
Computing and Informatics, Vol. 44, 2025, 612–634, doi: 10.31577/cai 2025 3 612

SDN-BASED MULTI-OBJECTIVE OPTIMIZATION
FOR TASK OFFLOADING
WITH ALGORITHM FEDERATED LEARNING
IN FOG COMPUTING ENVIRONMENT

Mohammadreza Sharafi Hoveyda,
Mohammadreza Mollahoseini Ardakani∗

Department of Computer
Maybod Branch, Islamic Azad University
Maybod, Iran
e-mail: m.sharafihoveyda@iau.ir, mr.mollahoseini@iau.ac.ir

Vahid Ayatollahitafti

Department of Computer
Taft Branch, Islamic Azad University
Taft, Iran
e-mail: vahid.ayat@gmail.com

Abstract. Due to the substantial volume of data associated with the IoT, pro-
cessing and storing such large amounts of data is not easily feasible. Nevertheless,
many of its applications face challenges in cloud computing, such as latency, lo-
cation awareness, and real-time mobility support. Edge computing helps provide
solutions to these challenges. In this article, the MINLP path optimization problem
is initially addressed using SDN, SA+GA, OLB-LBMM, and Round-Robin meth-
ods. Subsequently, based on the obtained results, the SDN method, which has
achieved the best outcomes among the approaches, is selected. This article involves
a simulation of IoT for optimal allocation of shared resources in edge computing.
The network architecture comprises five distinct layers, including cloud services, the
SDN controller, edge computing nodes, edge computation and users. The algorithm
employed in this problem is the federated learning and stochastic gradient descent

∗ Corresponding author

https://doi.org/10.31577/cai_2025_3_612


SDN-Based Multi-Objective Optimization for Task Offloading 613

algorithm. It selects the optimal edge node for user service provision through two
learning and training phases, aiming to allocate shared resources to three parame-
ters: cloud service providers’ revenue, average latency, and user satisfaction. This
algorithm is compared with several other methods. The selected model and algo-
rithm, in comparison with other algorithms used in solving similar models, lead to
a centralized management system, the implementation of effective network manage-
ment, and the utilization of various communication media. This approach ensures
timely access to services, contributing to increased profits for providers and user
satisfaction.

Keywords: Software-defined network, federated learning, edge computing, Internet
of Things

1 INTRODUCTION

The rapid advancement of the IoT1 and social network applications has led to an
exponential growth in data generated at network edge. It is anticipated that data
generation rate will surpass the current capacity of the Internet in the near fu-
ture [1]. Given the network bandwidth constraints and privacy concerns, sending
all data to a remote cloud is impractical and often unnecessary. As a result, re-
search organizations estimate that over 90% of data will be processed locally [2].
This data requires fundamental computational resources for real-time processing,
leading to high energy consumption on IoT devices. To address this issue, offload-
ing tasks using edge computing has emerged as a promising solution [3, 4]. Edge
computing is a common term that aims to meet the application needs by being
present everywhere and at all times. Edge computing can be defined as a pro-
gramming and communication paradigm that brings cloud resources physically or
computationally closer to IoT devices. In other words, edge computing acts as an
interface between the cloud and the IoT, assisting them in establishing communica-
tion. Therefore, with the expansion of the cloud computing application domain and
increased availability of resources in the IoT, it leverages the strengths of both tech-
nologies [5]. The use of collaborative learning in conjunction with software-defined
networking can serve as an effective solution for enhancing secure data offloading in
cloud computing environments [6]. Offloading schemes in existing articles have pri-
marily focused on computational power and energy consumption without considering
the network load on the path from the device to the edge server. Therefore, dy-
namic network load should be taken into account during offloading decision-making.
This can be achieved through the use of a SDN2 architecture, which provides cen-
tralized logical control, an overview of network conditions, and the enforcement
of rules by the controller [7]. Furthermore, network management by SDN enables

1 Internet of Things
2 Software-Defined Network



614 M. Sharafi Hoveyda, M. Mollahoseini Ardakani, V. Ayatollahitafti

the gathering of network information from heterogeneous wireless devices across
various wireless technologies. Therefore, with the network overview provided by
SDN, the SDN controller is capable of making optimal decisions in task offload-
ing.

Many optimization problems arising in engineering and sciences involve com-
binatorial and nonlinear relationships. Such optimization problems are modeled
using MINLP3, which combines the capabilities of MILP4 and NLP5. The precise
modeling capability for real-world problems has turned MINLP into an active re-
search area with numerous industrial applications [8]. Collaborative learning is
a technology that has attracted researchers’ attention for exploring its potential and
applications [9, 10] and [11]. FL6 seeks to address the fundamental question [12]
of whether we can train models without the need to transfer data to a central lo-
cation. In the FL framework, the focus is on collaboration, which is not achieved
through standard machine learning algorithms [13]. Additionally, FL allows the al-
gorithm to gain experience, which is not guaranteed through traditional machine
learning methods [14, 15]. Given these challenges, we propose a distributed train-
ing scheme based on collaborative learning to reduce the training load on each
device. In the FL framework, the focus is on collaboration, which is not achieved
through standard machine learning algorithms [13]. It allows the algorithm to gain
experience. Considering these issues, we propose a collaborative learning-based dis-
tributed training scheme to reduce the training load on each device. This paper
discusses how to effectively use limited computational and communication resources
at the edge to achieve optimal learning performance. We consider a typical edge
computing architecture in which edge nodes communicate with the remote cloud
through network elements, such as gateways and routers, which, through SDN net-
work management, provide the capability to access network information such as
topology, network automation, and infrastructure abstraction, operational cost re-
duction, etc., from heterogeneous devices. The use of an SDN controller leads to
optimal discharge decisions, as well as network flexibility and the implementation
of network management [11].

