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Abstract. Using convolutional neural networks and genetic programming, this
study presents a new composite technique for modeling bicycle traffic in the town of
Novo mesto, Slovenia. Every town needs public passenger transportation because
the current transportation system has well-known issues like congestion, environ-
mental effect, a lack of parking spaces, increased safety hazards, and excessive
energy consumption. Urban transport is crucial for the functionality of any city.
High-quality and usable urban transport not only affects the functionality of the
city as an economic and social center, but it also reduces the number of passenger
cars on the streets. The Novo mesto region, which has a population of around
30 000 people, is a major industrial center that is strongly reliant on metropolitan
transportation. Unfortunately, the urban traffic of Novo mesto still has a relatively
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weak influence on the transport connectivity of the wider area. The study’s goal
is to examine and simulate bicycle rentals. For 35 weeks, convolutional neural net-
works and genetic programming were utilized to anticipate bicycle traffic. Three
types of models were applied to study the impact of weather conditions on bicycle
traffic: linear regression, genetic programming, and feed-forward neural networks.
The proposed approach will be useful for cities with similar needs around the world.

Keywords: Machine learning, genetic programming, convolutional neural net-
works, multiple regression, bicycle traffic, public transport

1 INTRODUCTION

Public transport (local public transport) [1] is the transport of people by bus, tram,
commuter train, train and other motor vehicle, or by renting a bicycle in regular traf-
fic. Thus, urban public transport is one of the mechanisms that guarantees citizens
their constitutional right to work, education, healthcare, and recreation. In addi-
tion, the PPT industry itself is a source of jobs. With the growing urban population
and increasing daily traffic, the development of more sustainable urban transport
systems is crucial in many cities around the world. Increasingly, public transport
and cycling are being promoted to reduce traffic problems such as congestion, pol-
lution, expensive road infrastructure, accidents, and congestion. The benefits of
cycling for the community are mainly related to the quality of life, the quality of the
environment, and the long-term savings from car use [2]. A major environmental
problem of the Municipality of Novo mesto is air pollution with PM10 particles,
which is a consequence of the basin location with unfavorable winter climatic condi-
tions in which the loads increase due to small obsolete biomass fireplaces and traffic.
Although the measured average annual concentration limit of PM10 particles in the
air in Novo mesto has have been exceeded since the beginning of measurements in
2010. Every year (except 2014) we detect an exceeded number of days (35) per year
with an exceeded daily concentration limit [3]. Due to the overruns, the entire area
of the city municipality was declared as degraded. The government has adopted
its Air Quality Plan, which includes a program of measures aimed at improving air
quality. This program focuses on various strategies related to traffic and mobility
management. The chemical composition of emissions is influenced by factors such
as the type and quality of fuel used, the production technology, the combustion pro-
cess in the engine, and the engine’s overall condition. At present, many countries
are focusing on green technologies in industry, construction, agriculture, and pro-
duction of environmentally friendly materials, fundamentally new services aimed at
improving the quality of life [4, 5]. The world is beginning to actively introduce and
develop new products that have a positive influence on human living conditions, the
environment, and national and regional environmental policies. Factors that affect
the extent of transport have an impact on the environment. The strong source of
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environmental pollution in cities is traffic and its marks are constantly increasing.
Several factors impact the level of pollution: intensity, speed, and the composition
of traffic flow; the types of engines; the type and quality of road surfaces; planning
decisions of areas; the presence of green spaces. The main idea of sustainable devel-
opment is to satisfy modern consumer needs in such a way that future generations
will be able to satisfy their needs. Planet Earth can be considered a closed system. If
something arrives in one place, it disappears in another. The only incoming stream
from outside this system is solar energy. Environmental pollution from stationary
sources in transport comes from industries that repair vehicles, auxiliary industries,
buildings, and structures.

It is known that effective and “smart” public transport can only be organized
by collecting individualized detailed data on its users. This data should be comple-
mented by additional information, such as camera recordings on major roads and
intersections, data on the use of other systems, data on weather and unusual phe-
nomena [6]. A practical step towards achieving this has been the use of data from
smart cards [7, 8, 9], which must be supplemented by the information regarding
the location of all traffic participants [10]. In larger cities, the amount of such data
can be very large, so we encounter the need for software and hardware suitable for
big data [11] which requires the use of supercomputers. New concepts of mobility
(co-ownership, co-ownership of means of transport) are on the rise and are working
great in many cities. However, most of these solutions are only implemented in large
cities, and cities with up to 100 000 inhabitants are generally too small to implement
business models, i.e. sharing economies [12] behind these systems. This indicates
that private providers, due to their business interests, either do not offer solutions
or may be unaware of existing ones that could benefit municipalities. This situation
can be frustrating on the one hand; however, it also presents an opportunity for
innovative municipalities and regional development agencies to take the initiative.

