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Abstract. In the current research on heterogeneous academic network community
detection, there is a widespread challenge of high demand for node representation
of node attributes in learning graphs. Particularly, existing methods often perform
poorly when dealing with nodes missing attributes. Furthermore, most methods rely
on meta-paths, but the optimal length of meta-paths is difficult to determine and the
quality of predefined meta-paths directly affects the results. To address this issue,
this paper proposes an Adaptive Sampling-based Heterogeneous Graph Enhance-
ment Model (ASGNN). The model aims to solve the problem of inaccurate node rep-
resentations leading to imprecise community partitions in academic networks. AS-
GNN first effectively captures the network’s topological structure through random
walk techniques, and then utilizes an adaptive sampling algorithm to select the most
influential adjacent node set, rather than relying on traditional meta-path tech-
niques. The model further employs an attention mechanism to aggregate informa-
tion from nodes of different types, thereby enhancing attribute completion and topo-
logical structure in heterogeneous academic networks. This approach not only fills
in missing information but also significantly enhances the semantic and structural
integrity of the network. Experimental results demonstrate that the proposed model
exhibits outstanding performance on two real datasets compared to baseline models.
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1 INTRODUCTION

In the real world, the complex relationships among various entities can be modeled
as graphs, such as social networks, biological molecule networks, network commu-
nication graphs, academic networks, etc. In recent years, with the development of
technology and the advent of the “era of academic big data,” academic networks
have emerged [I]. Academic networks encompass not only citation relationships
among papers but also “writing” relationships between authors and papers, “pub-
lishing” relationships between papers and journals, “co-authorship” relationships
among authors, and so on [2]. The diverse types of nodes and relationships make
heterogeneous academic networks rich in information. Scholars’ exploration of aca-
demic networks originated in the field of library and information science [3], pri-
marily for the evaluation of scientific literature. With the advancement of academic
networks in scientific research, scholars have gradually begun to investigate aca-
demic networks. Community detection in academic networks not only reveals the
affiliation information of academic papers and discovers research hotspots but also
facilitates recommending academic papers on the same topic to students, as well
as multi-topic recommendations [4, B, 6]. Existing research on community detec-
tion in academic networks mainly falls into two categories: homogeneous academic
network community detection [7] and heterogeneous academic network community
detection [8]. Homogeneous academic network community detection only considers
paper nodes in the network and the “citation relationships” between them. Het-
erogeneous academic networks, on the other hand, consider multiple types of nodes
and relationships. Compared to homogeneous academic networks, heterogeneous
academic networks cover richer information, such as author and venue information.
This poses challenges to existing technologies while assisting the primary nodes
in obtaining deeper structural and semantic insights. Heterogeneous graphs con-
taining rich structural information increase the difficulty of representation learning.
This paper primarily addresses this challenge by studying representation learning
in heterogeneous academic networks. The concept of heterogeneous networks was
proposed by Sun et al. [9] in 2009. They argued that heterogeneous graphs are a spe-
cial type of network that includes multiple types of objects, and meaningful results
cannot be obtained without considering the types of network nodes. Real-world
networks are heterogeneous, and studying academic networks in a single dimension
cannot comprehensively explore their underlying structures.

When studying heterogeneous networks, it is often challenging to model higher-
order relationships between nodes. Most existing research focuses on homogeneous
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graphs, although there are some metrics that can serve heterogeneous graphs, most
of which rely on predefined meta-paths [10, 1], 12]. Meta-paths generally require
experienced domain experts to define, and the quality of predefined meta-paths di-
rectly affects the final results. The variety of meta-paths in heterogeneous networks
poses a challenge in effectively selecting and utilizing relevant meta-paths. Addition-
ally, different meta-paths may express the same or similar semantics, introducing
the issue of information redundancy [I3]. Determining the optimal length of meta-
paths is difficult; overly long paths may introduce noise, while overly short paths
may fail to express complete semantics. The selected meta-paths cannot cover all
semantics in the network, resulting in information loss. The use of meta-paths tends
to overly emphasize node types while overlooking important relationships between
nodes of the same type. Heterogeneous graph Attention Network (HAN) [I4] uti-
lizes meta-paths to obtain higher-order information of nodes. It performs attention
calculations on subgraphs generated from nodes to aggregate neighbor information
and further calculates attention between different types to aggregate information.
Some methods do not use meta-paths; Luo et al. [I5] proposed a heterogeneous
graph embedding method based on contextual paths, avoiding the need for directly
using meta-paths by adaptively generating contextual paths. Although this method
effectively avoids the challenge of needing predefined meta-paths, the generated con-
textual paths inherently suffer from the problem of not covering all semantics in the
network and overly emphasizing node types while ignoring relationships between
nodes. Heterogeneous Graph Neural Network (HetGNN) [I6] selects heterogeneous
nodes through sampling to avoid directly using meta-paths. However, in the sam-
pling process, the initial number of sampled nodes for different types ignored the
contributions of different types of nodes to the primary type nodes.

