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Abstract. In view of the dependence of existing 3D action prediction research
on labels, we propose a graph convolutional recurrent 3D action prediction method
based on state discrimination and spatio-temporal self-supervised contrast learning.
In the state discrimination task, cross-sample sampling and relative action com-
pleteness perception are used to train the model for generalized state information
learning across instances and classes. In the spatio-temporal contrast task, spatio-
temporal consistency information is introduced into the feature representation to
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enrich action semantics in features. Additionally, in order to fully extract spatio-
temporal information in 3D action sequences, a spatio-temporal feature extraction
network (STFEN) based on graph convolution recurrent network is designed. The
experimental results on public datasets demonstrate the efficiency of the proposed
methods.

Keywords: 3D action prediction, self-supervised learning, state discrimination,
spatio-temporal consistency, contrast learning
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1 INTRODUCTION

With the development of information technology and the explosive growth of data
in society, data-driven artificial intelligence has shown increasingly powerful per-
ception, understanding, judgment, prediction, and even creation capabilities, and is
widely used in various fields such as image recognition, video understanding, speech
recognition, machine translation, autonomous driving, and recommendation sys-
tems, which greatly facilitate people’s lives and improve productivity. The current
mainstream artificial intelligence methods are implemented based on deep learning
techniques [1, 2], by building deep neural network models to extract features from
the input data, and by training the models to adjust their own parameters through
a large amount of data, so that the models can acquire certain wisdom capabilities
in the process of learning.

Action understanding is an important direction for AI applications, which aims
to understand the inner action semantics of human actions based on their external
performance. Depending on the input data, the action understanding methods can
be divided into video-based methods [3, 4, 5, 6, 7] and skeleton-based 3D meth-
ods. Unlike video data, 3D human skeleton data, which can be easily obtained
from sensors [8], has a more direct representation capability by excluding the in-
terference of scene information and extraneous objects. Therefore, the method in
this paper takes the 3D skeleton data as input. Self-supervised learning trains
models to learn feature representations without manual labeling by designing agent
tasks that can automatically generate labels based on the characteristics of the data
itself. Because self-supervised learning can reduce the dependence of models on
expensive labels, many researchers have used self-supervised methods to investi-
gate 3D action understanding in recent years, and most of them have focused on
3D action recognition [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25].

Unlike 3D action recognition, which takes a complete action sequence as input,
3D action prediction takes an incomplete skeleton sequence as input and outputs its
action category, which has broader application prospects in the fields of intelligent
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security, human-computer interaction, autonomous driving, health monitoring, etc.
This requires the features extracted by the model to be semantically general and
distinguishable in order to ensure the accuracy of the prediction. There are relatively
few studies on 3D action prediction, and they all focus on the supervised learning
paradigm [26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. In order to utilize the unlabeled
data, this paper proposes to train the 3D action prediction model by self-supervised
learning method.

Specifically, we design two self-supervised tasks to train the model to extract
state information and spatio-temporal consistency information in incomplete se-
quences. In an incomplete action sequence, the human body has performed the
action to a certain extent, which indicates the state of action execution. In the
action prediction task, this state can be represented by the observation rate. For
example, a sequence with an observation rate of 0.3 indicates that 30% of the ac-
tion in this sequence has been performed. In this paper, we let the model perceive
the state of action completeness, i.e., the observation rate of an incomplete ac-
tion sequence, and compare it with the ground truth observation rate to produce
a loss. However, perceiving the absolute observation rate of action from a single
sample only will lead the model to fit only on samples from a single instance during
the learning process and ignore the connection between data, and the learning of
action state knowledge is limited to an action category, which cannot effectively
learn the common features of action states that are widely present in all kinds of
samples. According to the psychological study [36], humans are better at making
relative judgments among different information than making absolute judgments
about a single piece of information. Inspired by the above factors, the state dis-
crimination task is proposed in this paper. This self-supervised task converts the
absolute action completeness perception task into a relative action completeness
perception task, and obtains state discriminant pairs based on cross-sample sam-
pling, thus extending the learning scope of the model for action state representation
and introducing more generalizable cross-category state information into the feature
representation.