This work is motivated by a desire to increase the number of bikes in the GoNM
system, thereby reducing car use. This was measured through the number of uses
of bicycles in the GoNM system throughout the year. By doing so, we can reduce
emissions and simultaneously improve public health. The bike-sharing system is
affected by the weather. As a result, one of this research’s unanswered questions is
how many bikes will be shared in different weather circumstances. The challenge can
be broadened by incorporating more public transit systems that would revolutionize
the entire city’s transportation and make the city even smarter. The solution to this
problem is based on artificial intelligence methods.

Artificial neural networks [13] are widely used to solve various real-world classi-
fication and prediction tasks. Problems such as speech recognition and image pro-
cessing tasks are solved with high accuracy today. A convolutional neural network
(with the acronyms CNN or ConvNets) [14] is a special case of deep learning neural
networks. It uses single or multiple convolutional layers that usually perform a 2D
convolution since the inputs to a CNN are usually images. In recent years CNNs
have become very popular with impressive results in the area of computer vision.
Today, deep learning is at the heart of many companies’ services: Facebook uses
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neural networks for auto-tagging algorithms, Google searches for user photos, Ama-
zon generates product recommendations, Pinterest personalizes a user’s home page
and Instagram refines its search infrastructure. But the classic and most popular
use case for CNNs is image processing.

Cellular automata (CA) have been extensively studied since the 1960s and were
originally designed and studied to create artificial evolution from self-replication pre-
sented by John von Neumann [15]. Genetic Programming (GP) [16] is a problem-
solving technique that combines evolutionary and computer programming ideas.
The GP algorithm [17] works according to the following principles. Hybrid evolu-
tionary computation [18] is a general, adaptable, robust, and versatile method to
solve challenging global optimization problems which can also be used to solve real-
world situations. The purpose of this research study is to offer a model of bicycle
traffic with meteorological conditions that incorporate CNNs, multiple regression,
GP, and a new approach of combining CNNs and GP.

The rest of the paper is structured as follows: Section 2 explores related work on
the topic, while Section 3 outlines the study methods used. The first is a demonstra-
tion of GoNM, a Slovenian automated bicycle rental system. Following that, data
preparation is covered with subsections for cycling data and weather data. The
third subsection discusses data preprocessing and modeling approaches. Section 4
presents the results of the analysis and discussion of the Convolutional Neural Net-
work model of bicycle traffic, the impact of weather on bicycle traffic, the multiple
regression model, the Genetic programming model, and the Composite model of
Convolutional Neural Networks and Genetic programming. The paper concludes
with a conclusion and recommendations for future research.

2 RELATED WORK

Weather conditions have a significant impact on the utilization of public bicycles.
Cars, public transportation, and active transportation modes like walking and bicy-
cling have all seen a modal shift as a result of bike-sharing schemes [19]. Bike-sharing
as a mode of transportation may improve the quality of the urban environment [20]
and increase physical well-being [21]. In [22] passengers’ first/last mile mode choices
before and after the installation of a bike-sharing system were studied and it was
discovered that the majority of switched trips to bike-sharing were initial walking
or private bicycle trips. Because bicycle traffic data (e.g. speed, bike volume) is
difficult to obtain, academics and practitioners are forced to plan the deployment
of bike-share systems (BSS) using models that do not account for observed bike
quantities [23]. [24] showed that results indicate that weather conditions should al-
ways be taken into consideration when analyzing cycling, especially on the road
safety analysis. Temperature, wetness, and whether it was a workday effect all
that influenced the rental bike demand at different times [25]. Numerous studies
have been conducted on traffic flow and public rental bike demand forecast, only
a handful of them have focused on moment-based demand in public bike-sharing sys-
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tems [26]. Other innovations emerged with the bike-sharing system including electric
assist bikes, solar-powered stations, mobile stations, and the establishment of self-
regulation policies through smartphone applications [27]. The study [28] presented
a public bicycle system in the old urban region of Zhenhai in Ningbo city, the newly
established prediction model for rental. Results show that the model can predict
the daily rental demand, rental demand during the morning peak, returns during
the morning peak, rental demands during the evening peak, and returns during the
evening peak. The demand prediction model can provide a significant theoretical
basis for preparing the layout stations, operation and management strategies, and
vehicle scheduling in the public bicycle system. China is suffering from severe nega-
tive consequences of high private vehicle usage in big and densely populated cities.
Nevertheless, a long history of bicycle usage in the country provides great potential
for such a green form of travel to be part of public and private transportation. The
findings show that bike-sharing systems have varying degrees of success. The config-
urations which seem the most sustainable consider and integrate elements relating
to transport planning, system design, and choice of business model [28].