Despite the numerous methods based on Graph Neural Networks (GNNs) being
used to model graph data [I7, [I8, 9], the performance of traditional GNN methods
remains unsatisfactory for pattern-rich heterogeneous graphs. To address this issue,
recent methods focus on heterogeneous networks have been proposed, such as HAN,
Metapath Aggregated Graph Neural Network (MAGNN) [20], etc. These methods
can be understood as ways of analyzing node attributes guided by the graph struc-
ture. However, learning node representations from the graph in this manner places
high demands on node attributes, and some nodes often lack attributes, possibly due
to the high cost of acquisition and concerns about privacy, among other reasons. In
heterogeneous graphs, it is typically impossible to obtain attribute information for
all types of nodes, posing a challenge to the model’s performance. Additionally, due
to limitations of datasets and challenges in data integration, relationships between
nodes may also be missing. For the sake of illustration, we categorize all types of
nodes in the graph into two types: primary type nodes, which are the nodes of inter-
est for study, and auxiliary type nodes, which assist in the analysis. In theory, nodes
of any type can be considered primary type nodes. Taking the DBLP dataset as an
example, suppose we aim to perform community detection in an academic network,
considering “paper” nodes as primary type nodes. However, due to the difficulty
in obtaining their attributes, as well as the attributes of auxiliary type nodes that
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have a significant impact on “paper” nodes, the effectiveness of academic network
analysis is significantly compromised. Heterogeneous academic networks suffer from
issues such as missing attribute information and improper neighbor selection. How
to select appropriate domain nodes and enhance the network? Existing graph en-
hancement methods mainly focus on structural enhancement of the graph, ignoring
attribute enhancement of nodes. Even when considering attribute enhancement, it
typically involves simply replacing missing attributes with the mean value, which
fails to fully consider the uniqueness of node attributes, resulting in model smooth-
ing.

Most of the aforementioned methods require predefined meta-paths, which limit
the application of heterogeneous graphs greatly, as predefined meta-paths necessitate
significant prior knowledge. Moreover, the quality of defined meta-paths directly
impacts experimental results. To address this issue, this paper proposes a het-
erogeneous graph enhancement model based on adaptive sampling to enhance the
expressiveness of GNNs on heterogeneous networks. When primary type nodes miss
attribute information, the model adaptively selects neighboring nodes with strong
relevance for information aggregation, thus improving the attribute information of
primary type nodes, as illustrated in Figure [I}
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Figure 1. Attribute completion

Therefore, we first execute a random walk strategy on the subgraph of the
target node to capture the graph’s topology. Then, adaptive sampling is performed
on the node to obtain a highly correlated heterogeneous neighbor node set through
sampling probability. Next, feature enhancement is conducted on primary type
nodes. Specifically, considering dynamically extracting node features to capture
the correlation among same-type neighboring nodes and obtain deeper information,
we first employ Bidirectional Long Short-Term Memory (BiLSTM) [2T] to extract
features from the same-type node set. Subsequently, based on attention mechanisms,
feature aggregation is performed on different types of node sets, flexibly addressing
the relationships between different types of nodes in heterogeneous networks to
more accurately capture the semantic relationships of the network. Finally, the
concept of virtual edges is introduced. By computing the average correlation between
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different types of nodes and the target node and comparing it with the correlation
between node pairs, connections between nodes are increased to enhance the overall
topological structure performance. This enables better utilization of heterogeneous
academic networks for downstream tasks. In summary, the main contributions of
our work are as follows:

e Based on the heterogeneous academic network, we propose an adaptive sampling
method for sampling primary and auxiliary type node pairs. The sampling
weights of different auxiliary type nodes are determined based on the relevance
of the sampled node pairs. Subsequently, nodes of different types are sampled
according to their respective sampling weights.

e When enhancing the attributes of primary type nodes, we combine BiLSTM with
attention mechanisms to capture the correlation among same-type neighboring
nodes while also flexibly addressing the relationships between nodes of different
types.

e By comparing the relevance score between all nodes of a certain type and the
target node with the average relevance score of the induced n-order subgraph
of that type of node on the target node, we determine whether to add virtual
edges for structural enhancement.

e Compared to the baseline model, our proposed model demonstrates superior
performance across multiple real datasets.

The structure of this paper is as follows: Section [2] reviews related work on
heterogeneous graph embedding learning, Section [3| defines the problem, Section [4]
provides a detailed introduction to our algorithm, Section [5] discusses the experi-
mental results. Finally, Section [f] concludes the paper.

