
Computing and Informatics, Vol. 44, 2025, 580–611, doi: 10.31577/cai 2025 3 580

PERSONALIZED FEDERATED LEARNING BASED ON
HYPERNETWORKS AND ATTENTION MECHANISM
ENSEMBLES FOR INTERNET OF THINGS

Lu Liu, Huiqi Zhao, Fang Fan

College of Intelligent Equipment
Shandong University of Science and Technology
271000 Taian, China
e-mail: {liulu, zhaohq, fangfan}@sdust.edu.cn

Sibo Qiao∗

School of Software
Tiangong University
300387 Tianjin, China
e-mail: siboqiao@126.com

Zhihan Lyu

Department of Game Design, Faculty of Arts
Uppsala University
75236 Uppsala, Sweden
e-mail: lvzhihan@gmail.com

Abstract. As the demand for data privacy protection continues to grow and the
concept of collaborative modeling gains traction, federated learning has emerged
as a pivotal distributed learning paradigm in the Internet of Things (IoT) do-
main. However, the client data held by different institutions often varies signifi-
cantly in sources and characteristics, which can hinder the efficiency of federated
learning model training and increase the risk of personal privacy breaches. To

∗ Corresponding author

https://doi.org/10.31577/cai_2025_3_580


Personalized FL Based on Hypernetworks and Attention Mechanisms for IoT 581

address the challenges of model accuracy degradation and privacy exposure when
federated learning is applied to multi-source heterogeneous data, we propose a per-
sonalized federated learning strategy that integrates hypernetworks with attention
mechanisms. This strategy involves transforming labeled data at the source to
protect personal privacy while employing hypernetworks and Transformer-based
mechanisms to focus on the personalized information of clients from various insti-
tutions. Our proposed approach supports handling heterogeneous data, thereby
better meeting the personalized needs of different institutions. Experimental re-
sults demonstrate that this framework not only effectively safeguards data privacy
but also significantly enhances the performance and generalization capability of
federated learning on heterogeneous data. This research offers a novel perspective
for developing more adaptable personalized federated learning models, facilitating
cross-institutional collaborative research, and providing an innovative model train-
ing solution for various IoT devices, balancing the dual requirements of data privacy
protection and multi-institutional data sharing.

Keywords: Data privacy, data protection, hypernetwork, personalized federated
learning, transformer
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1 INTRODUCTION

Federated learning has emerged in distributed learning with the increasing awareness
of users to protect their personal privacy. As an emerging distributed machine learn-
ing paradigm, the core advantage of federated learning lies in its ability to utilize
data distributed across different clients for learning while protecting data privacy,
which provides a new approach for systems to protect clients’ privacy and data se-
curity. However, existing federated learning approaches are often limited by the lack
of data quality and quantity when dealing with huge systems, especially the per-
formance degradation problem when dealing with non-independent and identically
distributed data, and traditional federated learning models face some challenges
when dealing with personalized information. In order to overcome the problem that
global models are not applicable to all clients due to data heterogeneity, personalized
federated learning has emerged.

In federated learning environments, when clients have non-independent iden-
tically distributed (non-IID) data, traditional federated learning methods lead to
high communication overhead and low training efficiency [1]. Furthermore, the
vastness, complexity, and variability of heterogeneous data present significant chal-
lenges to machine learning, particularly when such data includes sensitive personal
information [2]. Existing distributed semi-supervised learning (DSSL) algorithms
have challenges in dealing with data uncertainty and computational communication
overhead [3]. The problem of non-independent homogeneous distribution of data
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is a thorny problem that needs to be solved for federated learning applied in the
medical field [4], now many scholars have noticed this aspect and there have been
many approaches to solve the problem of different distribution of client data. In
recent times, numerous researchers have focused on this issue, and various methods
have been developed to address the challenge of differing client data distributions.
For example, with the development of Transformer, many scholars have noticed that
Transformer can use the attention mechanism to learn the global interactions of the
inputs during the training of the client model, which has better performance on
highly heterogeneous data features [5].

Many studies have also shown that privacy issues in federated learning also face
serious threats, where an attacker can access the client’s training data based on the
stolen model parameters [6]. There are also multiple ways to infer users’ private
information in federated learning environments, including data leakage vulnerabili-
ties [7] and membership inference [8]. Attackers can use the benign data obtained
from inference to train the generation of adversarial network models [9], which gen-
erate new malicious data to escape security identification, and then go on to attack
operations.

Recently, privacy-preserving methods for data based on personalized federated
learning have been evolving, where data containing clients’ private data are retained
in the local client for model training, and replaced by the exchange of model param-
eters for interactions between clients. Through the personalized federated learning
framework with privacy preserving function, on the one hand, it can realize the
function of protecting privacy data, and on the other hand, it can also solve the
problem of degradation of the accuracy of federated learning model due to the dif-
ferent characteristics of data from different system devices, as shown in Figure 1.

To address the above problem, we propose a personalized federated learning
framework that combines hypernetworks and Transformer models. Our approach
improves the performance and adaptability of federated learning while preserving
data privacy. Our main contributions in this paper are as follows:

1. We propose a privacy-preserving mechanism based on data and label transfor-
mation, where local user data and labels are transformed before model training
in the local client, which achieves privacy preservation from the data source
while ensuring the availability of local data;

2. We propose a personalized federated learning framework (pFedHT) based on
hypernetworks and attention mechanisms, which introduces a hypernetwork ar-
chitecture on the server side to dynamically generate personalized weights from
the attention layer for each client. By using the hypernetwork to generate
unique embedding vectors customized for each client’s attention mechanism,
the performance degradation problem in facing non-independent and identically
distributed data models is solved by capturing the personalized data features
among clients more effectively;

3. In this paper, we experimentally analyze the impact of different levels of data
heterogeneity on the performance of the algorithms and validate the effectiveness
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Figure 1. Schematic diagram of personalized federated learning with privacy protection
mechanism. Data from different sources are processed by the privacy-preserving mecha-
nism and then the personalized federated learning framework achieves the protection of
user privacy data and solves the problem of heterogeneity of data.

of this paper’s framework on a variety of non-independent and identically dis-
tributed experimental datasets. Comparison experiments with a large number
of mainstream federated learning algorithms show that the framework proposed
in this paper has better performance in the face of data heterogeneity while fully
protecting user data privacy.