3 METHODOLOGY

3.1 Automatic Bicycle Rental System in the Town of Novo Mesto

Public urban passenger transport has been established in the town of Novo mesto,
Slovenia. In 2017, the town acquired the GoNM automatic bike rental system. The
elderly and the disabled have the option of free transport which operates voluntarily.
There are also officially some taxi services in Novo mesto, but the number of vehicles
is extremely small. Since 2017, the GoNM automatic bicycle rental system has been
established in Novo mesto comprising 14 stations. A total of 70 bicycles are available
of which 45 electric bicycles were added to the system in 2018. The user of the GoNM
system can choose between the following options: the annual membership fee for
users logging into the system is 25EUR per calendar year; a monthly membership
fee of 5EUR is also available. The membership fee is valid for one calendar year.
It is, therefore, necessary to develop a methodology to estimate and analyze the
demand for bicycle rental. Figure 1 shows the geographical map of the 14 bike
rental stations in Novo mesto.

3.2 Data Preparation

3.2.1 Bicycle Data

The municipality of Novo mesto provided bicycle rental data for 14 stations for
35 weeks between March 25, 2019, and November 25, 2019. The data is analyzed
using Microsoft Excel software and pivot tables. The numbers of bike rentals for
14 stations for the 13th week are presented in Table 1.

Figure 2 shows the total number of bike rentals for the 35 weeks.
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Figure 1. The geographical map of the 14 bike stations in Novo mesto, Slovenia

3.2.2 Weather Data

The Meteorological Society Zeus in Slovenia provided weather data for each day,
including temperature (T), rainfall (R), wind speed (W), and relative humidity (H).
The averages of all data were calculated for 35 weeks. Figure 10 shows the weather
information: average temperature [C], average rainfall [mm], average wind speed
[m/s], and average relative humidity [%].

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3 4 3 0 3 2 0 1 2 1 2 5 0 3
2 3 1 2 8 2 2 0 5 4 0 0 1 1 1
3 4 1 4 0 3 1 7 2 0 0 1 3 0 0
4 3 6 1 5 3 0 2 1 3 1 0 2 2 4
5 1 3 7 1 13 13 0 3 1 1 1 11 0 1
6 1 2 2 0 14 7 3 2 3 0 1 5 1 2
7 0 0 6 3 1 3 4 0 0 0 1 0 0 0
8 5 2 1 4 2 0 0 8 3 1 0 3 5 3
9 1 1 0 5 0 1 1 3 7 1 0 2 0 3

10 1 1 0 1 2 1 0 0 1 2 0 0 0 0
11 2 0 1 0 0 2 0 0 1 0 26 0 1 0
12 10 2 4 1 10 2 0 1 3 1 0 11 0 0
13 0 1 1 1 0 2 0 6 0 0 0 0 5 4
14 6 0 0 0 2 3 3 1 3 0 0 1 5 4

Table 1. Numbers of bike rentals for 14 stations for the 13th week
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Figure 2. Number of bike rentals for 35 weeks

3.3 Data Preprocessing

Most of the bicycle traffic models we have discussed are based on statistical analysis
techniques, such as linear regression and correlation analysis. To achieve accurate
predictions, many authors incorporate artificial intelligence methods. In this study,
a method using convolutional neural networks, multiple regression, and genetic pro-
gramming to model bicycle traffic is presented. Moreover, a new composite model
with convolutional neural networks and genetic programming is proposed.