2 RELATED WORK

Heterogeneous graph representation learning aims to generate meaningful vector
representations for each node while preserving the heterogeneous structure and se-
mantics for downstream tasks such as node/graph classification, node clustering, and
link prediction. Kaibiao et al. [22] proposed a method that defines neighborhoods
through different levels of sampling methods and utilizes neighborhood graphs to
represent complex structural interactions between nodes. A hierarchical attention
mechanism was employed to learn the importance of different objects. Zhu et al. [23]
introduced a method for automatic attribute completion, enhancing the performance
of heterogeneous GNN models through differential attribute completion algorithms
and dual-layer optimization techniques. Zhang et al. [24] introduced a method that
enriches learned node embeddings with both structural information and attribute
semantics. They improved the final performance through finely-tuned multi-relation
aggregation modules and multi-layer convolutional modules. Zhao et al. [25] pro-
posed a method that achieves more refined node embeddings and enhances commu-
nity detection in heterogeneous information networks through enhanced neighbor
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selection and structured perception information aggregation. He et al. [26] devel-
oped an unsupervised heterogeneous graph contrastive learning approach (HGCA)
to handling attribute missingness in heterogeneous information networks (HINs).
Based on metapath-based random walk techniques, it learns joint embeddings of
nodes and attributes to achieve fine-grained attribute completion. Jin et al. [27]
proposed a generic framework based on attribute completion, which utilizes ex-
isting HIN-embedding methods to compute attention coefficients between nodes.
Attribute completion for nodes without attributes is achieved through weighted ag-
gregation. Fu et al. [28] proposed the Structural Enhanced Graph Convolutional
Network (SEGCN), which introduces a structural enhancement technique, integrat-
ing network structure, attribute information, and higher-order neighborhood rela-
tions to achieve a more comprehensive node representation. Li et al. [29] proposed
a method for attribute completion through feature completion. They designed a het-
erogeneous residual graph attention network to learn the graph’s topology and then
utilized attention mechanisms to complete missing features.

Some methods [30, BI] model heterogeneous graphs using predefined meta-paths.
Zhang et al. [32] proposed seven categories of “intra-network social meta-paths” and
four categories of “inter-network social meta-paths.” These “social meta-paths”
cover various connection information in the network and help solve multi-network
link prediction problems. Wang et al. [I4] first introduced HAN, which is based on
hierarchical attention, including node-level and semantic-level attention. Node-level
attention aims to learn the importance of nodes and their neighbors based on meta-
paths, while semantic-level attention learns the importance of different meta-paths.
The proposed model generates node embeddings by hierarchically aggregating fea-
tures from meta-path-based neighbors. MAGNN [20] defines multiple meta-paths
in heterogeneous graphs to capture compound relationships and guide neighbor se-
lection. In the selected meta-paths, MAGNN utilizes all node information along the
meta-paths, unlike HAN, which ignores intermediate nodes in meta-paths. Drawing
inspiration from Generative Adversarial Networks (GANs), Hu et al. [33] intro-
duced HeGAN, a novel framework for HIN-embedding that trains a discriminator
and a generator in a minimax game. Wang et al. [34] proposed a approach that dif-
fers from previous approaches focused on node-level or relation-level heterogeneity
modeling by jointly integrating the rich semantics retained on nodes and relations
for modeling. Zhong et al. [35] proposed a new embedding model that aims to reduce
the dependence of heterogeneous network models on manually defined meta-paths
by selecting task-relevant meta-paths through automatic mining. Hu et al. [30]
proposed a method that considers structural information, semantic information,
metapath-based node features, and weights based on metapaths to learn effective
node embeddings. They employed a relation-aware heterogeneous graph neural net-
work (GNN) to generate compact embeddings for nodes. Zhang et al. [37] introduced
a novel definition of metapaths that integrates edge types (i.e., relationships between
nodes), and utilizes different subgraphs to separately train node embeddings, aggre-
gating nodes from different subgraphs using attention mechanisms. Lou et al. [3§]
proposed a method that, through graph data augmentation and adaptive denoising
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mechanisms, is capable of uncovering hidden relationships between heterogeneous
nodes and enhancing information propagation between them, while being robust to
variations in graph structure and noise. Liu et al. [39] proposed the Metapath-based
Multi-level Graph Attention Network (MMAN), which jointly learns node embed-
dings on heterogeneous graphs and performs node classification and clustering on
two types of substructures.

However, some of the aforementioned methods either rely on meta-paths for node
information aggregation or do not consider adaptive sampling. This can lead to the
model not fully utilizing the semantic and structural information of heterogeneous
networks, resulting in decreased model performance.