Next, the article will be presented according to the following sections, the second
section is part of the previous studies on federated learning, hypernetworks, and
Transformer; the third section presents an overview of the framework proposed
in this paper, along with the details of its implementation process. The fourth
section covers the dataset setup and provides an analysis of the experimental results.
The final section offers a summary of our findings and discusses future research
directions. Additionally, we will evaluate our model using several public datasets and
perform a comparison with existing federated learning techniques to demonstrate
the effectiveness and advantages of our approach.

2 RELATED WORK

2.1 Federated Learning

In the face of growing data and increasing user demands for privacy protection, fed-
erated learning, a new distributed paradigm, is gradually becoming the method of
choice. And with the era of increasing data categories, the problem of data hetero-
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Figure 2. Network architecture diagram. Clients are trained with personalized federated
learning models using personalized weights generated by the Hypernetwork after a privacy-
preserving mechanism based on data and label transformation.

geneity is gradually being realized. In many recent researches, many personalized
federated learning parties have been proposed to solve the heterogeneity problem
caused by data heterogeneity. There are mainly solutions for both data and model
perspectives.

2.1.1 Data-Based Approaches

In their article, Zhao et al. [10] examine the effect of Non-IID data on Federated
Learning and suggest a strategy to enhance training by creating a globally shared
data subset. This approach reduces communication costs by utilizing local data
for training, yet it still encounters challenges such as the potential decline in model
accuracy due to Non-IID data and the need to address the issue of weight divergence.
In article [11], Wu et al. proposed a cloud edge-based personalized federated learning
framework for home health monitoring and used the Generative Convolutional Auto
Encoder (GCAE) technique to generate category-balanced datasets to address the
imbalanced and non-IID distributions of user health monitoring data. Most of the
above approaches are implemented by means of data augmentation, but in federated
learning scenarios, data augmentation usually requires some form of data sharing or
construction of proxy datasets, which makes the research very challenging.

The other approach is to select the clients and thus achieve an even distribution
of data. Li et al. [12] proposed an adaptive FL framework FedSAE in their paper,
which automatically adapts the training task based on the device’s history of training
tasks and actively selects participants to mitigate performance degradation. Zheng
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et al. [13] in their paper use a tier-based FL system to solve the personalization
problem by grouping clients into different tiers based on the training performance
and selecting clients from the same tier in each round of training. This approach
significantly improves the training performance by reducing the “procrastinator”
problem due to resource and data heterogeneity and maintains the test accuracy
comparable to conventional FL through an adaptive tier selection strategy, but it
does not focus on dynamic tier management and client selection. Both of these
approaches depend on the client’s historical training data to forecast future training
behavior.

Figure 3. Framework flowchart. Blue is the client’s privacy protection process, gray is the
acquisition of personalized parameters under the Hypernetwork.
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2.1.2 Model-Based Approaches

The main approach for the model side is to restrict the architecture of the models
to ensure that the server is aligned when aggregating the models. The article [14]
proposes an algorithm for FedMD that combines the ideas of model distillation and
transfer learning to allow different models to exchange knowledge by sharing output
category scores without the need to share data or model architectures and utilizes
a large public dataset to train models in order to address the problem of small pri-
vate dataset sizes. In the article, Arivazhagan et al. [15] proposed a new federated
learning framework named FedPer. The framework addresses the statistical het-
erogeneity of data by dividing the deep neural network model into a shared base
layer and a personalized layer. The base layer is globally updated through feder-
ated averaging, while the personalization layer is trained locally. McMahan et al.
proposed the Federated Averaging Algorithm (FedAvg) [16] in 2016, which is a fed-
erated learning method based on iterative model averaging to reduce communication
costs by computing updates locally at the client and then aggregating them by the
server. However, the algorithm needs to fully utilize the local data of each client
to ensure the quality of the global model. Li et al. [17] in their paper better dealt
with system heterogeneity by introducing a proximal term to the FedAvg method
that allows each device to perform a different amount of local work depending on its
system resources and named the method FedProx. The method provides theoretical
convergence guarantees and has been shown in practice to have more stable con-
vergence behavior than FedAvg when dealing with system heterogeneity. Chen et
al. [18] proposed a federated learning framework called FED-ROD, which explicitly
decouples the model’s dual responsibilities by using two prediction tasks: one for
the generic prediction task and the other for the personalized prediction task, and
which is able to maintain the performance of the global model while significantly
improving the performance of the personalized model, and achieves fast adaptation
to new clients through the use of hypernetworks, but requires the user to specify
complex training strategies.

2.2 Federated Learning Privacy Protection Study

Federated learning was proposed with the intention of solving the privacy protection
problem of users, but recent studies have shown that updating the model with
some of the user data embedded in the model can also lead to privacy leakage
problems, and the sharing of the model and gradient during the training process
can also expose the federated learning model to inference attacks, such as attribute
inference attacks [19] and model inversion attacks [20]. Sun et al. [21] consider
a scenario where the federated learning server is malicious, aiming to reconstruct the
client’s private data from the device’s model parameters. The experiments focus on
the observation that class data representations of each device’s data are embedded
in shared local model updates, and such data representations can be inferred to
perform model inversion attacks. The authors provide an analysis to reveal how
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data representations are embedded in model updates and propose an algorithm
to infer class data representations to perform model inversion attacks. However,
experimental studies have shown that the correlation between data representations
inferred using the algorithm and real data representations during local training is
as high as 0.99, which clearly poses a serious privacy concern for systems under the
federated learning framework.