In fact, the main sections of our paper are as follows: In Section 2, a review
of the work carried out in this field is presented. In Section 3, the proposed sys-
tem model is introduced and examined. In Section 4, the problem-solving pro-
cess with the proposed algorithm is discussed. In Section 5, the approach and
evaluation results of the proposed method are presented through simulation. The
obtained results are analyzed and compared with previous methods. Finally, the
topics discussed in the paper are summarized, and conclusions are presented in
Setion 6.

3 Mixed-Integers Nonlinear Programming
4 Mixed-Integers Linear Programming
5 Nonlinear Programming
6 Federated Learning



SDN-Based Multi-Objective Optimization for Task Offloading 615

2 RELATED WORKS

Computation in fog computing, conducted at network edges, can be viewed as a type
of decentralized distributed front-end computation, in contrast to centralized cloud
computations. Fog Mobile exemplifies this type of computation, providing latency-
aware services for mobile devices. Offloading computations to mobile phones poses
a significant challenge due to the need for temporary resources and heterogeneous
devices. Based on this, a reinforcement learning-based computation offloading mech-
anism has been proposed to ensure the provision of services to mobile service cus-
tomers [16]. In this approach, a distributed reinforcement learning algorithm is used
for offloading basic blocks in a decentralized manner, distributing mobile phone codes
across geographically distributed spaces. The proposed method significantly leads to
a reduction in execution time and access delay for mobile services, along with lower
energy consumption for mobile devices. This scheme employs a distributed multi-
agent approach for computation offloading in diverse fog computing environments
tailored for mobile devices.

One of the practical approaches presented in 2016 [17] introduces a distributed
ADMM model for data offloading in fog computing. The model optimizes the per-
formance of the offloading algorithm and guarantees QoS7 for the end-user. It also
provides cloud computations, storage, and computational memory for the end-user
(CUE8). As data traffic in the network significantly increases, leading to elevated
computational density, it results in increased delays. This approach, known as Fog
Computing, utilizes distributed servers to tackle these challenges.

Fog computing can provide computational storage, memory, and networking
capabilities. However, it cannot replace CS9. Fog, with the extension of the cloud,
aims to get closer to the CUE to improve efficiency and reduce the amount of data
that needs to be transferred to the cloud for analysis, processing, and storage. In
fact, several fog nodes exist, each with limited storage capacity, and some users wish
to transfer data to the CS. On the other hand, the CS is distant from the CUE, and
data needs to be transferred through the network core. And this means that data
traffic will increase. Our assumption is that the CUE uploads only some files for
storage in CS, and then data can be temporarily stored in some fog nodes during the
day and transferred to CS at night. This can help reduce traffic and computational
density in the core.

In another framework proposed for offloading load in cloud computing data
centers [18], the assumption is that data centers are deployed at the network edge.
If a request is transferred to a data center, it directs it to a neighboring data center
by considering a probability. These data centers have a large number of servers,
and traffic in some of them becomes saturated. In this case, data centers may help
alleviate the issue by accepting some of the rejected requests. The goal is to achieve

7 Quality of Service
8 Computing for End-User
9 Cloud Server



616 M. Sharafi Hoveyda, M. Mollahoseini Ardakani, V. Ayatollahitafti

quality through collaboration among neighboring data centers. In fog computing,
data centers require less capacity compared to cloud computing, hence, there is
a higher likelihood of congestion. Therefore, to reduce the likelihood of blocking
requests, data centers in fog computing need to collaborate [19].

A key challenge in mobile services is minimizing data transfer time and effi-
ciently executing end-user tasks, considering a policy that can make decisions for
computation offloading [20]. This model consists of four sections: User, agent, cloud.
Mobile users interact with the cloud through mobile devices that have access to the
cloud via WiFi or the internet. When a highly complex program is running, mo-
bile devices face limitations, so they need to rely on cloud systems that are directly
accessible to users. This can help prevent additional communication delays. The
cloud can provide abundant computational resources, but in a physical sense, it is
distant from users, leading to significant transfer delays. An agent is a control center
that can gather information about resources. Based on this information, the agent
decides whether tasks should be executed on the mobile device or offloaded to the
cloud. Based on this, when a new task is created by a user, it can be executed on the
mobile device. If the mobile device is incapable of performing this task, the agent
decides to offload it to the cloud via a wireless link. If the cloud cannot complete
the task or if it takes too long, the task is then performed through the internet and
the cloud.

Another study in the research [21] indicates that with the increase in social
relationships, the energy consumption of mobile devices rises. This can be considered
in the design of computation offloading in mobile cloud computing with the aim of
minimizing execution costs in social groups [22]. The model supports the use of
game theory in this context and proposes a dynamic computation offloading scheme
for the offloading process in mobile cloud computing systems.

In research [23], a task offloading scheme is proposed for SDN in which IoT
devices connect to computational nodes in the fog via multiple IoT access points
(considering fixed access points and fog nodes). The study also addresses the task of-
floading problem in an SDN network where VoIP devices connect to fog computing
nodes through (APs10). Since the non-linear task offloading problem faces chal-
lenges, a linear technique is employed to provide an ILP11 formulation for problem-
solving. The greedy solution considers delay, energy consumption, multi-path routes,
and dynamic network conditions such as link utilization and SDN programmability.
In this research, offloading is performed based on the shortest path to the fog node,
considering hop count, with the aim of minimizing average delay while adhering to
energy constraints [24].

To facilitate distributed management and scalability, fog nodes utilize SDN tech-
niques. In this approach, the control plane is capable of decision-making, while the
data plane straightforwardly handles tasks of transmission and processing [25]. In
this study, reinforcement learning is employed to address scalability issues, using

10 Access Points
11 Integer Linear Programming



SDN-Based Multi-Objective Optimization for Task Offloading 617

a neural network called DRQN12, which enhances learning speed and performance.
The research designs a homogeneous cooperative task offloading and resource alloca-
tion algorithm, aiming to maximize the completion of processing tasks at a minimal
overflow rate from the proposed algorithm. The integration of temporal observations
from a recurrent network to nodes allows them to synchronize their decisions without
explicit knowledge of each other’s states and operational sets, making the proposed
DRQN-based algorithm resilient against a relatively observable dynamic environ-
ment. The results also indicate that intelligently distributed resources, tailored to
various latency constraints, significantly impact the overall system performance [26].

