaborative governance
model, ensuring a balanced distribution of responsibilities between validators, min-
ers, and workers. This approach improves system robustness and resilience against
vulnerabilities.

5.6.7 Privacy-Centric Data Transmission and Continuous Monitoring

The system emphasizes privacy-centric data transmission through secure commu-
nication channels and strict authentication protocols. Continuous monitoring and
evaluation ensure alignment with the system objectives, identifying potential bot-
tlenecks and optimization opportunities.

5.7 Experiments

The experimental design consists of four scenarios, each involving 100 clients par-
ticipating in 20 rounds. The first situation showcases a typical decentralized FL
approach, where clients work together to train a global model without any mali-
cious intervention. In contrast, the second scenario presents an environment with
malicious clients in the decentralized FL framework. These malicious clients seek to
disrupt training and manipulate model parameters, which undermines the integrity
and effectiveness of the FL paradigm.

Building upon this adversarial scenario, the third experimental setup extends
the analysis to incorporate differential privacy techniques. Differential privacy serves
as a robust privacy-preserving mechanism, introducing noise or perturbations to the
model updates to prevent the inference of sensitive information about individual
clients. By integrating such privacy-enhancing measures into the FL process, the
study aims to assess their efficacy in mitigating the influence of malicious clients
and preserving data privacy in a decentralized setting.

Furthermore, the fourth scenario introduces a novel approach by integrating
a private blockchain into the FL framework. This scenario addresses the challenges
posed by malicious clients and leverages the blockchain’s inherent properties, such as
transparency, immutability, and decentralized consensus mechanisms, to facilitate
role determination within the FL process. By employing private blockchain-based
role determination alongside differential privacy measures, the experiment aims to
explore synergistic effects in enhancing the security and privacy aspects of FL, par-
ticularly in the presence of malicious adversaries.
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These experimental scenarios comprehensively explore various strategies for en-
suring the robustness, integrity, and privacy of FL systems in adversarial environ-
ments. Through rigorous experimentation and analysis, the study endeavors to shed
light on effective approaches for securing decentralized learning frameworks against
malicious threats while safeguarding the privacy of participant data.

5.7.1 Experimental Setup and Evaluation Metrics

To provide a clear understanding of the experimental process, we describe the hard-
ware/software environments, key parameters, and evaluation metrics used. The
experiments were conducted on a system equipped with an Intel Core i7 processor,
16GB RAM, and an NVIDIA RTX 3070 GPU, running Windows 11. The framework
was implemented using Python 3.9, with PyTorch for model training. A custom,
self-implemented private blockchain was designed specifically for this study, ensuring
full control over the blockchain’s consensus mechanism, structure, and integration
with the federated learning framework. Differential privacy mechanisms were incor-
porated using the Opacus library. Key experimental parameters include a learning
rate of 0.01, batch size of 64, and 10 epochs for each client in every round. Eval-
uation metrics include model accuracy, robustness against adversarial attacks, and
privacy preservation efficiency across all scenarios. While these details are secondary
to the study’s main findings, they provide important context for the experimental
process and results interpretation.

5.8 Results Analysis: A Formal Examination of Findings

The main emphasis of the analysis is on studying accuracy dynamics across multiple
rounds in the context of FL, as shown in Figure 5. Four distinct scenarios are delin-
eated, each characterized by varying degrees of decentralization and the presence of
malicious clients at a rate of approximately 20%. These scenarios are outlined as:

1. Decentralized FL with No Malicious Client,

2. Decentralized FL with Malicious Client (20%),

3. Blockchain-Assisted FL with Malicious Client (20%),

4. Blockchain FL Role Determination with Malicious Client (20%).

Empirical observations reveal a hierarchical distribution of accuracy perfor-
mances among these scenarios. Notably, the decentralized FL scenario with No Mali-
cious Client exhibits remarkable accuracy, peaking at around 97%. Conversely, sce-
narios involving malicious clients, namely decentralized FL and blockchain-assisted
FL, demonstrate more modest accuracy ranges, fluctuating between 10% and 17%
over consecutive rounds.