With the progress of self-supervised learning research, contrast learning [37, 38]
has received increasing attention from researchers, and many self-supervised meth-
ods [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24] learn feature representations by
contrast learning on 3D action recognition tasks. In the process of human move-
ment, the spatial properties of human skeleton joints are important carriers of action
semantics, and incomplete action sequences have a diversity of time-domain distri-
bution, so spatio-temporal features are important basis for 3D action prediction by
the model. In this paper, a novel cross spatio-temporal contrast learning frame-
work is proposed to learn the feature representation with temporal invariance by
transforming the samples from both the time domain and the space domain for the
action prediction task itself. Specifically, the proposed method introduces skeleton
sequence original sample sampling and spatial augmentation, and performs temporal
contrast, spatio contrast, and spatio-temporal cross-contrast learning on the basis of
obtaining temporal transformed samples, spatio transformed samples, and spatio-
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temporal transformed samples, respectively, to train the model to learn the feature
representation with temporal consistency, spatial consistency, and spatio-temporal
consistency.

In addition, existing action prediction methods either use RNN as the feature
encoder [31], for each frame of the human skeleton joint point coordinate set, which
is linearly arranged and input to the network to extract features, this method
does not take into account the natural connection structure of the human skele-
ton, resulting in the model cannot effectively perceive the spatial information of
human motion; or use GNN as the feature encoder [32, 33, 34, 35], this method
builds a graph of the human skeleton, which has a strong ability to capture spa-
tial features, but for temporal features is carried out through the convolution be-
tween neighbouring frames, which lacks global temporal domain information. For
the action prediction task, whose input has temporal incompleteness, sensitivity
to temporal information enables the model to understand the action better, and
the model should also have the ability to perceive spatial features well. Therefore,
a spatio-temporal feature extraction network (STFEN) based on graph convolu-
tion recurrent is proposed in this paper. The network consists of two modules:
spatial domain feature extraction and temporal domain feature transfer. In the
spatial feature extraction module, the graph is constructed based on the a prior
knowledge of the skeleton structure of the human body, and the graph convolu-
tion is used to convolve the features between joints to obtain the spatial feature
containing rich spatial information; in the temporal feature transfer module, the
static spatial features of human body structure in a single frame are transferred
between frames to obtain the motion feature in the temporal domain. Finally, the
features are aggregated to obtain the spatio-temporal action feature of the whole
sequence.

The contribution of this paper can be summarized as follows:

• Based on relative action completeness perception, we devise a self-supervised
agent task which can generate state discriminant pairs and rank them by action
completion, so as to extract the action state common information among various
types of samples.

• A novel spatio-temporal contrast method is proposed to extract temporal con-
sistency, spatial consistency and spatio-temporal consistency about actions by
performing temporal transformation, spatial enhancement and cross-contrastive
learning.

• We propose a spatio-temporal feature extraction network (STFEN) based on
graph convolution recurrent that hierachically extracts spatial features, tempo-
ral features, and global spatio-temporal features of 3D action sequences while
preserving sensitivity to temporal information.
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2 RELATED WORK