Kim et al. [27] proposed a FL approach based on blockchain, where local updates
are aggregated in the blockchain. On the other hand, [28, 29] suggested a hierarchical
client-edge FL system to reduce communication costs compared to traditional FL.

3 THE PROBLEM MODEL

This study proposes a dynamic computation offloading scheme in SDN networks
using the FL algorithm, where IoT devices connect to fog computing nodes through
various APs. In this architecture, we specifically consider the following aspects:

1. Local computation decision: Determining whether computational decisions
should be made locally on IoT devices or remotely.

2. Optimal node selection for offloading: Choosing the optimal node for computa-
tion offloading.

3. Execution of FL Algorithm.

In summary, the architecture is described as follows: We employ a five-layer network
architecture, as illustrated in Figure 1, which is briefly explained below:

IoT Layer: In this layer, diverse APs and devices such as sensors, smartphones,
tablets, and similar items are placed, which are heterogeneous in terms of storage
space, processing capabilities, and communication relationships. Access from
this layer to fog servers is usually possible through APs and wireless communi-
cation lines. This layer is the first decision point for task offloading to nearby
or distant servers.

Edge Layer: In this layer, devices utilize radio access technologies such as WiFi
to communicate with each other. Edge nodes in a specific area establish com-
munication with a fog node in the same regional range using a wireless channel
interface.

Fog Layer: In this layer, fog nodes are positioned to interact directly with end de-
vices such as smartphones, wireless cameras, and sensor devices through a wire-
less interface. Each fog node executes one or more computational services and
operates a fog agent, striving to fulfill computational and storage requests from

12 Deep Recurrent Neural Network



618 M. Sharafi Hoveyda, M. Mollahoseini Ardakani, V. Ayatollahitafti

IoT nodes to the greatest extent possible. To manage distributed operations
on a large geographical scale, fog nodes are divided into colonies. Each colony
has a more powerful node called the Fog Orchestration Control Node, which
maintains the overall status of the colony, such as the available processing ca-
pacity of the current colony nodes. If a request received by one of the leading
nodes in the IoT layer cannot be executed at that layer,it is transferred to the
Fog Orchestration Control Node and placed in an M/M/1/K queue. Through
the Fog Orchestration Control Node, we can collect information about each fog
node, specifically including installed services, hardware specifications, and cur-
rent computational resources (such as CPU, RAM, and storage space). This
information is used by the offloading service to make an optimal offloading de-
cision.

SDN Control Layer: The SDN controller is placed in this layer, providing a pro-
gramming interface for network management. The decision-making regarding
the offloading method is taken by this controller.

Cloud Layer: In this layer, powerful data centers with unlimited computing re-
sources are placed to provide appropriate services. Since this research aims to
focus on the characteristics of the SDN and fog layers, details of the cloud layer
are not elaborated upon.

Definition of variables is provided in Table 1. Users consist of a set of de-
vices such as smartphones, surveillance cameras, electronic devices, etc. denoted by
U = {u1, u2, . . . , um}. These users may offload a specific computational or storage
workload to cloud service providers, represented by CS = {cs1, cs2, . . . , csm}. Ser-
vice providers may cater to different users with varied computational requirements
in terms of data size and service delay. For users insensitive to delay, computations
are sent to the cloud, while for delay-sensitive users, service providers allocate one
of the nearby fog nodes for computational tasks. Fog nodes closer to users will
encounter lower delays, but geographical location is not the sole factor affecting
service delay. Initially, the transmission/reception delay and processing delay are
calculated. Each user carries information with them, allowing users to express their
needs such as delay requirements, data size, and processing time (processing time
and data size have a linear relationship). This information is sent to CS. In the next
stage, the cloud, utilizing SDN), identifies a suitable fog node based on the user’s
requirements to allocate computational radio resources appropriately.

In fact, service delay consists of three time periods: transmission time, CPU
processing time, and reception time. The transmission and reception time periods
are defined as the time required to send data to the fog node for processing and to
receive the processing results, respectively. On the other hand, CPU processing time
will be determined by the CPU rate of each fog node; therefore, for each CSj, when
an appropriate fog node is selected from the set FN j =

{
fnj

1, fn
j
2, . . . , fn

j
l

}
for each

user, it will allocate its shared resources W j =
{
wj

1, w
j
2, . . . , w

j
m

}
and computational

resources Cj =
{
cj1, c

j
2, . . . , c

j
m

}
.



SDN-Based Multi-Objective Optimization for Task Offloading 619

Figure 1. Proposed framework for collaborative learning-based task offloading in fog com-
puting environment

The SDN controller communicates with switches using the OpenFlow protocol,
and the communication between the controller and the application layer is achieved
through the SDN Northbound API13.

For the given data network, QoS criteria are associated with each link (i, j) ∈ l ,
including delay d(i, j), packet loss probability l(i, j), and available bandwidth c(i, j).
The combination of rules for packet loss probability is more complex, and therefore,
the logarithm of the success probability (which is itself multiplied several times) is
considered.

Consequently, the value of l′(i, j) is calculated according to relation (1).

l′(i, j) = log(1− l(i, j)). (1)

As a result, for each path p = {i, j, k, . . . , s, t}, the relations (2), (3), (4), (5) calculate

13 Application Programming Interface



620 M. Sharafi Hoveyda, M. Mollahoseini Ardakani, V. Ayatollahitafti

the values of delay, bandwidth, and packet loss probability [5].

Dp = d(i, j) + d(j, k) + · · ·+ d(s, t), (2)

Cp = min{c(i, j), d(j, k), . . . , d(s, t)}, (3)

Lp = l′(i, j) + l′(j, k) + · · ·+ l′(s, t), (4)

Lp = 1− exp(L′
p). (5)

Additionally, the variable xk(i, j) is a binary variable, and it is a bistate function as
described in relation (6).

xk(i, j) =

{
1,

0.
(6)

The value of relation (6) becomes equal to one when the routing process between
nodes i and j has been performed; otherwise, its value will be zero. Furthermore,
to calculate the delay and lost packets, relations (7) and (8) are utilized.