Geiping et al. [20] assume that the attacker is fully aware of the model archi-
tecture of federated learning and then uses an exact extraction attack to perfectly
reconstruct individual training samples, but this approach is not common in con-
crete life scenarios. They propose an attack in their paper to reconstruct the user’s
data by utilizing the information in the model gradient. The authors show that
high resolution input images can be recovered from gradient information even in
deep and non-smooth network architectures. A new data reconstruction attack is
demonstrated in article [22] that allows an active and dishonest server-side to effi-
ciently extract user data from received gradients. The attacker amplifies the data
leakage in the model gradient by introducing “trap weights” in the shared model
weights sent to the user without significantly changing the model performance.

Nowadays, the main methods to defend against attacks in federated learning are
using differential privacy and gradient perturbation. Differential privacy protects
data privacy by introducing controlled noise or randomness in the data processing.
The introduction of noise makes the query results ambiguous and uncertain, thus
preventing the attacker from accurately reconstructing the original data through
multiple query results. The gradient perturbation is also a differential privacy tech-
nique, which will mainly modify the gradient before updating the gradient to the
server to protect the gradient information during the training of the model, so as
to defend against attackers, and thus ensure that the personal information in the
system will not be disclosed.

2.3 Hypernetwork

Hypernetworks, introduced by Ha et al. in 2016 [23], are a deep learning architecture
consisting of two interconnected networks: a primary network and a secondary hy-
pernetwork. The main function of the hypernetwork is to generate the weights of the
main network, and this design allows the model to dynamically adapt its behavior
to different tasks or data. Its structure is also well suited to be configured in a fed-
erated learning framework, especially when dealing with tasks that require a large
amount of personalization, where the distribution of data may be different across
participants, the hypernetwork is able to generate model weights for each partici-
pant, which in turn helps the global model to better adapt to this data heterogeneity.
Shamsian et al. [24], on the other hand, proposed in their paper a personalization
using hypernetwork method named pFedHN. The method uses a hypernetwork to
generate a personalized model for each client, and then the hypernetwork outputs
model weights for each client through an embedding vector as input. Ma et al. [25]
proposed a new federated learning framework pFedLA in 2022, which identifies the



588 L. Liu, H. Zhao, F. Fan, S. Qiao, Z. Lyu

contributing factors of each layer among different clients by introducing a specialized
hypernetwork for each client at the server side and updating the aggregated weights
of the layers. This leads to more accurate model personalization.

2.4 Transformer

Transformer is a deep learning model based on the self-attention mechanism, while
the attention mechanism can directly establish dependencies between arbitrary po-
sitions within a sequence, helping the model to better understand the contextual
relationships in the sequence, and since its operation does not depend on the posi-
tional information in the sequence data, Transformer can process the data in parallel,
which greatly improves the training efficiency. In the scenario of data heterogeneity,
the data distribution on each device participating in FL may be different, which
leads to the model facing convergence difficulties and performance degradation dur-
ing the training process. In the article [5], the authors employ the Transformer
architecture to address the issue of catastrophic forgetting in Federated Learning
on heterogeneous data. They leverage the Transformer’s robustness to data distri-
bution shifts to mitigate this problem. The article also found that Transformer is
actually more suitable for data heterogeneous scenarios than CNN. The FedPerfix
algorithm [26] utilizes plugins to deliver information from the aggregation model to
the local client for personalization, but the introduction of plugins also brings new
requirements for the users.

3 OUR PROPOSED FRAMEWORK

3.1 Framework Design

In this section, we present the design of the pFedHT framework, as shown in the net-
work architecture diagram in Figure 2. In order to solve the problem of degradation
of model accuracy in federated learning in the face of heterogeneous data, we design
a personalized federated learning framework based on the combination of hypernet-
work and attention mechanism. Personalized federated learning, by design, allows
clients to have a model tailored to their unique data characteristics, which is crucial
for handling the diversity in data sources in IoT applications. This approach also
prevents the “one-size-fits-all” issue of traditional federated models, where a single
global model may perform poorly across clients due to data variation. And hyper-
networks allow the model to adapt dynamically to different clients by generating
personalized model weights, improving the model’s ability to generalize across var-
ied datasets. The attention mechanism, specifically Transformer-based mechanisms,
is employed to focus on the most relevant and personalized aspects of the client’s
data, thus reducing noise and ensuring privacy. Together, these mechanisms en-
able better performance and privacy preservation compared to standard federated
learning models. Therefore we chose to use that method to solve the problem.
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The framework has three main parts: the client, the server, and the hyper-
network set on the server side. The client mainly includes a large number of IoT
devices, which collect a large amount of data from clients and then train the model
based on the model downloaded from the server. The server mainly initializes the
global model and then receives the trained model parameters from different clients
and aggregates them to get a new global model. The hypernetwork, on the other
hand, dynamically generates the personalized weights of the self-attention layer for
each client, so that the model can effectively capture the personalized data charac-
teristics of the clients in each system. The flowchart is shown in Figure 3, which
mainly includes the two processes of client privacy protection and acquisition of
personalized parameters under the hypernetwork.

3.2 Privacy Protection Mechanisms Based on Data
and Label Transformation

Algorithm 1 Data Conversion Pseudocode

Input: Raw data and labels: (X, x), Weights: (ω, θ), Clients: N ;
Output: Transformed data and labels (X ′, x′) and associated gradients
1: Stochastic initialization
2: X ′ → U(0, 1)
3: x′ → U(0, 1)
4: Calculate the raw gradient
5:

∂F (θ,X, x)

∂θ
→ gradient(X, x)

6: for i = 1 to N do
7: Calculation of “virtual” gradients
8:

∂F (θ,X ′, x′)

∂θ
→ gradient(X ′, x′)

9: argminX′,x′ReLU (h− ||X ′ −X||2) + |x′
min − x′|

10: L2 metrics constrain transformation

11: argminX′,x′ReLU (|
∣∣∣∣gradient(X ′, x′)−
gradient(X, x)

∣∣∣∣ |2 − ε)

12: end for
13: return X ′, x′

Many recent studies have shown that attackers can use benign data of inference
to train generative adversarial network models, and then generate new malicious
traffic to carry out attack operations, so federated learning also faces serious pri-
vacy problems. In the face of this problem, we will operate on the data and la-
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bels trained by the client model in the user system to ensure the privacy of user
data.