3 PROBLEM STATEMENT

Definition 1. Heterogeneous academic network graph (HG) definition. Given HG,
G = (V,E,T,¢,¢), where V and E are sets of nodes and edges, respectively. Each
node v and edge e are associated with their type mapping functions ¢ : V. — Ty,
and ¢ : ' — Tg, where Ty, and T represent sets of node and edge types. The types
satisty |Tv|+|Tg| > 2, and T = Ty UTg. If |Ty |+ |Tg| = 2, then the graph has only
one type of node and one type of edge, which will degenerate into a homogeneous
graph. The primary type nodes studied in this paper are paper nodes, theoretically
nodes of any type can be considered primary type nodes. Node types are classified
as {P, A, T,V}, representing Paper, Author, Term, and Venue, respectively.

The edge types are classified as {ry, rs, r3}, representing the following relation-
ships: 7, denotes the “relate to” relationship between a P and the 7 it addresses;
ro indicates the “write” relationship between an A and a P; and r3 represents the
“publish in” relationship between a P and the V where it is published. The feature
matrix of the graph is denoted as H, where th represents the initial feature repre-
sentation of node v; of type T;. The adjacency matrix is denoted as A, where a;; = 1
indicates that nodes ¢ and j are connected. Figure [2] illustrates the information of
the heterogeneous academic network.

Problem Definition. Given HG, G = (V, E, T, ¢, ¢), the objective of this paper is
to project nodes into a latent low-dimensional representation space while obtaining
an enhanced graph G’. Formally, our goal is to study a mapping function f such
that (G', Xv) = f(G, Hy ), where Xy represents the final embedding of the nodes.

4 ASGNN FRAMEWORK

In this section, we will formally introduce ASGNN, designed to address the chal-
lenges of missing attribute information for certain nodes and missing edge infor-
mation between nodes in heterogeneous graphs. ASGNN consists of four compo-
nents:
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Figure 2. Heterogeneous academic network

1. Adaptive sampling of heterogeneous neighbors,
2. Feature extraction,
3. Feature aggregation,

4. Topology enhancement.

Figure [3] illustrates the framework of ASGNN.
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4.1 Heterogeneous Graph Adaptive Sampling

Many researchers have proposed various methods to aggregate information for nodes
in heterogeneous graphs. However, when selecting neighboring nodes, most methods
rely solely on nodes with strong attribute similarity, ignoring structural relationships
between nodes. According to researchers’ findings [40], the structural correlation
between nodes is highly significant for modeling node similarity. In this paper, we
choose to adopt adaptive sampling to sample neighborhood nodes strongly correlated
with each target node.

Firstly, random walks are conducted in the induced subgraph of each node v,
sampling neighboring nodes. To avoid randomness and compute the influence of
different types of neighboring nodes on the current node equally, we choose to sample
the same number of neighboring nodes for each different type. The correlation
between the target node and neighboring nodes of different types is calculated based
on the initial feature representation of nodes. Firstly, the correlation between the
target node and each neighbor (denoted as P and A for illustration) is calculated
using cosine similarity. In this formula, Collp, 4, represents the correlation between
node ¢ of type P and node j of type A:

Coll oy b 1
ol 1y = 050) = AT W
where Al and hf represent the embeddings of nodes i of type P and j of type A,
respectively.

To measure the influence of neighboring nodes of different types on the target
node, we calculate the correlation between the sampled neighboring nodes of differ-
ent types and the target node, and take the average among all types of neighboring
nodes. This ensures that the contribution of nodes of each type is considered during
information aggregation. Specifically, C’oll%fff represents the average correlation
between nodes of type P and nodes of type A. The calculation of the average
correlation between different types of neighbors and the target node is as follows:

Ave  sum (CO”P“A].)
Collp.a” = count(.A;) @)

To determine the relative importance of neighboring nodes of different types on
the correlation with the target node, we employ a softmaz normalization strategy.
By applying softmar normalization to the average correlation between nodes of
heterogeneous types and the target node, we obtain the influence of each type of
neighboring node on the target node. W; is defined as the weight matrix, and its
calculation is as follows:

AVG
6Coll7,_t

W, = Softmaz (Coll" ) = te{A TV} (3)

AVG
c eCollp,C ’
c=1
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The weight matrix W; obtained through calculations serves as the adaptive
sampling weight for each type of heterogeneous neighboring node, enabling targeted
selection of neighboring nodes. This weight allocation mechanism ensures that node
types with a greater impact on the target node are more frequently sampled, im-
proving the accuracy and representativeness of node representations obtained during
the information aggregation process. As illustrated in Figure a)7 taking the anal-
ysis of paper nodes as an example, suppose we calculate the average correlations
between authors, venue, term, and paper nodes to be 0.3251, 0.2521, and 0.2048,
respectively. In this scenario, we sample neighboring nodes based on the calculated
weights mentioned above. For instance, given a certain number of sampling iter-
ations, we sample according to the weights of author nodes (0.3551), venue nodes
(0.3301), and term nodes (0.3148), ensuring a more accurate reflection of the contri-
bution of each type of neighboring node to the target node during the aggregation
of neighbor information.