D(fk) =
∑
(i,j)∈l

l′(i, j)xk(i, j), (7)

L′(fk) =
∑
(i,j)∈l

l′(i, j)xk(i, j). (8)

According to the law of bandwidth combination, the capacity of a path through
which a stream passes is mathematically defined by relation (9).

C(fk) = min
(i,j)∈l

(c(i, j)xk(i, j)). (9)

Ultimately, relation (10) is used to calculate the bandwidth.

Cres(i, j) = c(i, j)−
∑
fk∈f

qwk xk(i, j). (10)

In order to optimize the allocation of shared resources, the satisfaction of both
users and service providers is taken into consideration. Initially, an assessment of
user satisfaction requires the calculation of the Signal-to-Noise Interference Ratio.
Additionally, service delay plays a crucial role in evaluating user satisfaction. These
two factors (Signal-to-Noise Interference Ratio14 and service delay) together define
user satisfaction.

In order to ensure accurate and complete data delivery, the SINR must exceed
a minimum threshold value, denoted as Snrmin. The SINR is defined as follows (11):

Snri,jk,l =
Pig

i,j
k,l∑

ui∈u,i′ ̸=i ρ
i′,j
k,l ρ

′
ih

i′,j
k,l + σ2

n

. (11)

14 SINR



SDN-Based Multi-Objective Optimization for Task Offloading 621

Definition Variable Variable

Cloud Service Provider CSj

Edge Nodes FN j

Users u

Bandwidth W j

Computational Resources Cj

Network Latency Dp

Probability Packet Loss Lp

Signal-to-Noise Interference Ratio Snrmin

Received Snr Ratio for user in uichannel fn
i
j Snri,jk,l

Transmission Power Pi

User uiand Edge Nodefnj
i Channel

gi,jk,lReward using Channel BW j
k

Binary Resource Allocation Variable ρi
′,j
k,l

Set of Bandwidth-CPU Cycle Pairs RP j

Interference Reward from Other
hi

′.j
k.lMobile Users’ Channels

Channel Noise σ2
n

Transmission Rate ri,jk,l
Service Delay ti,jk,l
Transmission Time Value tt
Processing Time Value tp
Reception Time Value tr
Data Size Di

Number of CPU Cycles DCi

Processing Rate ci,jk,l
Random Variable Between 0 and 1 δt
Proposed Price Oi

A parameter in megabits per second a

Delay Requirement Ti

Total Revenue for each service provision Revj
Channel Capacity qR
CPU Capacity qC
Maximum number of users that can be serviced qCP

Table 1. Variables



622 M. Sharafi Hoveyda, M. Mollahoseini Ardakani, V. Ayatollahitafti

The average reward received for confirming each transaction(gi,jk,l) is expressed as the

channel profit and the transmission rate from ui to fnj
l using channel Bj

k, subject
to the fulfillment of SINR requirements, as follows (12):

ri,jk,l = wj
k log(1 + Snri,jk,l). (12)

Furthermore, the service delay ui when the resource pair (wj
k, c

j
l ) is utilized will be

defined as follows, where a lower service delay corresponds to greater user satisfac-
tion (13):

ti,jk,l = tt + tp + tr =
Di

ri,jk,l
+

DCi

ci,jk,l
+ δt. (13)

In the context of service providers’ profits, one can consider a linear relationship
between profit and data size without introducing a fundamental flaw into the over-
all framework. Therefore, the proposed profit for each user can be defined as fol-
lows (14):

Oi = f(Di, Ti), (14)

where the function is chosen as (15):

Oi = a
Di

Ti

. (15)

The total revenue for each service provider is then obtained as (16):

Revj =
∑
ui∈u

ρi,jk,lOi. (16)

Profits essentially come from the revenue generated by CS offering services to users
through edge nodes.

The objective of this article is to increase the revenue of service providers, leading
to enhanced user satisfaction and reduced average delay. Therefore, the optimization



SDN-Based Multi-Objective Optimization for Task Offloading 623

problem and its constraints can be formulated as follows:

max(ρi,jk,l) : Revj =
∑
ui∈u

ρi,jk,lOi, (17)

s.t ∴ ρi,jk,lt
i,j
k,l ≤ Ti∀ui ∈ u, rpjk,l ∈ RP j, csj ∈ CS, (18)

ρi,jk,lSnr
i,j
k,l ≥ Snrmin, ∀ui ∈ u, rpjk,l ∈ RP j, csj ∈ CS, (19)∑

ui∈u,fnj
l∈FNj

ρi,jk,l ≤ qr, ∀wi
j ∈ W j, csj ∈ CS, (20)

∑
ui∈u,wj

l ∈wj

ρi,jk,l ≤ qc, ∀fni
j ∈ FN j, csj ∈ CS, (21)

∑
ui∈u,rpjk,l∈RP j

ρi,jk,l ≤ qcp, ∀csj ∈ CS, (22)

ρi,jk,l ∈ {1, 0}. (23)

Formula (17) represents the maximization of total revenue for each service provider.
(18) indicates the delay requirement for each user, and (19) defines the minimum
SINR requirement for each user. (20), (21) and (22) respectively satisfy the con-
straints of channel capacity, edge node, and service provider capacity.