Originally, the idea was to use cellular automata (CA) [29] to model the dynam-
ical system of bicycle rentals. In cellular automata, the next state of each cell is
determined by the state of the cell’s neighbourhood including the cell itself. Cellular
automata may be one, two, or three-dimensional (1D, 2D, 3D). However, since the
values are ordered rather than categorical, it is more convenient to use a slightly
different but more powerful model: the Convolutional Neural Network (CNN). This
model employs multiple kernels that function as filters, which are then combined,
typically using a fully-connected feedforward neural network. Since bike stations
are not arranged like on a chessboard, they have been mapped into a 1D space,
allowing us to define a convenient neighbourhood. So, first, the Sammon’s map-
ping [30] was applied to map the locations of the bike stations from 2D to 1D space,
while preserving topology as closely as possible. This means that a pair of points
that are close to each other in the original space must also be close in the projected
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space. The Sammon’s mapping searches for the distance matrix [dij] in the second
(lower-dimensional) space, minimizing the following cost function:

E =
1∑N

i<j d
∗
ij

N∑
i<j

(d∗ij − dij)
2

d∗ij
, (1)

where [d∗ij] is the distance matrix in the original (two-dimensional) space. There
exist various heuristic search methods to seek the optimal solutions, but for our
purpose, a simple comprehensive search was used, since the number of bike stations
was only 14. Every possible permutation was tried and evaluated. The optimal
solution is depicted in Figure 3.

Figure 3. The optimal 1D map, preserving topology as close as possible for Figure 1

The input to the model was a n × n matrix B, consisting of the bike traffic
between pairs of stations, such that the element Bij tells how many bicycles were
borrowed at station i and returned to station j in a given week, as shown in Figure 4.
Since the ordering of bike stations is defined by a topology-preserving mapping, we
expect that neighbouring values of bike rentals in this matrix may affect each other.
Two examples of neighbourhoods can be seen in Figure 4. The idea was to predict
the central value of such neighbourhoods at the next discrete time (i.e., week) by
the values of all cells in the neighbourhood.

3.4 Modeling

3.4.1 Convolutional Neural Network Model of Bicycle Traffic

Two examples of cells with their neighbourhood are shown in matrix B: one sized
3× 3 around cell B34 with a value of 5 (bicycles) and the other sized 5× 5 around
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Figure 4. An example of matrix B with two types of neighbourhoods shown: 3 × 3 and
5× 5

a cell with a value of 4. The number of bikes hired at station i and returned to
station j is denoted by Bij. The bikes returned to the same station are referred
to by diagonal elements. We may assume that the value of a cell together with
its neighbourhood can predict the value of this cell for the next week better than
without the neighbourhood.

A Convolutional Neural Network (CNN) was used to learn the rules that can
predict the next state of each cell, i.e. a bike station based on its current state and
the state of its neighbourhood, an artificial neural network architecture capable of
such mapping (Figure 5).

Figure 5. Illustration of the Convolutional Neural Network architecture

The input ‘image’ is matrix B, which is processed by two convolutional layers,
and the state of the second layer is the predicted next state.

A 2D convolution computes a double sum over F × F neighbouring elements
in an image or other 2D data structure. The filter size F can be 3 or 5, giving
a filter size of 3 × 3 or 5 × 5, respectively. Since an additional bias term is added
for greater flexibility, there are F ×F +1 free parameters or weights. In the case of
multiple kernels (K), each has its filter, so the number of weights in the second layer
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is K(F 2 + 1): KF 2 weights h and K biases b. The 2D convolution is computed as

yk,ij =
F∑

m=1

F∑
n=1

xij · hk,i−m,j−n + bk,ij, (2)

for k = 1, . . . , K. The activation function is the sigmoid 1/(1 + exp(−yk,ij)).
The output layer has, on the other hand, each kernel multiplied by its F × F

weights (denoted by g) and a single bias:

zij =
K∑
k=1

F∑
m=1

F∑
n=1

yk,ij · gk,i−m,j−n + bij, (3)

giving the total number of weights in the output layer equal to KF 2 + 1. For
example, if F = 5 and K = 5, then there are 5(25 + 1) = 130 and 5 · 25 + 1 = 126
weights in both layers, respectively. The activation function is again the sigmoid.

3.4.2 Linear Regression

By fitting a linear equation to the observed data, multiple linear regression seeks to
model the relationship between two or more explanatory variables and a response
variable. Each value of the independent variable x has a corresponding value of the
dependent variable y. Given n data, the model for multiple linear regression is

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi for i = 1, 2, . . . , n. (4)

3.4.3 Genetic Programming

The main distinction between genetic programming (GP) and genetic algorithms
(GA) is the representation technique. In genetic algorithms, individuals are repre-
sented by a series of integers, while in genetic programming, a computer program
is represented by an individual. GP generates programs based on the principles
of natural selection (evolution). We begin with a collection of hastily assembled
programs that represent the initial population. Then, via crossover and selection
(Figure 6) the next generation is acquired.