4.2 Feature Extraction Based on BiLSTM

After sampling the neighboring nodes, the next crucial step is to aggregate features
of these sampled nodes. We first need to aggregate information among neighboring
nodes of the same type, as nodes of the same type typically possess similar features
and semantics. Leveraging these similarities helps to better capture the collective
contribution of neighboring nodes of the same type to the target node.

For the target node v € V', we focus on its sampled neighboring nodes of type
t, denoted as v' € Ny(v). By aggregating these t-type neighboring nodes through
a neural network, we can better capture their correlations and interactions. The
process of information aggregation is as follows:

fi(w) = AGLcn, {0} (4)

where f! is the vector resulting from aggregating information of ¢-type neighbors, h!,
represents the initial feature representation of the t-type node v’, and AG! denotes
the aggregation function for nodes of ¢t-type.

The paper employs BiLSTM for information aggregation, allowing bidirectional
reading of node information and dynamically extracting node features to obtain
deeper insights, as shown in Figure b). Additionally, using BiLSTM for aggregating
node information helps alleviate the vanishing gradient problem. This information
aggregation aims to capture the correlations among neighboring nodes of the same
type, making the representation of the target node more expressive. Therefore,
Equation @ can be rewritten as:

enio | LSTM{n,} @ LSTM{n, }]
[Ne(w)] ’

filv) = ()

training different BILSTM networks separately to handle nodes of different types in
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the heterogeneous academic network allows for a more comprehensive capture of the
unique features and complex relationships of each node type. This separate training
process enables each node type to receive personalized treatment, enhancing the
model’s expressive power for each node type and thereby improving the performance
of graph enhancement tasks.

4.3 Feature Aggregation Based on Attention Mechanism

In the preceding sections, the target node’s features are aggregated with the features
of each type of neighboring node, and O,, represents the set of types for the target
node and its neighboring nodes. For each type of neighboring node, we perform sep-
arate aggregation, and we then further integrate these different aggregated vectors
to obtain a more comprehensive representation of the target node.

Considering that different types of neighboring nodes contribute differently to
the target node v, we introduce an attention mechanism to jointly learn the con-
tributions of different node types to the target node. This mechanism adaptively
determines the weight of each node type in the information aggregation, allowing
for a more flexible capture of the importance of different types of neighboring nodes
in the heterogeneous academic network, as shown in Figure c). The output em-
bedding of node v is represented as x,:

ro= "7 + 37 ot fi(o) (6)

teEOm

where a("*) represents the importance of nodes of *-type to the current node, h?
is the initial embedding of node v, and f!(v) represents the heterogeneous neighbor
embedding based on type.

To more effectively aggregate the neighbor information of the target node while
preserving the node’s own information, this paper designs different weights for infor-
mation aggregation. We define the set of embeddings as F(v) = {f¢(v), fi(v),...,
fion-1(), f5(v) = Iyt € Op C T}, where f{(v) represents the representation of
the t-type neighbor nodes sampled for node v. We can rewrite Equation @ as:

Xy = Z ' f, (7)

fi€F(v)
the acquisition of attention coefficients o¥* is as follows:

_ exp{ LeakyReL U (u”[f;] ® h!)}
N > per() eXpi LeakyReLU (u”[fi] @ hi,)} ’

v,

(07

(8)

where u” is a vector used to map [f;] ® h! to a scalar value. After obtaining the

aggregation weights for different types of neighbor nodes with the target node, we
obtain the final representation x, for the target node.
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4.4 Enhancement Based on Sampled Virtual Edges

In heterogeneous academic networks, enhancing node features alone is not suffi-
cient. This is because the edge relationships between nodes are likely to be missing,
and these relationships have a significant impact on the model’s expressiveness.
Therefore, to better capture the relationships between nodes, we need to enhance
the network topology. For example, we can consider enhancing the network topol-
ogy in two aspects. Theme Association: By adding virtual edges between paper
nodes and term nodes, we can better represent the semantic relationships between
paper topics and term. This helps improve the model’s understanding of paper
content, thus more accurately capturing the distribution of topics in the academic
network. Collaboration Relationships: Adding virtual edges between author nodes
represents collaboration relationships between authors. This enables the model to
better understand the social network of authors, thereby better exploring the impact
of collaboration relationships on academic research.

We determine whether to add virtual edges by comparing the correlation between
a certain type of node and the target node with the average correlation score of that
type of node in the induced n-order subgraph of the target node. Specifically, we
follow these steps:

1. Correlation Calculation: For the target node v and all nodes u! € {u; | ¢(u;) =
T;} of a certain type, we compute the correlation score between them, reflecting
the strength of their connection.