4 PROBLEM SOLVING

Since each user carries information, we enable them to express their needs, such as
latency, data size, and processing time (noting that data size and processing time
are linearly related). This information is then sent to CS. In the next stage, a
suitable edge node is selected based on the user’s needs to appropriately allocate
processing and computational resources. The best edge node is selected through the
SDN network. Each round of FL consists of six stages:

1. Selection,

2. Configuration,

3. Local Update,

4. Local Aggregation,

5. Global Aggregation,

6. Reporting.

After selecting the optimal edge node, a general base model is stored in the central
edge node, and copies of this model are distributed to users’ devices. Then, the
models are trained based on locally generated data. In the next stage, the updated



624 M. Sharafi Hoveyda, M. Mollahoseini Ardakani, V. Ayatollahitafti

parameters from locally trained models are shared with the base general model on
the central server. When the central model is re-trained with new parameters, it is
shared again with users’ devices for the next iteration. With each cycle, the models
gather diverse information and improve while maintaining user privacy. Edge nodes
communicate with clients using a wireless channel interface, where the number of
clients is exceeds than the number of edge nodes (f < u).

Problem-solving involves the execution of two algorithms implemented in the
Python language.

In Algorithm 1: after obtaining the parameters of the initial model, clients begin
by dividing their local data into several batches of constant size. They then perform
SGD15 according to Equation (24) and calculate the average gradient (gk).

wt+1 = wt + α
∂L

∂wt

. (24)

At time step t, we want to update the weight/parameter w. Here, α represents the
learning rate (which is not constant and adjusts in accordance with the gradient
magnitude). ∂L

∂w
is the gradient of the loss function L (that needs to be minimized

with respect to w).
In each batch, the output from the lower layers (clients) and the corresponding

labels of the data will be sent to the edge server for data aggregation. To facilitate
local updates, mobile devices need to communicate with the edge server. Therefore,
the value and size of the batch during time steps (tbatch) will affect the communication
between clients and the edge server in the learning process on local data, as per
Equation (25).

tbatch =
Dk

Vbatch

. (25)

Here, Dk represents the amount of local data on clients, and Vbatch indicates the
batch size. When t becomes excessively large, it implies significant communication
between clients and the edge server, and the process of local updates is influenced
due to network instability, even though there is high bandwidth and low latency.
A small Vbatch increases the number of required local communications, while a large
Vbatch may affect the convergence of the model training.

After calculating the stochastic gradient (wt), the next step is to update the
model and send it towards the server, as shown in Equation (26).

wk
r+1 ← wk

r − ηgk. (26)

Algorithm 1: Federated Learning (SGD)
Input: Initial model (w)
Output: Updated initial model (wk+1)

1. Loop until clients exist

15 Stochastic Gradient Descent



SDN-Based Multi-Objective Optimization for Task Offloading 625

2. Select a set of clients (u) in each round for collaborative learning.

3. Clients receive model w from the server.

4. Calculate and average the stochastic gradient (using (24)).

5. Update the local model (using (26)).

6. Clients send the updated model to the server.

7. End of loop.

In Algorithm 2: After receiving the trained model from clients, the coordinator
server must determine whether FL should continue. This decision is made by testing
the trained model on the central server’s validation dataset. If the result is satis-
factory, there is no need for further iterations that involve additional computations.
Otherwise, the global coordinator server can repeat the entire process and distribute
the model parameters for the next rounds.

Algorithm 2: Global Aggregator
Input: Trained parameters from clients
Output: Final trained model

1. Loop until fog exists

2. Update client models: wk
t+1 ← wt

3. End of loop

4. Calculate the global model after training

wt+1 ←
K∑
k=1

1

k
wk

t+1

5. Send the final trained model to clients: wt+1

6. End.

5 EVALUATION

To establish a consistent experimental environment, we first introduce the simu-
lation environment and hardware used in the experiment. Python and MATLAB
programming languages are utilized for simulating and implementing the proposed
algorithm. The main sections of the simulation are as follows:

• Network architecture design,

• Definition of research variables,

• Performing the process of connecting research variables to the network architec-
ture.



626 M. Sharafi Hoveyda, M. Mollahoseini Ardakani, V. Ayatollahitafti

The hardware and defined conditions for simulating the experimental environment
have the following specifications:

• The simulation’s executing system CPU is a Core i7 processor with a frequency
up to 2.50 gigahertz,

• 8 gigabytes of RAM,

• Linux operating system.

We consider a network with CS = 1, serving as service providers, and FN = 5 edge
nodes randomly distributed throughout the network. Assume there are U = 100
users randomly distributed across the network.

In Figure 2, the distribution of the 4-layer network is illustrated; the figure is
divided into four equal parts (CS at the top, then the SDN network, followed by
edge nodes and users in the bottom layer).

Figure 2. Four-layer network

To compare the objective function, SDN is evaluated against three algorithms:
SA + GA, OLB-LBMM, and Round-Robin. In Figure 3, the profit of CS increases
with the increase in the number of IoT devices.

To evaluate the performance of the proposed method presented in this article,
we compare it with recent relevant works, specifically articles [29, 30] and [31]. In
the following, we introduce the evaluation parameters.

1. Impact of Client Mobility on Training Time: When a client is moving in the
edge server, factors such as the training phase and dataset can influence the



SDN-Based Multi-Objective Optimization for Task Offloading 627

Figure 3. Service profit

training time. In this experiment, the impact of generating 25% and 50% of the
required data (dataset) for training on a single device is illustrated in Figure 4
and Figure 5, depicting the training phases.

Figure 4. Training with 20% of the dataset

Figure 4 illustrates the effects of device mobility on the training time when 20%
of the dataset is used for training on a single device. The device movement is



628 M. Sharafi Hoveyda, M. Mollahoseini Ardakani, V. Ayatollahitafti

completed at 40%, 60%, 80%, and 100% of these training phases. Figure 4
clearly shows that SDN outperforms the other algorithms. As we move towards
the 50% training time interval, the training time reduces by up to 37% per
round. However, when moving with the datasets, at the 80% training time
where the training is approaching completion, the training time decreases by up
to 46% per round.

Figure 5. Training with 50% of the dataset

Figure 5 also illustrates the effects of device mobility on the training time when
50% of the dataset is used for training on a single device. The device move-
ment is completed at 40%, 60%, 80%, and 100% of these training phases.
Figure 5 indicates that the training time for devices is longer than that shown
in Figure 4. It is evident that using 50% of the dataset for training mobile
user devices, which is more stable and comparable, leads to more efficient re-
sults.