Based on the characteristics of the extraction attack, we assume that at least
one layer during model training contains weights and biases, then the output of this
layer can be written as wTx + b, where (w, b) are the corresponding weights and
biases of the layer.

According to the attack characteristics, the attacker will steal the data to get
the privacy data through the stolen parameters which depends on the absolute value
of the stolen data, so in this paper we use the L2 distance metric to constrain the
distance between the original data and the transformed data and use the ReLU (x)
activation function to ensure that the distance between the original data and the
transformed data is not infinitely far. Therefore we use (1) to constrain the original
and transformed data.

argminX′ReLU (h− ||X ′ −X||2). (1)

Furthermore, considering that the reconstructed label is different from the recon-
structed data, the reconstructed label does not rely on the data label of the original
label, so unlike constraining the maximum distance between the original data and
the transformed data, increasing the distance does not guarantee the privacy of the
label. Therefore we first find the true label i in x, and then minimize x′, so that
x′
min is as close to x′

i as possible, so that the attacker is highly likely to reconstruct
any index except i. The process is as in (2).

argminx′|x′
min − x′

i|, (2)

where X is the original data, x is the original label, X ′ is the virtual data, x′ is the
virtual label, h is the upper limit of the distance between the original data and the
virtual data, and x′

min is the virtual label minimum.
In summary, from (1) and (2) we summarize the process of transforming the

user’s data and labels as follows:

argminX′,x′ReLU (h− ||X ′ −X||2) + |x′
min − x′|. (3)

And due to the updating method of neural network, the solution of gradient in
the back propagation process will produce the phenomenon of sigmoid derivative
and parameter multiplication. The maximum value of the sigmoid derivative is 0.25,
and the weights are generally between 0 and 1 initially, so the product is less than 1,
so that there will be more than one value less than 1 multiplied together, which will
lead to the gradient close to the input layer tends to be 0. In this case, the data and
label conversion will fall into a local optimum, and the obtained “virtual” gradient
may tend to disappear, which will affect the input layer. In this case, the data
and label transformation will fall into a local optimal situation, and the obtained
“virtual” gradient may tend to disappear, which will affect the convergence of the
global model. The derivative of ReLU (x) activation function is always equal to 1 in
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the positive range, so we use ReLU (x) activation function to solve the problem of
vanishing gradient. We also set a constant value C during the training process to
determine the “virtual” gradient tends to 0 when the conversion is terminated early.

Based on the output of the inclusion of the weight and bias layers, we can
introduce the following equation:

∇w = X∇b, (4)

∇w′ = X ′∇b′. (5)

And after getting the transformed data and label (X ′, x′), we use method to
protect the user data according to the following equation:

||X ′ −X||2 ≥
2(||∇w′ −∇w||2 − ||∇b′ −∇b||2)

2M + ||∇b′ −∇b||2
, (6)

where M is an upper bound on the number of paradigms that limit the gradient
with respect to the deviation b.

In order to ensure that the data contains as little information about the original
data as possible and to augment the data with GAN, we chose to constrain the
“virtual” gradients obtained using the transformed data and the labels, in order
to keep the distance between the original gradient and the “virtual” gradient. The
purpose is to keep the original gradient and the “virtual” gradient always constrained
by the L2 distance. Then, to convert the above constrained problem into a linear
optimization problem, we obtain the following expression:

argminX′,x′ReLU

(∣∣∣∣∣∣∣∣gradient(X ′, x′)−
gradient(X, x)

∣∣∣∣∣∣∣∣
2

− ε

)
. (7)

gradient(X ′, x′) and gradient(X, x) represent the “virtual” gradient and the original
gradient, respectively, and ε represents the distance constraint between the “virtual”
gradient and the original gradient. Finally, we combine (3) and (7) to transform the
original data and labels, in order to make the transformed data not similar to the
original data to achieve the privacy protection of client user data and to ensure that
the “virtual” gradient conforms to the model training process in federated learning,
the transformation process is as follows:

argminX′,x′ReLU (h− ||X ′ −X||2) + |x′
min − x′|

+ ReLU (||gradient(X ′, x′)− gradient(X, x)||2 − ε). (8)

The data and label conversion process is shown in Algorithm 1.
The client gets the transformed “virtual” data X ′ and the optimal training strat-

egy, and after going through the local DNN network generator, it gets the generated
data XL. Then the “virtual” data X ′ and the generated data XL are inputted into
the CNN network using the CNN network’s discriminator classification. The gener-
ator and the discriminator play a game where the generator continuously optimizes
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the generated data in an attempt to get the discriminator to recognize the generated
data as real, while the discriminator continuously optimizes itself to recognize the
generated data. The generator and the discriminator are balanced to obtain a local
generator model GL and a local discriminator model DL. The local generator model
parameters are updated according to (9).

Adam

((
1

m

m∑
i=1

∆ωL
i + n

)
, ωi, αg

)
→ ωL

i , (9)

where ωL
i is the local generator model parameter and αg is the generator learning

rate. The local discriminator model parameters are updated according to (10).

Adam

(
∆θ

1

m

m∑
i=1

−D(Gi

)
, θi, αd) → θLi , (10)

where Gi is the current round generator model, θLi is the local discriminator model
parameters, and αd is the discriminator learning rate.

3.3 Personalized Federated Learning Based on Hypernetworks
and Attention Mechanism Ensembles for Internet of Things

Different client data often come from different data sources or have different distri-
butions, which also indicates that the uniform model pursued by federated learning
may not be suitable for all clients. Therefore, we use Transformer to capture the
global dependencies of client data through the self-attention mechanism and extract
the personalized features among different clients. In real scenarios, the emergence
of new users also tests the model’s generalization ability, and we use the hyper-
network to generate personalized self-attention weights for the client’s Transformer,
which not only enables the model to better adapt to the local data features, but
also enhances the model’s generalization ability to new users.