2. Average Correlation Score Calculation: Compute the average of the correlation
scores obtained for all nodes of the same type in the n'" order subgraph induced
by the target node.

3. Decision for Adding Virtual Edge: Compare the correlation score between the
target node and a node of a certain type with the average correlation score. If
the correlation score is greater than or equal to the average correlation score,
add a virtual edge to strengthen the connection between them; otherwise, if the
correlation score is less than the average correlation score, do not add a virtual
edge.

This topological enhancement strategy is adjusted based on specific tasks and
network characteristics, thereby it is more flexibly adapting to the analytical require-
ments of academic networks in different scenarios. First, compute the correlation
score between the target node v and all nodes u! of a certain type:

hy - hu:

Coll,,+ = cos() = 1ol [t ]|

(9)

where h, represents the embedding of node v, h,: represents the embedding of node
ul, Collmué represents the correlation between node v and the ¢-type node ui. The
decision to add an edge between node v and node u} depends on the value of judge.
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An edge is added between node v and node u! if and only if judge = 1. The
calculation rule for judge is as follows:

Coll, ,+ > Coll#VE, 1

udge = vt To s 10

g {couv,ug < ColldVE, 0, 10)

the nodes pairs with judge = 1, determined through computation, were used to
enhance the topology of the heterogeneous academic network. On the left side of
Figure d), the original academic network is depicted. By calculating the corre-
lations between all nodes of the main type (Paper) and nodes of other types, and
comparing the correlations between nodes and their respective types, we identified
the edges that needed enhancement. This process resulted in the enhanced topology
graph shown on the right side of Figure B|d).

4.5 Algorithmic Description

ASGNN aims to adaptively sample neighbor nodes based on the correlation between
main nodes and their neighbors, thereby obtaining more relevant neighbor informa-
tion even in the absence of node attributes, achieving attribute enhancement. Then,
based on the relative importance of the correlations between nodes and the corre-
lations between node types, it decides whether to add new edges between nodes
of different types to achieve topological enhancement, thus overall enhancing the
performance of academic networks. The algorithmic process of this paper is shown
in Algorithm [T}

5 EXPERIMENTS

In this section, two evaluation datasets are introduced, and detailed information
about the competing algorithms is provided. Then, the focus shifts to downstream
node clustering tasks, where we evaluate the performance of the proposed model
against other state-of-the-art methods. Finally, ablation studies are discussed to
provide further insights.

5.1 Datasets

In the experiments, we selected two representative heterogeneous academic network
datasets, namely DBLP and ACM. The two datasets contain four and three types
of nodes, respectively, along with three types of edges. Their statistics are presented
in Table [

1. DBLP [14]: The dataset used in this experiment is a subset extracted from the
DBLP database, consisting of a set of diverse academic resources. It includes
14 328 research papers authored by 4057 authors from 20 different academic
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Algorithm 1: Algorithm for Enhancing Heterogeneous Academic Network
Graph

Input: Original heterogeneous academic network graph G
Output: Enhanced heterogeneous academic network graph G’ and
enhanced representation of primary type nodes x, € P

1 Determine primary type nodes P

2 for v in P do

3 Construct subgraph g, for each v

4 Calculate average relatedness CollézG in Equation (2))

5 Calculate sampling probability W, in Equation (3]

6 Resample neighbors; node-based neighbors aggregated via BiLSTM,
type-based neighbors aggregated via ATTENTION to obtain enhanced
representation z, for primary type nodes in Equations 7 @ and

7 end

8 for v in P do

9 Calculate relatedness C’ollv’uf between heterogeneous neighbor nodes
and the target node in Equation @D

10 Calculate judge to determine whether to add a virtual edge in Equation
)

11 end

12 return G, x, € P

venues. The dataset also contains 8 789 terms, where each term represents a fun-
damental concept discussed in the papers.

. ACM [14]: This dataset is a subset extracted from the ACM database, consisting

of a collection of diverse academic resources. It includes 4019 research papers
authored by 7167 authors, covering 60 different research subjects. To provide
comprehensive representations of papers and authors, the dataset includes var-
ious attributes. Each paper’s attributes are represented using a bag-of-words
approach, effectively capturing terms that define its content essence. Similarly,
for authors, their attributes are also represented as bags-of-words, including
valuable information extracted from their affiliations, paper titles, and terms
from their publications.

5.2 Baselines

To validate the effectiveness of the proposed method in this paper, we selected several
commonly used baseline algorithms for comparison with our proposed model:

1.