2. Impact of mobility on global accuracy: in this experiment, we examine the ac-
curacy of the global model when a system runs periodically between servers:
Figure 6 shows the benefit of service providers and the proposed algorithm.

Figure 7 depicts the training accuracy using entropy for a total of 100 different
rounds with the availability of 20% and 50% of the dataset for mobile users.

In Figure 7, it is evident that all these algorithms maintain accuracy, and the
reason for the high accuracy is obtaining the modeled parameters from the central
server and training in the edge agent. SDN-FL transfers data to the edge agent,



SDN-Based Multi-Objective Optimization for Task Offloading 629

Figure 6. Service providers’ profit

where the training takes place, and it maintains the same level of accuracy com-
pared to other methods. However, the training is not repeated at the edge agent.
Therefore, the training time is reduced for SDN-FL.

The performance of SDN-FL is influenced by the following factors:

1. Balanced and unbalanced data volumes,

2. Movement frequency of devices,

Figure 7. Entropy of training accuracy



630 M. Sharafi Hoveyda, M. Mollahoseini Ardakani, V. Ayatollahitafti

3. SDN selection of the best edge node,

4. Model training stages by FL.

The summarized results are as follows:

• Compared to the mentioned methods, the proposed SDN-FL method performs
better by reducing the training time for both balanced and unbalanced datasets.
In SDN-FL, when moving towards the 50% training interval, the training time
is reduced by up to 37% per round. However, when the datasets are nearing
completion within the 80% training interval, the training time decreases by 46%
per round.

• According to the entropy chart of SDN-FL, there are no losses in accuracy
function.

• In SDN-FL, data transfer between edge servers results in a 3-second overhead,
which is negligible compared to the device training time during restart in the
destination broker.

6 CONCLUSION

In light of the diverse and complex nature of IoT environments, traditional networks
often face significant challenges due to data overload, which can severely impact
network performance and service quality. The Software-Defined Networking (SDN)
approach, which enables the independent analysis of each flow and the formulation
of tailored proportional rules, has garnered considerable attention from researchers.
This capability allows for the effective utilization of SDN in heterogeneous IoT
settings, facilitating improved management and optimization of network resources.

From a holistic perspective, SDN provides a robust framework for load balancing
across the network. In conventional computer networks, the presence of uneven, non-
uniform, and randomly distributed input flows can result in load imbalance, leading
to various negative outcomes such as diminished Quality of Service (QoS), loss of
critical input flows, network overload, inefficient capacity utilization, instability, and
ultimately, a decline in overall network efficiency. Therefore, this article emphasizes
the importance of fair traffic distribution across different segments of the network
and the effective allocation of available resources, leveraging the strengths of SDN
architectures.

The integration of Federated Learning (FL) into this context introduces addi-
tional complexities, primarily characterized by two significant challenges: training
time and accuracy. These issues become increasingly critical when devices exhibit
mobility during the FL training process. The proposed SDN-FL framework specifi-
cally addresses these challenges, particularly in edge-based scenarios, marking a pi-
oneering effort to mitigate the impact of device mobility on FL training.

Evaluation of Benefits, Training Time, and Accuracy



SDN-Based Multi-Objective Optimization for Task Offloading 631

Benefits: The SDN-FL framework offers several advantages, including enhanced
resource allocation, improved load balancing, and more efficient traffic man-
agement. By allowing for the dynamic adjustment of network flows based on
real-time conditions, the framework ensures that resources are utilized optimally,
which is particularly crucial in heterogeneous IoT environments. The ability to
tailor network responses to specific conditions enhances the overall user experi-
ence and maintains service quality.

Training Time: The results obtained from the implementation of the SDN-FL al-
gorithm indicate a notable improvement in training time compared to existing
literature. This enhancement is largely due to the algorithm’s capability to nav-
igate a vast solution space more effectively, leveraging the principles of training
and learning without the need for extensive parameter tuning. The reduction in
training time not only accelerates the deployment of FL models but also makes
the system more responsive to real-time changes in the network environment.

Accuracy: In addition to improvements in training time, the SDN-FL framework
has demonstrated competitive accuracy levels in model performance. By effec-
tively managing the distribution of training data and adapting to the mobility
of devices, the framework ensures that the learning process remains robust and
reliable. This is crucial for maintaining high accuracy in predictions and classifi-
cations, which are essential for the successful application of FL in IoT scenarios.

In conclusion, the SDN-FL framework not only enhances training efficiency and
accuracy but also represents a significant step forward in addressing the unique
challenges posed by mobility in FL scenarios within IoT environments. Future
research should continue to explore the synergies between SDN and FL, aiming to
further optimize network performance and service delivery in increasingly dynamic
and heterogeneous settings.

REFERENCES

[1] Chiang, M.—Zhang, T.: Fog and IoT: An Overview of Research Opportuni-
ties. IEEE Internet of Things Journal, Vol. 3, 2016, No. 6, pp. 854–864, doi:
10.1109/JIOT.2016.2584538.

[2] Kelly, R.: Internet of Things Data to Top 1.6 Zettabytes by
2020. 2015, https://campustechnology.com/articles/2015/04/15/

internet-of-things-data-to-top-1-6-zettabytes-by-2020.aspx.

[3] Mao, Y.—You, C.—Zhang, J.—Huang, K.—Letaief, K.B.: A Survey
on Mobile Edge Computing: The Communication Perspective. IEEE Commu-
nications Surveys & Tutorials, Vol. 19, 2017, No. 4, pp. 2322–2358, doi:
10.1109/COMST.2017.2745201.