The hypernetwork processes the input embedding vectors through its internal
fully connected layer to generate the corresponding projection matrix (W i), which
includes the projection parameters of Q, K, and V used for the self-attention layer,
expressed as (11):

W i =
[
W i

Q,W
i
K ,W

i
V

]
. (11)

This framework uses the attention mechanism for personalized features. The
input image is first segmented into sequences at the time of processing with and then
a transformation operation is performed on the sequences to convert the sequences
into a matrix H. Where Q, K, and V in the attention mechanism are denoted as
follows:

Q = HWQ, K = HWK , V = HWV . (12)

W = [WQ,WK ,WV ] then represents the projection matrix of Q, K, and V in the
hypernetwork.
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The generated projection matrix is used to update the self-attention layer of
each client. Specifically, the original query, key and value matrices (HQ, HK , HV )
are generated by multiplying them with the projection matrix W i to generate per-
sonalized queries, keys and values, and these personalized outputs are subsequently
used for the self-attention computation as described in (13):

Attention(Q,K, V ) = softmax

(
QKt

d
1
2

)
V, (13)

where d is the number of columns of Q, K, and V .
Assuming that there are a total ofN clients in this federated learning framework,

each client is used for its own local dataset Di and so that user mi represents client
i with mi samples from different data distributions, and then the whole network
dataset is then denoted as D, and M represents the total dataset of all mi. In this
paper, we define P (µ; ·) as representing a personalization model that is optimized
according to the personalization feature parameter µ and the optimization objective
is:

argminµ

N∑
i=1

mi

M
Li

(
µi
)
, (14)

where Li(µ
i) is the loss function, in this experiment we choose the cross-entropy

loss function. And during the training process, the personalized feature parameter
µi = {W i, ηi} will be divided into the attention parameter in Transformer and the
ordinary parameter in the local client, which are W i, ηi respectively. And the com-
mon parameters are aggregated in the federated learning architecture through (15).

(ηi)t =
N∑
i=1

mi

M
ηi (15)

t then denotes the number of training rounds for the client, and ηi is a common
parameter.

After joining the hypernetwork, we define zi as the input and then define the
hypernetwork as HN(φi, zi). After joining the hyper network, we define zi as the
input and then define the hyper network as HN(φi, zi). After processing the per-
sonalized features by the hyper network, the personalized model is obtained as
P [(µi)t; ·] = P [(HN(φ, zi))

t, (ηi)t; ·]. Therefore in this study (14) will be deformed
to minimize the loss function as in (16):

argminφ,z,η

N∑
i=1

mi

M
Li

(
HN(φ, zi), η

i
)
. (16)

The client accepts the global model parameters to get the personalized model
P (µ; ·) = P (W i, ηi; ·), and after t rounds of training the client gets P [(µi)t; ·] =
P [(W i)t, (ηi)t; ·], where (W i)t stays in the client locally to achieve the personal-
ization of the client’s model, while (ηi)t is uploaded to the server for aggregation.
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Algorithm 2 Pseudo-code for Acquisition of personalized parameters under hyper-
networks
Input: training round: t, Client-side embedding vectors: zi, client: N ;
1: Initialization parameters;
2: for i = 1 to N do
3: Getting Personalized Model Parameters µ = {W, η};
4: W = [WQ,WK ,WV ]

5: (ηi)t =
∑N

i=1
mi

M
ηi

6: Build hypernetwork HN(φ, zi)
7: Projecting the client’s attention parameter yields W i =

[
W i

Q,W
i
K ,W

i
V

]
;

8: Hypernetwork processing of personalized features to obtain personalized mod-
els

9: P [(µi)t; ·] = P [(HN(φ, zi))
t, (ηi)t; ·]

10: argminφ,z,η

∑N
i=1

mi

M
Li(HN(φ, zi), η

i)
11: Calculate ∆W i

12: Upload ∆W i and ηi to server;
13: φt = φt−1 − β∇φLt−1

i ;
14: zti = zt−1

i − β∇ziLt−1
i ;

15: end for
16: return φ, zi, η

i

During the communication rounds of federated learning, the client sends the up-
dated model parameters (including personalized parameters from the self-attention
layer and shared parameters from other layers) back to the central server. The server
aggregates these parameters to update the global model. The hypernetwork param-
eter (φ) on the server is also updated based on the gradient information collected
from the client. As follows:

∇φLi =
N∑
i=1

mi

M
∇φW i

t∆W i, (17)

∇ziLi =
N∑
1=1

mi

M
∇ziW

i
t∆W i, (18)

where ∇φ and ∇zi are gradient operators.

The above process is iterated over multiple communication rounds until the
model performance reaches the desired goal or the stopping condition is satisfied.
In each iteration, the hypernetwork generates a new projection matrix to progres-
sively improve the personalized self-attention layer of the model, t rounds as follows,



Personalized FL Based on Hypernetworks and Attention Mechanisms for IoT 595

(19) for hypernetwork parameter updating and (20) for client embedding.

φt = φt−1 − β∇φLt−1
i , (19)

zti = zt−1
i − β∇ziLt−1

i . (20)

β is the learning rate for global updates, Lt−1
i is the cross-entropy loss function, and

zt−1
i is the client embedding. As shown in Algorithm 2.

The generator model parameter of the server global model and the discriminator
model parameter of the server global model are represented by the formulas:

ωt+1 =

∑
(λi ∗ ωL

i )∑
λi

, (21)

θt+1 =

∑
(λi ∗ θLi )∑

λi

, (22)

where ωt+1 is the server generator model parameter after aggregating the local gen-
erator model parameters, λi is the weight of the ith client, and ωL

i is the local
generator model parameter of the ith client; θt+1 is the server discriminator model
parameter after aggregating the local discriminator model parameters, and θLi is the
local discriminator model parameter of the ith client.