Table 2 shows the parameters of GP.
Finally, a newly developed composite system of modeling is presented. The

model utilizes two methodologies that yielded optimal results. Consequently, the
concept of a composite modeling system is designed to predict effects based on
images of a matrix [31].

4 RESULTS ANALYSIS AND DISCUSSION

Figure 7 shows the traffic matrix B for each of the 35 weeks, shown as a grayscale
image. Black dots indicate 20 or more bicycles transferred between two stations,
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Figure 6. Genetic mutation and crossover

Parameter Number

Size of the population of organisms 400
Maximum number of generations 100
Reproduction probability 0.3
Crossover probability 0.5
Maximum permissible depth in the creation of the population 7
Maximum permissible depth after the operation of crossover of two organisms 10
Smallest permissible depth of organisms in generating new organisms 2
Tournament size used for selection of organisms 6

Table 2. Parameters of genetic programming for the number of rentals

white dots indicate 0 bicycles, and gray dots any integer in between. Figure 8 shows
the traffic matrix B predictions with the CNN. The meaning of the gray levels is
the same as in Figure 7. Note also that the first week cannot be predicted.

To verify the utility of such a cellular model of the traffic dynamics, it must be
checked whether the prediction with the CNN is better than a naive prediction, i.e.,
the one that predicts for the next week the actual value of the current week. Any
useful prediction must be better than that baseline. The mean squared error (MSE)
of the naive prediction was 3.50, while the MSE of the CNN was 2.36, meaning that
the mean absolute error was 1.54. Figure 9 shows the actual and the data predicted
by CNN.
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Figure 7. Traffic matrix B for each of 35 weeks, shown as a grayscale image. Black dots:
20 or more bicycles, white dots: 0 bicycles, gray: any integer in between

4.1 Impact of Weather on Bicycle Traffic

Bicycle rentals together with the weather data are displayed in Figure 10.

4.1.1 Multiple Linear Regression Model

The four weather variables (temperature, rainfall, wind, and humidity) served as
the independent variables to predict the total number of weekly bicycle rentals by
the multiple linear regression model. Table 3 shows the results. The value of R2

is 0.571. As it seems, the only input variable with a p-value lower than 0.05 is the
temperature which has its non-standardized coefficient β of 30, which means that
on average with each degree of temperature the number of bicycle rides increases by
30. This model has the mean squared error (MSE) of 0.0346, which means that the
mean absolute error (MAE) would be 0.19.

The multiple linear regression model of bike rentals is as follows:

rentals = 29.97 · T + 15.32 ·R− 3.415 ·W + 0.1109 ·H − 89.06. (5)
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Figure 8. The traffic matrix B predictions with the Convolutional Neural Network

variable estimate SE tStat pValue

(intercept) −89.06 248.1 -0.3590 0.7221
temperature (T) 29.97 6.925 4.327 0.00015
rainfall (R) 15.32 8.596 1.783 0.08475
wind (W) −3.415 13.61 -0.2510 0.8035
humidity (H) 0.1109 1.152 0.09625 0.9240

Table 3. Multiple linear regression model for the number of rentals

Figure 11 shows the actual and the data predicted by the linear regression.

4.2 Genetic Programming Model

The qualities were employed in the genetic programming model. The population of
organisms was 400 and the maximum number of generations was 100. Maximum per-
missible depth in the creation of the population which was 7. Maximum permissible
depth after the operation of crossover of two organisms which was 10. Reproduc-
tion probability which was 0.3. Crossover probability which was 0.5. Maximum
permissible depth after the operation of crossover of two organisms which was 10,
and Maximum permissible depth after the operation of crossover of two organisms
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Figure 9. Real data and model data with CNNs

which was 0.5. The tournament size utilized for selecting organisms was 6 and the
smallest allowable depth of organisms in producing new creatures was 2. The GP
model is:

N = 0.15529

(
5.8474R− 2W + T

(
2.80398 +

1

2.48761 + T
W−2.48761

−W

− 1(
T −W + T

W−2.48761

)
(0.1992W − 0.4)

))

·

(
T + T

(
−2T + (83.9518− 24.8532W )W

)
/(

−5.9353T 2 + T
(
11.7895R− 73.7556(W − 3.40868)(W − 0.251496)

)
+W

(
268.153(W − 3.4057)(W − 2.92466) +R(146.503W − 494.874)

)))
.