It is important to note that the experiments were conducted under identical con-
ditions, using the MNIST dataset and a simple neural network (SimpleNN) model.
This ensures consistency and allows for a fair comparison across different scenarios.
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The clear difference in accuracy across scenarios can be attributed to the power
of sophisticated role-determination methods. These methods strategically assign
devices with better capabilities as “workers”. This deters malicious clients and offers
a mitigation strategy if they appear. The observed trends highlight the critical role of
advanced role determination in optimizing FL. It leads to a significant improvement
in accuracy, especially for decentralized and blockchain-based systems.

Figure 5. Results of blockchain role determination compared to other scenarios for IID

Figure 6 showcases the enhanced role determination method’s performance un-
der non-IID (non-independent and identically distributed) data conditions. This
method is a diagnostic tool that assesses data compatibility for collaborative train-
ing with diverse models. It plays a crucial role in achieving superior performance
metrics, even in non-IID settings, by effectively identifying and mitigating outliers
or anomalies within the dataset.

The refined role determination method is a powerful filter for federated learning
(FL). It examines data compatibility and eliminates outliers, boosting the overall
robustness and resilience of the FL process to variations in data distributions. This
method dynamically assigns roles based on optimization and privacy considerations,
fostering a more cohesive FL environment, especially when dealing with non-IID
data challenges.

The analysis revealed that the proposed method significantly improves both ac-
curacy and security compared to traditional decentralized FL methods, particularly
in environments with malicious clients. As depicted in Table 7, the proposed method
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Figure 6. Results of blockchain role determination compared to other scenarios for non-
IID

outperforms existing methods by achieving higher accuracy while maintaining secu-
rity.

Algorithm Objective Accuracy

Random Selection [1] Optimization 18.9%

Oort [6] Optimization 16.4%

Active Federated Learning [8] Optimization 18.4%

novel-reputation [11] Security 67.7%

Proposed Method Security+Optimization 87.39%

Table 7. Comparative results of previous works and the proposed method

5.9 Conclusion and Future Directions

The role determination method, supported by blockchain technology, presents a se-
cure and scalable solution for participant selection in FL systems. Future research
will explore expanding this approach to more diverse and larger-scale FL environ-
ments and refine probabilistic role assignment formulas to further enhance adapt-
ability and efficiency.
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6 EXPERIENCES OF ROLE DETERMINATION
ON DIFFERENT MODELS

Tests on dynamic role determination in a blockchain framework demonstrate its re-
markable robustness. The system can optimize performance even with fixed node
characteristics and environmental conditions. The results presented in Table 8 pro-
vide evidence that dynamic role determination is highly effective in enhancing per-
formance and reducing negative consequences.

6.1 Adaptive Nature of Dynamic Role Determination

The dynamic role-determination mechanism proves its worth even in challenging
circumstances. Despite fixed node characteristics and a stable environment, the
system remains adaptable through continuous rule adjustments, enabling real-time
performance optimization. Even without external changes, the system identifies and
eliminates inefficiencies, ensuring optimal functionality.

6.2 Optimization of Performance in Challenging Scenarios

Table 8 showcases the system’s resilience, even under worst-case conditions. Dy-
namic role determination maintains performance on par with other scenarios, de-
monstrating the effectiveness of adaptive rule adjustments. By dynamically allocat-
ing resources and optimizing performance, these adjustments significantly mitigate
the impact of adverse conditions on overall outcomes.

6.3 Resilience to Adverse Conditions

Even in the worst-case scenario, where frequent node elimination due to low pri-
vacy or optimization levels occurs, dynamic role determination is crucial for system
resilience. The system adapts to these changing conditions by dynamically real-
locating roles and resources, maintaining functionality, and ensuring stability and
reliability under pressure.

6.4 Continuous Improvement and Iterative Adaptation

The iterative process of determining dynamic roles promotes continuous improve-
ment within the system. Through continuous evaluation and real-time feedback-
driven adjustments to the rules, the system identifies areas for improvement and
implements corresponding changes. This iterative adaptation ensures that the sys-
tem remains attuned to evolving requirements and maintains its adaptive capabilities
over time.
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6.5 Experimental Setup and Evaluation Metrics

To ensure reproducibility and provide a clear understanding of the experimental
process, we briefly describe the hardware/software environments, experimental pa-
rameters, and evaluation metrics used.