4 EXPERIMENTATION AND ANALYSIS

In this section, we present our experimental setup and conducted experiments for im-
age categorization tasks with different data sources to make extensive experimental
arguments. In detail, we use two datasets for comparison, CIFAR-10, CIFAR-100,
MNIST and MNIST-M. Both of these datasets are used for image classification tasks,
and both of them can be used as baseline datasets in machine learning research,
but they still have some differences. CIFAR-10 and CIFAR-100 are color image
datasets that contain many different object classes, while MNIST and MNIST-M
are grayscale image datasets focusing on handwritten digit recognition. MNIST and
MNIST-M have the same label distribution but different data feature distributions.
While CIFAR-10 and CIFAR-100 differ in the number of categories they contain,
each category in their respective datasets has an equal number of images uniformly
distributed.

4.1 Datasets and Preprocessing

In the experiments, the IID data were set up so that the data distributions of
different clients were similar and independent. The IID data were constructed by
randomly selecting data in the training set of the CIFAR-10 dataset using a no-
playback approach. But for the federated learning framework, the independent
and identically distributed data situation is the ideal data distribution situation,



596 L. Liu, H. Zhao, F. Fan, S. Qiao, Z. Lyu

which will have high training accuracy, but in real life, there are data heterogeneity
situations that affect the data distribution. For example, in a federated learning
client, some clients have a large amount of data in category A and a small amount
of data in category B. However, another part of the client may have a large amount
of data in category B and a small amount of data in category C. The accuracy of
the federated learning model under such conditions will be affected. And there is a
great difference between the client data, so it is a great challenge for personalized
federated learning.

In this experiment, we use 100 clients to complete the training of federated
learning. In the IID data setup, we randomly assign the training set to 100 clients.
However, for the Non-IID data setup, we randomly select 70% of the categories in
the dataset for allocation, i.e., 7 categories in the CFAR-10 dataset and 70 categories
in CIFAR-100. The remaining categories are then selected from the remaining 30%
of the dataset, which is sufficient to ensure that the training samples are different, to
ensure the reliability of the experimental results, and to help identify the limitations
of the model in dealing with a small number of categories. In our experiments, we
also distinguished between Pathological Distribution (Labeled Unbalanced Distri-
bution) and Dirichlet Distribution for the data.

UNIT (%) CIFAR-10 CIFAR-100

Settings Pathological Dirichlet Pathological Dirichlet
Client 50 100 50 100 50 100 50 100
FedAvg 51.37 46.72 56.77 57.95 15.78 14.29 18.40 21.44
FedProx 53.05 58.14 58.65 56.27 19.24 21.31 19.28 20.72
FedPer 83.11 81.01 77.17 74.08 49.04 41.43 22.45 19.59
pFedMe 86.02 85.29 75.86 74.60 49.45 45.73 31.32 25.54
FedBN 88.00 86.94 74.33 75.11 49.86 48.62 28.89 28.51
pFedHN 87.84 87.24 71.84 68.63 59.73 53.00 33.65 29.67
pFedGP 88.54 87.26 – – 63.18 60.95 – –
FedRoD 88.33 88.83 74.78 73.30 56.15 55.64 27.71 29.25
ours 89.87 88.27 80.64 80.08 67.79 63.94 46.34 43.38

Table 1. Comparison of the accuracy of different federated learning algorithms

As for the MNIST and MNIST-M datasets, we classify the datasets through
two perspectives: quantity-based label imbalance and distribution-based label im-
balance. Quantity-based labeling imbalance focuses on the fact that each client has
only a predetermined number of labeled samples. In contrast, distribution-based
label imbalance uses the Dirichlet distribution to assign labels to each client, and
we still use α = 0.2 from the above experiments.

In the field of machine learning, accuracy is a crucial metric for evaluating the
performance of a classifier. It is defined as the ratio of correctly classified samples
to the total number of samples, making it an intuitive and easily understandable
measure of effectiveness. The formula for calculating the accuracy rate is as fol-
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lows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (23)

RTA =
Accuracymodel

Accuracybaseline

× 100%. (24)

True Positive (TP) refers to the count of samples that are correctly identified as pos-
itive by the classifier. True Negative (TN) represents the number of samples that
are accurately classified as negative. False Positive (FP) occurs when a classifier
incorrectly labels negative samples as positive, while False Negative (FN) refers to
positive samples that are mistakenly classified as negative. Mean Relative Test Ac-
curacy (MRTA) refers to the average of the relative test accuracy obtained in each
experiment over multiple experiments to obtain a more stable and comprehensive
evaluation result.

4.2 Performance Analysis of Different Federated Learning Algorithms

In this paper, in order to verify that our method has better performance against
heterogeneous data, we compare the method we use with some of the remaining
personalized federated learning algorithms. According to Table 1, we can know
that the accuracy of the method we use is higher than the other methods in most
conditions, and has better performance when facing heterogeneous data. Since the
FedAvg algorithm for heterogeneous data simple averaging does not bring good re-
sults, while FedBN and FedProx are based on FedAvg using batch normalization
and introducing approximation terms to solve the problems caused by heterogene-
ity, which is not the optimal solution to solve the problem in complex heterogeneous
scenarios. The performance of FedPre largely depends on the data distribution,
so when facing the situation of complex data distribution, the performance of this
model will be lower than our model performance. pFedMe and FedRod algorithms,
due to their algorithmic characteristics, have a great shortcoming in the face of
complex real-world scenarios and the situations that new users are constantly join-
ing. The pFedHN algorithm, which is also applicable to the hypernetwork struc-
ture, will have the problem of decreasing model accuracy when the personaliza-
tion requirement is high due to the lack of research on the attention mechanism.
In summary, for the CIFAR-10 dataset, the FedRoD algorithm has about 0.5%
higher accuracy than the method we used, except for the Pathological distribu-
tion, when the number of clients is 100, and the method we used is higher than
the rest of the algorithms in the rest of the conditions. The average accuracy
improvement is 10.3% for the CIFAR-10 dataset and 19.4% for the CIFAR-100
dataset.
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a)

b)

Figure 4. Comparison of the accuracy of MNIST and MNIST-M datasets with different
federated learning algorithms under quantity-based labeling imbalance