2.1 Self-Supervised 3D Action Understanding

Compared with video data, 3D action understanding based on skeleton data has
received a lot of attention from researchers in recent years. Zheng et al. [9] in-
troduced a novel conditional skeleton inpainting network to capture the long-term
global motion dynamics in sequences with varying length and designed an addi-
tional adversarial training strategy which can enhance the encoder-decoder model
for learning more discriminative representations. This is the first work to explore
self-supervised representation learning approaches for skeleton-based action recog-
nition. In [10], Lin et al. designed three tasks, including a generation task, a classi-
fication task, and a comparison learning to learn comprehensive and general feature
representations. To utilize self-supervised learning for semi-supervised learning, Si
et al. [11] proposed an adversarial self-supervised learning framework network that
tightly couples self-supervised and the semi-supervised scheme via neighbour relation
exploration and adversarial learning. In [25], Yang et al. formulate the unsupervised
action recognition learning as an attention prediction problem, where the encoder
captures action-specific motion patterns by predicting multiple self-attentions in
spatio-temporal dimensions. Through contrastive representation learning by ade-
quate compositions of viewpoints and distances, Gao et al. [12] proposed a self-
supervised method to select discriminative features which have invariance motion
semantics for action recognition. To learn semantic information, Xu et al. [13] de-
signed a framework which not only creates reverse sequential prediction to learn
low-level information and high-level pattern, but also devises action prototypes to
implicitly encode semantic similarity shared among sequences. In [14], Rao et al.
proposed a generic unsupervised contrastive action learning paradigm named AS-
CAL which could perform contrastive learning on action patterns of augmented
skeleton sequences, to enable the model to learn effective action representations
from unlabeled skeleton data. Su et al. [15] proposed a novel system which asso-
ciates the sequences with actions for unsupervised skeleton-based action recognition.
The system is based on an encoder-decoder recurrent neural network, where the en-
coder learns a separable feature representation within its hidden states formed by
training the model to perform the prediction task. Li et al. [16] proposed a Cross-
view Contrastive Learning framework for unsupervised 3D skeleton-based action
Representation (CrosSCLR) which consists of both single-view contrastive learning
(SkeletonCLR) and cross-view consistent knowledge mining (CVCKM) modules. Su
et al. [17] proposed a novel self-supervised method which constructs a positive clip
(speed-changed) and a negative clip (motionbroken) of the sampled action sequence,
to encourage the positive pairs closer while pushing the negative pairs to force the
network to learn the intrinsic dynamic motion consistency information. Wang et
al. [18] proposed a novel Contrast-Reconstruction Representation Learning network
(CRRL) which mainly consists of three parts: sequence reconstructor, contrastive
motion learner, and information fuser. Thoker et al. [19] proposed inter-skeleton con-
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trastive learning, which learns from multiple different input skeleton representations
in a cross-contrastive manner. In [20], extreme augmentations and Energy-based
Attention-guided Drop Module (EADM) were proposed to generate diverse positive
samples to construct a contrastive learning framework utilizing abundant informa-
tion mining for self-supervised action representation. Chen et al. [21] proposed
a contrastive learning framework with a spatio-temporal skeleton mixing augmenta-
tion (SkeleMix) to complement current contrastive learning approaches by providing
hard contrastive samples. Wu et al. [22] proposed a new self-supervised agent task
to optimize the initialization of model parameters by training the model to compare
the temporal coherence of samples. Pang et al. [23] proposed a novel Contrastive
GCN-Transformer Network (ConGT) which fuses the spatial and temporal modules
in a parallel way. In [24], Zhao et al. proposed a contrast learning method combined
with a temporal-masking mechanism of skeleton sequences to encourage the network
able to learn action representations other than feature invariance.

There exist additional studies on behavior recognition as well. Xu et al. [39]
explored a semi-supervised skeleton-based action recognition method and proposed
an X-invariant contrastive augmentation and representations learning framework.
By learning augmentations and representations of skeleton sequences, the rotate-
shear-scale invariant features are completely obtained. At the same time, they [40]
believed that existing contrastive learning methods confuse the spatio-temporal in-
formation reflecting different semantic at the frame and joint levels, and designed
a spatio-temporal decouple-and-squeeze contrastive learning framework to jointly
compare spatio-temporal features and global features to comprehensively learn more
abundant representations. Shu et al. [41] proposed a Multi-granularity Anchor-
Contrastive representation Learning to address the three limitations of contrastive
learning, which can learn multi-granularity representations by conducting inter- and
intra-granularity pretext tasks on the learnable and structural-link skeletons. Start-
ing from a coarse-grained perspective, Xu and Shu [42] proposed a pyramid self-
attention polymerization learning framework to learn different levels representa-
tions containing abundant and complementary semantic information through multi-
granularity comparison. To mitigate the potential supervisory effect of ignoring
instance information, Yan et al. [43] presented a novel framework, namely Progres-
sive Instance-aware Feature Learning, to progressively extract, reason, and predict
dynamic cues of moving instances from videos for compositional action recognition.