[4] Mach, P.—Becvar, Z.: Mobile Edge Computing: A Survey on Architecture and
Computation Offloading. IEEE Communications Surveys & Tutorials, Vol. 19, 2017,
No. 3, pp. 1628–1656, doi: 10.1109/COMST.2017.2682318.

https://doi.org/10.1109/JIOT.2016.2584538
https://campustechnology.com/articles/2015/04/15/internet-of-things-data-to-top-1-6-zettabytes-by-2020.aspx
https://campustechnology.com/articles/2015/04/15/internet-of-things-data-to-top-1-6-zettabytes-by-2020.aspx
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/COMST.2017.2682318


632 M. Sharafi Hoveyda, M. Mollahoseini Ardakani, V. Ayatollahitafti

[5] Bellavista, P.—Berrocal, J.—Corradi, A.—Das, S.K.—Foschini, L.—
Zanni, A.: A Survey on Fog Computing for the Internet of Things. Pervasive and
Mobile Computing, Vol. 52, 2019, pp. 71–79, doi: 10.1016/j.pmcj.2018.12.007.

[6] Singh, J.—Singh, P.—Hedabou, M.—Kumar, N.: An Efficient Machine
Learning-Based Resource Allocation Scheme for SDN-Enabled Fog Computing En-
vironment. IEEE Transactions on Vehicular Technology, Vol. 72, 2023, No. 6,
pp. 8004–8017, doi: 10.1109/TVT.2023.3242585.

[7] Sood, K.—Yu, S.—Xiang, Y.: Software-Defined Wireless Networking Opportu-
nities and Challenges for Internet-of-Things: A Review. IEEE Internet of Things
Journal, Vol. 3, 2016, No. 4, pp. 453–463, doi: 10.1109/JIOT.2015.2480421.

[8] Muts, P.—Nowak, I.—Hendrix, E.M.T.: The Decomposition-Based Outer Ap-
proximation Algorithm for Convex Mixed-Integer Nonlinear Programming. Journal
of Global Optimization, Vol. 77, 2020, No. 1, pp. 75–96, doi: 10.1007/s10898-020-
00888-x.

[9] Liang, P. P.—Liu, T.—Ziyin, L.—Allen, N.B.—Auerbach, R. P.—
Brent, D.—Salakhutdinov, R.—Morency, L. P.: Think Locally, Act Glob-
ally: Federated Learning with Local and Global Representations. CoRR, 2020, doi:
10.48550/arXiv.2001.01523.

[10] Zhuo, H.H.—Feng, W.—Lin, Y.—Xu, Q.—Yang, Q.: Federated Deep Rein-
forcement Learning. CoRR, 2019, doi: 10.48550/arXiv.1901.08277.

[11] Yu, H.—Liu, Z.—Liu, Y.—Chen, T.—Cong, M.—Weng, X.—Niyato, D.—
Yang, Q.: A Fairness-Aware Incentive Scheme for Federated Learning. Proceed-
ings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES ’20), 2020,
pp. 393–399, doi: 10.1145/3375627.3375840.

[12] Truex, S.—Baracaldo, N.—Anwar, A.—Steinke, T.—Ludwig, H.—
Zhang, R.—Zhou, Y.: A Hybrid Approach to Privacy-Preserving Federated Learn-
ing. Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security
(AISec ’19), 2019, pp. 1–11, doi: 10.1145/3338501.3357370.

[13] Süzen, A.A.—Şimşek, M.A.: A Novel Approach to Machine Learning Application
to Protect Privacy Data in Healthcare: Federated Learning. NamIk Kemal Medical
Journal, Vol. 8, 2020, No. 1, pp. 22–30, doi: 10.37696/nkmj.660762.

[14] Lin, S.—Yang, G.—Zhang, J.: Real-Time Edge Intelligence in the Making:
A Collaborative Learning Framework via Federated Meta-Learning. CoRR, 2020,
doi: 10.48550/arXiv.2001.03229.

[15] Pandey, S. R.—Tran, N.H.—Bennis, M.—Tun, Y.K.—Manzoor, A.—
Hong, C. S.: A Crowdsourcing Framework for On-Device Federated Learning. IEEE
Transactions on Wireless Communications, Vol. 19, 2020, No. 5, pp. 3241–3256, doi:
10.1109/TWC.2020.2971981.

[16] Allaoui, T.—Gasmi, K.—Ezzedine, T.: Reinforcement Learning Based Task
Offloading of IoT Applications in Fog Computing: Algorithms and Optimiza-
tion Techniques. Cluster Computing, Vol. 27, 2024, No. 8, pp. 10299–10324, doi:
10.1007/s10586-024-04518-z.

[17] Dang, T.N.—Hong, C. S.: A Distributed ADMM Approach for Data Offloading
in Fog Computing. Korean Information Science Society 2016 Winter Conference Pro-

https://doi.org/10.1016/j.pmcj.2018.12.007
https://doi.org/10.1109/TVT.2023.3242585
https://doi.org/10.1109/JIOT.2015.2480421
https://doi.org/10.1007/s10898-020-00888-x
https://doi.org/10.1007/s10898-020-00888-x
https://doi.org/10.48550/arXiv.2001.01523
https://doi.org/10.48550/arXiv.1901.08277
https://doi.org/10.1145/3375627.3375840
https://doi.org/10.1145/3338501.3357370
https://doi.org/10.37696/nkmj.660762
https://doi.org/10.48550/arXiv.2001.03229
https://doi.org/10.1109/TWC.2020.2971981
https://doi.org/10.1007/s10586-024-04518-z


SDN-Based Multi-Objective Optimization for Task Offloading 633

ceedings, 2016, pp. 1057–1059.

[18] Fricker, C.—Guillemin, F.—Robert, P.—Thompson, G.: Analysis of an Of-
floading Scheme for Data Centers in the Framework of Fog Computing. ACM Transac-
tions on Modeling and Performance Evaluation of Computing Systems (TOMPECS),
Vol. 1, 2016, No. 4, Art. No. 16, doi: 10.1145/2950047.

[19] Ding, Y.—Li, K.—Liu, C.—Li, K.: A Potential Game Theoretic Approach
to Computation Offloading Strategy Optimization in End-Edge-Cloud Computing.
IEEE Transactions on Parallel and Distributed Systems, Vol. 33, 2022, No. 6,
pp. 1503–1519, doi: 10.1109/TPDS.2021.3112604.