The GP model has an accuracy of 76.4 percent when comparing real and model
data. Figure 12 presents the real and the GP model data.

Genetic programming gives better results than linear regression and CNNs.
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Figure 10. Weather data (temperature, rainfall, wind velocity, humidity) and the total
number of bicycle rentals (bicycles). Some variables (temperature and humidity) were
divided by 10 or 100 in order to better fit into a single plot

Figure 11. Real and model data with linear regression
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Figure 12. Real and model data with GP

5 A COMPOSITE MODEL OF CONVOLUTIONAL NEURAL
NETWORKS AND GENETIC PROGRAMMING

Our results indicate that a hybrid model combining Convolutional Neural Networks
and Genetic Programming is preferred, as linear regression produced the least fa-
vorable outcomes. The CNNs and GP algorithms were combined to create the
composite model. As a result, a composite modeling approach is presented. It in-
cludes CNN and GP simultaneously. Each technique has its prediction in a parallel
composite system. Thus, over the identical input data, CNN and GP function fully
independently. An arbitration process was applied to decide the output of the par-
allel composite system which is the sum of the CNN and GP outputs. The results
show 78.9% accuracy between actual and model data using CNNs and GP in a com-
posite model. Figure 13 presents real and model data with the composite model of
CNN and GP.

The week with the most bike rentals (432) was the week 13. The majority of
bicycles were hired between the 11th and the 17th week. Temperatures ranged from
17 to 27 degrees Celsius throughout this time. Rainfall, wind speed, and relative
humidity have little effect on the price of a rented bike. Week 2 saw the fewest bikes
loaned, with only 13 bikes. Thus, the average temperature this week was 11.3 °C.
Between real and model data, CNNs provide 77.2% precision. The MR model gives
us an accuracy of 32.2% when comparing real and model data. The GP model has
an accuracy of 76.4% when comparing real and model data. We get 78.9% accuracy
using the composite model of CNNs with GP.
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Figure 13. Real and model data with the composite model of CNN and GP

6 CONCLUSION AND FUTURE WORK

This paper presents a new approach for predicting bicycle traffic in Novo mesto,
Slovenia, using convolutional neural networks and genetic programming. It was dis-
covered that weekly bicycle rentals may be forecasted with a reasonable degree of
accuracy (for 35 weeks). The impact of meteorological variables on total weekly bi-
cycle traffic was examined using linear regression, feedforward neural networks, and
genetic programming models. The GP model produces the best outcomes. Bicycling
minimizes the number of cars on the road, resulting in less traffic congestion, slower
driving, and lower pollution levels. Several open issues remain for future work. One
of them is to develop a model of bicycle traffic system using historical data to predict
bike rentals for the upcoming year. Additionally, we aim to create more methods for
predictive modeling of bicycle traffic. The next open problem is identifying locations
for bicycle lanes, based on bicycle travel statistics. A particularly interesting open
problems is a challenge: finding new stations or new locations for bicycle rentals.
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[3] Balant, M.—Mladenovič, L.—Plevnik, A.: Comprehensive Transport Strat-
egy of the Municipality of Novo Mesto: Easy Routes to Vibrant Centres. 2017,
https://novomesto.si/mma/-/2018010808140299/ (in Slovene).

[4] Wang, M.—Li, Y.—Liao, G.: Research on the Impact of Green Technology
Innovation on Energy Total Factor Productivity, Based on Provincial Data of
China. Frontiers in Environmental Science, Vol. 9, 2021, Art. No. 710931, doi:
10.3389/fenvs.2021.710931.

[5] Du, K.—Cheng, Y.—Yao, X.: Environmental Regulation, Green Technology In-
novation, and Industrial Structure Upgrading: The Road to the Green Transfor-
mation of Chinese Cities. Energy Economics, Vol. 98, 2021, Art. No. 105247, doi:
10.1016/j.eneco.2021.105247.

[6] Chourabi, H.—Nam, T.—Walker, S.—Gil-Garcia, J. R.—Mellouli, S.—
Nahon, K.—Pardo, T.A.—Scholl, H. J.: Understanding Smart Cities: An In-
tegrative Framework. 2012 45th Hawaii International Conference on System Sciences,
2012, pp. 2289–2297, doi: 10.1109/HICSS.2012.615.
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