The experiments were conducted on a system equipped with an Intel Core i7
processor, 16GB RAM, and an NVIDIA RTX 3070 GPU, running Windows 11.
The blockchain framework was implemented using Python 3.9, leveraging PyTorch
for machine learning tasks. Key experimental parameters include the learning rate,
batch size, and epoch count, which were adjusted to fit the specific requirements of
each dataset and model.

The evaluation metrics focused on model accuracy across different scenarios,
with specific attention to performance under “Best Case”, “Average Case”, and
“Worst Case” conditions. While these details may not be central to the study’s
conclusions, they provide additional context to validate the experimental results.

Datasets and Models SimpleNN MLP CNN Net0

Best Case

MNIST 83.12% 85.9% 82.29% 87.39%

FASHION MNIST 72.55% 72.38% 72.54% 77.02%

CIFAR-10 29.26% 29.14% 30.24% 37.61%

Average Case

MNIST 78.28% 79.59% 77.6% 86.77%

FASHION MNIST 71.43% 70.88% 71.11% 76.6%

CIFAR-10 29.61% 29.05% 25.83% 37.19%

Worst Case

MNIST 52.61% 60.96% 57.28% 79.92%

FASHION MNIST 52.04% 55.34% 57.49% 73.07%

CIFAR-10 28.65% 21.99% 15.63% 37.17%

Table 8. Results of experiments on different case scenarios

7 CONCLUSION AND FUTURE WORK

Our comprehensive investigation into federated learning (FL) scenarios, encompass-
ing both independent and identically distributed (IID) and non-independent and
identically distributed (Non-IID) settings, has unveiled valuable insights into par-
ticipant selection, optimization strategies, privacy concerns, and the unique role
determination methodologies employed within a blockchain-assisted FL framework.

The impressive performance of FL with strategic client selection underscores
the crucial role of well-defined participant selection strategies in boosting overall
accuracy. Conversely, the consistent improvement achieved by standard FL rein-
forces its dependability within the FL framework. However, the declining accuracy
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observed in FL with differential privacy and FL with a malicious client emphasizes
the intricate challenges of balancing privacy preservation and security within FL
environments.

Integrating formalized metrics for optimization and privacy levels into the par-
ticipant selection algorithm exemplifies a sophisticated decision-making process that
skillfully balances technological capabilities and privacy safeguards. The resulting
role assignments, outlined within the algorithmic framework and further detailed
in the assigned roles table, highlight the intricate hierarchy established by the FL
server based on a combination of optimization and privacy levels.

Significantly, introducing blockchain-assisted FL adds another layer of complex-
ity to role determination. The interplay between participants, shaped by their
optimization preferences and privacy concerns, illuminates the intricate nature of
role allocation, collaborative learning optimization, and privacy maintenance within
a blockchain-facilitated setting.

The role determination method proposed in this study leverages optimization
and privacy considerations to allocate tasks effectively within the FL framework. By
defining clear roles for nodes and integrating blockchain technology, this approach
enhances the efficiency, security, and reliability of FL systems. Validators authenti-
cate local updates to maintain data integrity, miners aggregate validated data, and
workers focus on model training within a secure and optimized setting. Integrat-
ing blockchain technology fortifies the FL process with enhanced transparency and
security measures.

In summary, our research demonstrates that strategic participant selection and
robust optimization and privacy metrics are pivotal in achieving high performance
in federated learning environments. The dynamic role determination method within
a blockchain-assisted FL framework showcases a sophisticated approach to manag-
ing the intricate balance of efficiency, security, and privacy. This holistic approach
ensures the FL ecosystem’s robustness, reliability, and adaptability, ultimately ad-
vancing secure and efficient collaborative learning paradigms.

Future research should focus on advanced privacy-preserving mechanisms like
homomorphic encryption, enhancing scalability, developing strategies to detect and
mitigate sophisticated attacks, improving the adaptability of role determination al-
gorithms, applying the framework to diverse real-world applications, creating stan-
dards for interoperability, and developing incentive mechanisms for honest participa-
tion. Addressing these areas will push the boundaries of federated learning, making
it more secure, efficient, and widely applicable.
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