DeepWalk [41]: DeepWalk is a network embedding method based on random
walks, which combines random walks with the word2vec approach for mining
graph data.
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Dataset | Nodes Edges
DBLP | #author(A): 4057 | #A-P: 19645
#paper(P): 14328 | #P-T: 85810
#term(T): 7723 | #P-V: 14328
#venue(V): 20
ACM #paper(P): 4019 #P-P: 9516
#author(A): 7167 | #P-A: 13407
#subject(S): 60 #P-S: 4019

Table 1. The statistics of the public datasets

2. GCN [42]: GCN is a neural network architecture used for learning node em-
beddings in graphs. It effectively captures and aggregates information through
convolutional layers by utilizing the neighborhood of the graph. GCN mod-
els node relationships and graph structures efficiently, demonstrating significant
performance in tasks such as node classification and link prediction.

3. GAT [3]: GAT is a neural network architecture designed specifically for graph-
based learning tasks. It employs attention mechanisms to adaptively weigh the
importance of neighboring nodes during the information aggregation process.
GAT’s ability to capture fine-grained dependency relationships in graphs, along
with its self-attention mechanism, makes it a powerful tool for various applica-
tions, including node classification and graph classification.

4. Metapath2vec [44]: Metapath2vec is a pioneering algorithm for learning em-
beddings in heterogeneous information networks. It introduces the concept of
meta-paths, which are paths composed of multiple node types, to capture both
structural and semantic information. By leveraging meta-paths, Metapath2vec
can generate rich context-aware embeddings for various types of nodes in het-
erogeneous networks.

5. HAN [I4]: HAN is a cutting-edge model designed for learning on heterogeneous
graphs. It combines node-level and metapath-level attention mechanisms to
effectively capture both local and global information in heterogeneous graphs.
Due to its ability to handle the complexity and diversity of heterogeneous graph
data, HAN demonstrates excellent performance in various applications including
node classification.

5.3 Evaluation Metrics

We employ ARI [2] (Adjusted Rand Index) and NMI [45] (Normalized Mutual In-
formation) as evaluation metrics. ARI is an external index used to assess clustering
results. It measures the similarity between two data distributions and is typically
used to compare clustering results with the ground truth labels. Its value ranges
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from —1 to 1. ARI can be expressed as:

a+b

n 3

2

RI =

RI — E[RI) )

AR = max(E[RI], E[RL,]) — E[RI]’

where RI is the Rand Index, E[RI] is the expected value of the Rand Index, and
E[RI] and E[RI,)] are the expected Rand Indexes based on the true labels and
clustering results, respectively. ARI provides a more robust and interpretable way
of evaluating clustering quality by considering the possibility of random matches.

NMI is a commonly used metric for evaluating clustering performance, measur-
ing the similarity between two clustering results, with a value range from 0 to 1.
NMI can be expressed as:

Ry
H(X) = =Y P(i) log P()

[(Y;C0)=H(Y)—-H(Y|C), (12)

HY)+ H(C)

NMI(Y,C) = .

x I(Y;C),

for NMI, Y represents the true labels of the data, and C' represents the predicted
labels. P(%) is the probability of random variable X taking the value ¢, H(Y") is the
entropy of the true labels, and H(Y'|C) is the conditional entropy of the data given
the clustering results C'. Normalized Mutual Information maps the value of mutual
information to the interval [0, 1].

5.4 Experimental Settings

Among the aforementioned baseline algorithms, DeepWalk, GCN, and GAT are de-
signed for homogeneous graphs. In homogeneous networks, they utilize the network’s
topology and node attributes to learn embeddings for nodes. On the other hand,
Metapath2vec and HAN are developed for heterogeneous graphs, employing meth-
ods based on meta-paths. In this paper, we utilize an adaptive sampling strategy
to sample the neighborhoods of target nodes instead of using meta-paths.

In our experiments, we set the learning rate to 0.01 to ensure the stability of
the model training process. The dimension of node feature embeddings is set to
128. We use the following versions of software packages: PyTorch 1.2.0 as our deep
learning framework, providing powerful tensor computation and deep neural net-
work support. We use DGL 0.3.1 to handle data with graph structures. We utilize
NetworkX 2.3 to create, manipulate, and study the structure and functions of com-
plex networks. We apply scikit-learn 0.21.3 to train and evaluate machine learning
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models. We use NumPy 1.17.2 for efficient multidimensional array operations. Fi-
nally, we use SciPy 1.3.1 for scientific and technical computing. These software
packages and their versions were chosen based on our experimental requirements.

5.5 Experimental Results and Analysis

In this section, we conduct a series of simulation experiments using academic net-
work datasets. The main purpose of these experiments is to evaluate the perfor-
mance of our proposed ASGNN algorithm. This is achieved through a detailed
comparison of overall experimental results and analysis of experimental parameter
settings. Our experiments and subsequent discussions not only provide evidence of
the effectiveness of the algorithm but also contribute to a deeper understanding of
the importance of graph enhancement for enhancing model performance.