In the above experiments we verified that our method has better performance
when facing differences in the number of categories, but the reality is more complex.
Therefore, we further validate the model performance when the data features are
distributed differently. We compare FedAvg, FedProx, pFedHN, and our method
using two unbalanced methods for MNIST, as shown in Figures 4 and 5. Among
them, Figure 4 compares the accuracies of the four methods under the number-based
label imbalance setting, and we can see from the figure that our method has a better
performance in terms of accuracy as well as convergence. We can see that although
FedAvg and FedProx have better accuracy than pFedHN, the FedAvg and FedProx
methods fluctuate more due to the data heterogeneity problem.
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a)

b)

Figure 5. Comparison of the accuracy of MNIST and MNIST-M datasets with different
federated learning algorithms under distribution-based label imbalance

On the other hand, the pFedHN method with the addition of hypernetwork has
more stable play. Therefore, we use the hypernetwork to focus on the personalized
features of client data to achieve the personalization of client models, fully solve the
problem of model accuracy degradation caused by Non-IID data, and thus use the
hypernetwork to improve the convergence speed and stability of the model. Figure 5
compares the accuracies of the four methods in the distribution-based label imbal-
ance setting, where our method still has better accuracy than FedAvg, FedProx, and
pFedHN. In the distribution-based label imbalance setting, although pFedHN also
has good performance, the method is unstable and the accuracy fluctuates a lot com-
pared to the quantity-based label imbalance setting. Therefore, it can be shown that
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Figure 6. Performance comparison of different privacy protection technologies

our method has better performance when facing multiple real-data heterogeneous
scenarios.

4.3 Client-Side Privacy Protection Analysis

UNIT (%) CIFAR-10 CIFAR-100

Settings Pathological Dirichlet Pathological Dirichlet
Client 50 100 50 100 50 100 50 100
Local model 84.35 82.19 69.55 66.72 55.68 49.32 27.73 23.31
FedAvg* 52.78 48.52 62.45 60.03 34.48 30.75 38.51 35.01
FedProx* 49.79 46.01 61.98 60.58 30.76 29.83 37.25 33.48
ours 89.87 88.27 80.64 80.08 67.79 63.94 46.34 43.38

Table 2. Transformer performance comparison (* indicates that the algorithms use Trans-
former instead of the original neural network architecture)

In order to verify the effectiveness of our privacy-preserving mechanism based
on data and label transformations for the client, we train an adversarial network
model using the user data and labels extracted by the “attacker” to obtain the
extracted data. We defend against such attacks by constraining the data and labels
used for model training at the source. We compare the Gradients Perturbation
and Differential Privacy methods commonly used in research. In the experiments,
the Gradients Perturbation method introduces noise to achieve perturbation, which
may directly affect the generalization ability of the model, while Differential Privacy
protects individual privacy by adding randomness to the dataset. However, it may
also result in the statistical characterization of the data becoming less accurate.
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Figure 7. Comparison of generalizability against new user accessions in the CIFAR-10
dataset (* indicates that the Hypernetwork structure is not used)

Therefore, in Figure 6, we show that our proposed method of using transformed
data for local model training has better privacy-preserving performance compared
to the gradient perturbation and differential privacy methods, as the transformed
data is as far away from the original data as possible, and therefore better resistant
to the attacker’s extraction attacks. This suggests that the transformed data we
use can contain less user information, reduce the risk of reconstructing the user’s
private data after it is extracted by a malicious attacker, and better protect the
user’s privacy.

4.4 Generalization on New Clients

Considering that the model may perform well against the training data and that in
reality there will be a constant stream of new users joining the federated learning
network, we conducted an experimental test of the model’s generalization ability.
The test of model generalization ability can help us understand whether our pro-
posed model is truly learning data features from experimental data, and not simply
memorizing the training data to recognize data features. In this subsection, we op-
erate on the CIFAR-10 dataset using the Dirichlet distribution and then select 20%
of the clients as new clients for the experiment.

The pFedMe algorithm necessitates the tuning of hyperparameters for various
task scenarios, while FedRod requires a complex training strategy to effectively
handle prediction tasks. Additionally, training the hypernetwork in the pFedHN
method demands greater computational resources and scenario-specific adjustments
to the hypernetwork’s structure and parameters, it has poor performance against
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a)

b)

Figure 8. Comparison of RTA of federated learning algorithms using different Transformer
architectures in the CIFAR-10 and CIFAR-100 dataset

new user joining. As shown in Figure 7, in the face of new user joining, the weights
do not increase linearly with new user joining because we use the hypernetwork to
generate personalized weights for each client. The experimental results show that
our model has better generalization ability, which indicates that the model we use
is more resistant to small changes or noise in the data, which means that the model
still maintains a better performance in the face of complex or imperfect data. And
it also shows that our model has better generalization ability to new data, when
faced with data growth or rapid changes, our model is better able to adapt to the
addition of new data without the need to retrain the model.
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UNIT (%) CIFAR-10

α α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

FedAvg 49.22 56.77 58.35 59.73 62.84 62.98 63.28 64.75 66.17
FedProx 60.23 58.65 55.36 54.97 52.19 53.08 51.36 50.08 51.32
pFedMe 76.86 75.86 73.29 70.97 72.84 73.26 71.55 71.26 73.22
pFedHN 75.98 71.84 69.75 70.69 68.53 69.15 70.16 67.32 66.87
FedRoD 74.16 74.78 73.98 72.62 72.69 71.37 71.28 70.96 71.18
ours 82.14 80.64 77.68 78.76 77.98 76.54 76.17 75.88 73.29

Table 3. Effect of comparing α on accuracy in the CIFAR-10 dataset

4.5 Ablation Experiment

4.5.1 Performance Comparison of Different
Transformer Network Architectures

In order to verify the negative impact of the FedAvg algorithm on the accuracy of
training models on heterogeneous data, we compared several classical algorithms
with our algorithm. For fairness, we changed the neural network in the original
algorithm to the same transformer structure as in this experiment. As can be seen
from the data in Table 2, the method we used has a better performance in the face of
heterogeneous data and the accuracy of the locally trained model is higher than that
of the federated learning model after using the FedAvg algorithm, since the FedAvg
algorithm negatively affects the heterogeneous data. We take the CIFAR-10 and
CIFAR-100 dataset as an example, as shown in Figure 8, it can be seen that the
relative test accuracies of our model and the local model are both greater than 1,
so it can be concluded that the accuracy of the model processed by our framework
is higher than the accuracy of the local model after training.