2.2 3D Action Prediction

D action prediction, also known as early skeleton-based action recognition, has been
a research direction in the field of action understanding in recent years. Hu et al. [26]
proposed a soft regression-based activity prediction model and a local accumulative
frame feature (LAFF) for real-time activity prediction on RGB-D sequences. Jain
et al. [27] introduced a sensory-fusion architecture which jointly learns to antici-
pate and fuse information from multiple sensory streams. In [28], a global regu-
larizer was introduced to learn a uniformly distributed hidden feature space and
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a temporal-aware cross-entropy was designed as the classification loss for early ac-
tion recognition at different observation ratios. Liu et al. [29] proposed a novel
window scale selection method to make the network focus on the performed part of
the ongoing action and try to suppress the possible incoming interference from the
previous actions at each step. Ke et al. [30] proposed a new latent global network
based on adversarial learning to learn the latent global information of the partial
sequences and improve action prediction. Weng et al. [31] pre-trained a classifier
of all categories, and modeled the category exclusion as a mask operation on the
classification probability output of the classifier. In [32], a novel Hardness-AwaRe
Discrimination Network (HARD-Net) was proposed to specifically investigate the
relationships between the similar activity pairs that are hard to be discriminated.
Li et al. [33] designed a novel adaptive graph convolutional network with adversarial
learning (AGCN-AL) that uses adversarial learning to make the features of partial
sequences as similar as possible to those of complete sequences, and introduced
a temporal-dependent loss to prevent the network from paying too much attention
to partial sequences whose observation ratios are small. Liu et al. [34] proposed
a Graph Convolutional Network with Early Attention Module (GCN-EAM), which
employs a series of spatial-temporal graph convolution blocks to extract features
from skeletons. In [35], a novel two-stage knowledge distillation framework was
proposed to transfer prior knowledge to assist the early prediction of ongoing ac-
tions.

In summary, the current studies on 3D action prediction are still focused on
the supervised paradigm, while the self-supervised studies in the field of 3D action
understanding have focused on 3D action recognition and neglected 3D action pre-
diction. It is necessary to explore a self-supervised learning method applicable to
3D action prediction.

3 METHOD

In this section, we present our self-supervised learning method details. We firstly
describe the overall framework and symbols in Section 3.1, then present the pro-
posed state discrimination task in Section 3.2 and spatio-temporal contrast task in
Section 3.3, and we provide a description of our spatio-temporal feature extraction
network in Section 3.4. The main symbols are summarized in Table 1.

3.1 Overall Framework

Let X = {x1, x2, x3 . . . xT−1, xT} denote a complete 3D skeleton sequence of action
lasting for a total of T frames, and the set of spatial coordinates of the human
skeleton joint points in frame i is xi. Given an observation rate O, it means that
the action has executed 100 ∗ O% of the complete action. For a complete action
sequence sample X, when it is under the observation rate O, the incomplete 3D
action sequence sample XO =

{
x1, x2, x3, . . . x⌊O×T ⌋−1, x⌊O×T ⌋

}
is obtained by inter-

cepting its previous ⌊O ∗ T ⌋ frames, where ⌊·⌋ is the downward rounding operation.
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Notations Definitions

X complete 3D skeleton sequence
O the observation rate

XO
the partial skeleton sequence under the
observation ratio O corresponding to X

E the feature encoder
Es the shared feature encoder
Em the momentum feature encoder
F the feature extracted from XO

LD the loss of state discrimination
LC the loss of spatio-temporal contrast
LO the loss of absolute action completeness perception
LM the loss of motion prediction
Lself total loss of the network in the self-supervised training

Table 1. Notations and definitions

All samples in the 3D action recognition dataset are traversed, and each sample is
sampled at 9 different observation rates to obtain 9 incomplete skeleton sequences
of different lengths from the same original complete sample. The observation rate
of each incomplete skeleton sequence and the corresponding original sample serial
number r are recorded.