1. Analysis of the Overall Experimental Results.

First, we conduct experiments and compare our proposed ASGNN model with
some common methods, as shown in Table[2l Our ASGNN model achieves good
experimental results in terms of NMI and ARI on the DBLP and ACM datasets.
Additionally, to visualize the experimental results more clearly, we present them
graphically in Figure ] to better illustrate the effectiveness of our method. We
make the following observations:

(a) It can be observed that our proposed method achieves optimal NMI and
ARI scores on both datasets. Because we employed an advanced approach
to complete node attributes: first, by utilizing random walk techniques to
capture the network’s topology, and then applying an adaptive sampling
algorithm to select the most influential neighboring node set, rather than
relying on traditional metapath techniques.

(b) The HAN model achieved suboptimal performance on both datasets. This
is because, in contrast to Metapath2vec, which does not differentiate the
importance of metapaths, HAN distinguishes the importance of metapaths,
allowing it to achieve better results.

(¢) The GCN and GAT methods designed for homogeneous graphs do not per-
form well on heterogeneous academic network datasets.

These experimental results indicate that our proposed ASGNN model can effec-
tively enhance heterogeneous academic networks and achieve good performance
by leveraging their rich information and structure. This underscores the effec-
tiveness of our proposed model.

2. Ablation Experiment.

To assess the impact of various key components of the ASGNN model on overall
performance, we conducted an ablation study by sequentially removing individ-
ual components from the DBLP and ACM datasets. The experimental results
are shown in Figure [f]
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Metrics DBLP ACM
NMI ARI NMI ARI
DeepWalk 72.68  76.54  41.06 34.21
GCN 71.85 78.62 50.34 51.28
GAT 68.94 72.25 53.14 54.96
Metapath2vec ~ 70.68  73.58 20.24  20.65
HAN 73.95 79.69 53.64 59.68
ASGNN 76.29 82.64 55.29 63.32

Table 2. Comparison of different metrics on two public networks

We evaluated the ASGNN model by selecting a quantitative number of neighbors
for adaptive sampling. When the module was removed, denoted as “w/o QS”, the
results showed a significant decrease in model performance. This highlights the
effectiveness of our adaptive sampling module in the model.

5.6 Visualization

For a more intuitive comparison among various methods including ours, we con-
ducted visualization experiments aiming to reduce the dimensionality of node em-
beddings for better observation. Specifically, we employed PCA [46] and t-SNE [47]
techniques to project the learned embeddings into a two-dimensional space. Taking
the DBLP dataset as an example, we colored the data points according to their
paper categories. The results are depicted in Figure [f] and Figure [, where t-SNE
demonstrates superior dimensionality reduction compared to PCA.

Figures [0 and [7] both reflect that GCN and GAT, designed for homogeneous
graphs, perform poorly, resulting in authors from different research fields being
mixed together. HAN performs much better than the above models based on ho-
mogeneous GNNs, but its boundaries are still blurry. Our proposed model enhances
node attributes and then enhances the topological structure. By aggregating the en-
hanced topology with the node attribute information, better results can be achieved.
Different types of papers are aggregated into different clusters, and the classification
boundaries are very clear.

6 CONCLUSIONS

This paper presents an advanced method for heterogeneous GNN, which is mainly
divided into two modules. One is the adaptive sampling module, which samples
neighborhood nodes strongly correlated with each target node in an adaptive man-
ner. By completing the missing information in heterogeneous academic networks,
the network contains richer and more complete semantic information. The second
module is the topological structure enhancement module. Some network enhance-
ment models focus too much on node attributes and neglect the topological structure
of the network. We compare the correlation between nodes of a certain type and
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Figure 6. PCA visualization results

the target node with the average correlation score of nodes of that type induced
by the target node’s n-order subgraph to determine whether to add virtual edges,
thereby enhancing the network topology. However, our model has some limitations.
For example, the relationships between nodes may fluctuate over time, and its gen-
eralization ability in dynamic network datasets may be limited.

Our future work involves addressing multimodal information integration by con-
sidering the introduction of more types of node information, such as text, images,
time, etc., to build a richer academic network. Integrating information from differ-
ent modalities into the model to enhance the model’s ability to handle diversified
information. Additionally, considering the introduction of adversarial training mech-
anisms, such as GANs, to improve the model’s robustness to outlier nodes or noise,
enhancing the stability and generalization performance of the model. Furthermore,
considering the evolution of node attributes and relationships in dynamic networks,
we will optimize the model to adapt to the inherent dynamics of dynamic networks,
enhancing the model’s robustness and adaptability.
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