[20] Zhu, Q.—Si, B.—Yang, F.—Ma, Y.: Task Offloading Decision in Fog Com-
puting System. China Communications, Vol. 14, 2017, No. 11, pp. 59–68, doi:
10.1109/CC.2017.8233651.

[21] Liu, L.—Chang, Z.—Guo, X.: Socially-Aware Dynamic Computation Offloading
Scheme for Fog Computing System with Energy Harvesting Devices. IEEE Internet of
Things Journal, Vol. 5, 2018, No. 3, pp. 1869–1879, doi: 10.1109/JIOT.2018.2816682.

[22] Sulistyo, M.A.—Setiawan, D.: Deep Reinforcement Learning-Based Algorithm
for Dynamic Resource Allocation in Edge Computing. ALCOM: Journal of Algorithm
and Computing, Vol. 1, 2025, No. 1, pp. 13–22, doi: 10.63846/fb7zns45.

[23] Phan, L.A.—Nguyen, D.T.—Lee, M.—Park, D.H.—Kim, T.: Dynamic Fog-
to-Fog Offloading in SDN-Based Fog Computing Systems. Future Generation Com-
puter Systems, Vol. 117, 2021, pp. 486–497, doi: 10.1016/j.future.2020.12.021.

[24] Luo, J.—Qian, Q.—Yin, L.—Qiao, Y.: A Game-Theoretical Approach for Task
Offloading in Edge Computing. 2020 16th International Conference on Mobility, Sens-
ing and Networking (MSN), 2020, pp. 756–761, doi: 10.1109/MSN50589.2020.00129.

[25] Baek, J.—Kaddoum, G.: Heterogeneous Task Offloading and Resource Alloca-
tions via Deep Recurrent Reinforcement Learning in Partial Observable Multi-Fog
Networks. IEEE Internet of Things Journal, Vol. 8, 2021, No. 2, pp. 1041–1056, doi:
10.1109/JIOT.2020.3009540.

[26] Zhang, T.—Gao, L.—He, C.—Zhang, M.—Krishnamachari, B.—
Avestimehr, A. S.: Federated Learning for the Internet of Things: Applications,
Challenges, and Opportunities. IEEE Internet of Things Magazine, Vol. 5, 2022,
No. 1, pp. 24–29, doi: 10.1109/IOTM.004.2100182.

[27] Kim, H.—Park, J.—Bennis, M.—Kim, S. L.: Blockchained on-Device Federated
Learning. IEEE Communications Letters, Vol. 24, 2020, No. 6, pp. 1279–1283, doi:
10.1109/LCOMM.2019.2921755.

[28] Abad, M. S.H.—Ozfatura, E.—Gunduz, D.—Ercetin, O.: Hierarchical Feder-
ated Learning ACROSS Heterogeneous Cellular Networks. ICASSP 2020 – 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020,
pp. 8866–8870, doi: 10.1109/ICASSP40776.2020.9054634.

[29] Ren, J.—Wang, H.—Hou, T.—Zheng, S.—Tang, C.: Federated Learning-
Based Computation Offloading Optimization in Edge Computing-Supported Inter-
net of Things. IEEE Access, Vol. 7, 2019, pp. 69194–69201, doi: 10.1109/AC-
CESS.2019.2919736.

[30] Ye, Y.—Li, S.—Liu, F.—Tang, Y.—Hu, W.: EdgeFed: Optimized Federated

https://doi.org/10.1145/2950047
https://doi.org/10.1109/TPDS.2021.3112604
https://doi.org/10.1109/CC.2017.8233651
https://doi.org/10.1109/JIOT.2018.2816682
https://doi.org/10.63846/fb7zns45
https://doi.org/10.1016/j.future.2020.12.021
https://doi.org/10.1109/MSN50589.2020.00129
https://doi.org/10.1109/JIOT.2020.3009540
https://doi.org/10.1109/IOTM.004.2100182
https://doi.org/10.1109/LCOMM.2019.2921755
https://doi.org/10.1109/ICASSP40776.2020.9054634
https://doi.org/10.1109/ACCESS.2019.2919736
https://doi.org/10.1109/ACCESS.2019.2919736


634 M. Sharafi Hoveyda, M. Mollahoseini Ardakani, V. Ayatollahitafti

Learning Based on Edge Computing. IEEE Access, Vol. 8, 2020, pp. 209191–209198,
doi: 10.1109/ACCESS.2020.3038287.

[31] Saha, R.—Misra, S.—Deb, P.K.: FogFL: Fog Assisted Federated Learning for
Resource-Constrained IoT Devices. IEEE Internet of Things Journal, Vol. 8, 2021,
No. 10, pp. 8456–8463, doi: 10.1109/JIOT.2020.3046509.

Mohammadreza Sharafi Hoveyda is a Ph.D. student in
computer software at the Science and Research Branch of Is-
lamic Azad University in Maybod, where he began his studies in
2016. He is currently a student in the Department of Computer
Engineering at the Maybod Branch of Islamic Azad University,
Maybod, Iran. His research interests include interoperability,
cloud computing, fog computing, programming C#.

Mohammadreza Mollahoseini Ardakani received his
Ph.D. degree in computer software from the Science and Re-
search Branch, Islamic Azad University, Tehran in 2018. He is
Assistant Professor at the Department of Computer Engineer-
ing, Maybod Branch, Islamic Azad University, Maybod, Iran.
His research interests are interoperability, databases, cloud com-
puting, fog computing, and service oriented architecture.

Vahid Ayatollahitafti received his Ph.D. in computer sci-
ence from the Universiti Teknologi Malaysia and his M.Sc. in
computer engineering from the Islamic Azad University, Re-
search and Science branch, Iran. He is an Assistant Professor in
the Faculty of Computing, Taft Branch, Islamic Azad Univer-
sity, Iran. His research interests include computer networks and
Internet of Things.

https://doi.org/10.1109/ACCESS.2020.3038287
https://doi.org/10.1109/JIOT.2020.3046509