UNIT (%) CIFAR-10 CIFAR-100

Settings Pathological Dirichlet Pathological Dirichlet
Client 50 100 50 100 50 100 50 100
Local model 84.35 82.19 69.55 66.72 55.68 49.32 27.73 23.31
pFedHN 87.84 87.24 71.84 68.63 59.73 53.00 33.65 29.67
ours* 86.95 84.55 74.96 72.03 62.01 56.51 36.28 32.19
ours 89.87 88.27 80.64 80.08 67.79 63.94 46.34 43.38

Table 4. Performance comparison with and without Hypernetwork (* indicates that the
Hypernetwork structure is not used)

The average relative test accuracy (MRTA) of this experiment is 1.12 in the
CIFAR-10 dataset, and 1.51 in the dataset CIFAR-100. These results can prove that
the model accuracy of our experimental approach is higher than that of the local
model in the face of heterogeneous data, and therefore, our method has a very good
performance in the federated learning environment with respect to different data
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Figure 9. Effect of α coefficient on accuracy under CIFAR-10 and CIFAR-100 dataset

features. Therefore, our method has good performance for different data features
in a federated learning environment, can solve the data heterogeneity problem well,
and can build a personalized federated learning framework that conforms to the
data distribution of the whole network.

4.5.2 The Effect of the Magnitude of the α Coefficient
in the Dirichlet Distribution

The Dirichlet distribution is a multivariate probability distribution that is usually
used in scenarios such as Bayesian statistics and topic modeling in machine learning
(e.g., LDA), in which the α coefficient plays an important role. In order to study
the impact brought by the data distribution situation on the model accuracy and to
verify the performance of our algorithm in different situations, we hereby determine
whether our algorithm performs better in the face of different scenarios by examining



Personalized FL Based on Hypernetworks and Attention Mechanisms for IoT 605

a)

b)

Figure 10. Hypernetwork performance analysis in the CIFAR-10 and CIFAR-100 dataset
(* indicates that the Hypernetwork structure is not used)

the impact of the α coefficient on the model accuracy in the Dirichlet distribution.
When the value of α is small, the distribution will be more concentrated, meaning
that there will be fewer categories with higher probabilities, while others will have
probabilities close to zero. In this case, the distribution will be sparser, indicating
a stronger preference for certain categories. When the value of α is large, the
distribution will be more even, indicating less variation in preferences for individual
categories.

Whereas data heterogeneity is a key problem to be solved in personalized fed-
erated learning, in order to verify that our method outperforms other algorithms,
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we conducted comparison experiments for the value of α, choosing 50 clients in the
CIFAR-10 and CIFAR-100 datasets, respectively. Table 3 and Figure 9 show the
effect of α on accuracy. We can see that some of the remaining federated learn-
ing algorithms are unable to adequately capture the user’s personalized information
when α becomes smaller, i.e., when the data distribution is more different, and are
unable to address the negative impact of data heterogeneity, but our method still
has a better performance.

4.5.3 Hypernetwork Performance Analysis

We also made experiments to verify whether the hypernetwork has improved the
model performance or not, and the results of the experiments are shown in Table 4
and Figure 10. We compared the accuracy of the local model without hypernetwork,
pFedHN with hypernetwork, and the model accuracy of the method in our article
with and without the hypernetwork structure. By comparing the magnitude of
the accuracy of the models in our experimental approach using and not using the
hypernetwork structure, we can see that the hypernetwork has a better performance
in the face of personalized features, and it can better encode the client’s personalized
information into the client’s input as a way to improve the personalized performance
of the model. And it improves by 2–8% and 5–11% in the CIFAR-10 and CIFAR-
100 datasets, respectively. Comparing again to the pFedHN method that uses the
hypernetwork structure, our model still has better performance.

5 CONCLUSIONS

In this paper, we propose an innovative personalized federated learning strategy,
pFedHT, which has good applicability in the federated learning domain, not only
for IID data, but also for Non-IID data, and at the same time can satisfy the needs
of organizations for personalized services. This strategy enhances the diagnostic and
predictive capabilities of local models by sharing personalized feature information
across organizations. We employ data transformation to ensure the privacy and
security of clients’ data, while utilizing a personalized federated learning framework
to cope with the heterogeneity of data. This approach not only protects users’
privacy, but also enables the model to better adapt to distributed data sources from
different organizations. This is particularly important for the distributed system, as
different organizations may have user populations with different characteristics and
need to ensure that the trained model is applicable to all clients.

However, according to our research findings, the adoption of hypernetwork tech-
nique, although it has significant advantages in data privacy protection and data
heterogeneity problems, may bring high resource consumption during its operation,
especially during the training phase when it may encounter the slow speed problem.
One of our primary future research goals will be to implement advanced optimiza-
tion techniques to minimize the number of parameters, making the model more
lightweight and suitable for deployment on resource-constrained IoT devices. This



Personalized FL Based on Hypernetworks and Attention Mechanisms for IoT 607

will ensure that our method is not only accurate and secure, but also efficient and
scalable across various systems with different hardware capabilities. Additionally,
we aim to explore broader applications of personalization. While this study focuses
on federated learning in IoT environments, the personalization mechanism we devel-
oped can be applied to other domains, such as healthcare, finance, and smart cities,
where heterogeneous data and privacy concerns are similarly critical. Future re-
search will include the design of personalized federated learning frameworks tailored
to these fields, taking into account their specific data types, privacy requirements,
and system constraints.
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