The goal of self-supervised learning is to train a feature encoder E, capable
of representing incomplete 3D skeleton sequences as discriminative action semantic
features for application to a downstream task: 3D action prediction, through agent
tasks that do not require manual annotation. The proposed self-supervised learning
approach simultaneously uses multiple self-supervised losses to jointly guide the
network to learn feature representations suitable for 3D action prediction. The
overall framework is shown in Figure 1.

In the state discrimination task, according to the observation rate of the train-
ing sample XO and the original sample serial number r, cross-sample sampling is
performed in the sample bank to obtain the discriminant sample XD which is from
different original sample and under different observation rate compared with XO.
The loss is obtained by performing relative action completeness perception of XO

and XD, which generates supervision signal to supervise the training of the feature
encoder E. The spatio-temporal feature encoder E consists of two modules, the
shared encoder Es and the momentum encoder Em, which have identical structures.
In the spatio-temporal contrast task, according to the original sample sequence
number r of the training sample XO, its corresponding complete action sequence
X is obtained from the sample bank, and XO and X are spatially augmented to
obtain XO,aug and Xaug, respectively, and the four samples are sent to Es and Em

for feature encoding to obtain their respective query features and key features, then
cross-contrast learning is performed between the features of the four samples to
provide supervised signals for the training of E. The state discrimination task and
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Figure 1. The overall framework of the proposed method. Our self-supervised learning
framework adopts a multi-task design, including a state discrimination task and a spatio-
temporal contrast task. For the training sample XO, after obtaining its corresponding
discriminant sample XD and the complete sample X, state discrimination and spatio-
temporal comparison are performed to generate supervision signals to train the proposed
spatio-temporal feature extraction network, respectively.

the spatio-temporal contrast task enable the network to be trained to learn generic
state information and spatio-temporal consistency information of the 3D skeleton
sequence, enhancing the network’s ability to represent samples.

3.2 State Discrimination

Action completeness, or observation rate O, indicates the progress of action ex-
ecution at the current moment, can provide the model with a supervision signal
containing information about the current state of the action. Introducing the state
knowledge of the action into the feature representation can effectively enhance the
model’s ability to understand the observed part of an incomplete action sequence
and to imagine the unobserved part, and thus improve the model’s performance on
3D action prediction task.

State information about action completeness is an important element of action
semantics, and learning this information can help the model understand the action
better. In the action prediction task, this information is able to represent the context
of the phase in which the action is being performed. Therefore, we propose the
absolute action completeness perception task, for the incomplete action sequence
XO input to the model, the model perceives its action completeness and compares
the perceived result with the ground truth observation rate to produce a loss. The
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calculation process is as follows:

LO =

∑N
i=1 ∥OP,i −Oi∥22

N
=

∑N
i=1 ∥σ(FC(Es(XO,i)))−Oi∥22

N
, (1)

where LO indicates the loss of absolute action completeness perception, N is the size
of the batch and σ is the function of Sigmoid. This process is completed through
a shared feature encoder E and an action completion perceptron HO. Specifically,
partial sequence is fed into E to obtain its feature representation. Subsequently,
this feature representation is input to HO to predict the observation rate of se-
quence. The weights of E and HO are trained by back-propagation using this
loss.

However, the use of the absolute action completeness perception task would limit
the model’s learning of state information to the same original sample and cannot
effectively learn the common patterns about action state that coexist in various cat-
egories and instances. Moreover, according to the psychological study [36], humans
are better at making relative judgments compared to absolute judgments. Based on
the above premise, we further propose a state discrimination task based on relative
action completeness perception to generate discriminant pairs by cross-sample sam-
pling, which extends the learning range of the model to different original samples,
and introduces cross-instance and cross-category state information into the feature
representation by performing state discrimination between discriminant pairs, so
that the model learns more robust action state knowledge and thus maps the 3D
skeleton sequence to a feature space containing richer action semantics. The design
of the state task is shown in Figure 2.

As shown in Figure 2, an incomplete action sequence XO with observation
rate O and original sample number r is given as the training sample. Firstly,
cross-sample sampling is performed in the sample bank to obtain its correspond-
ing discriminant sample. The sampling process is given by the following equa-
tion:

XD = S [iD] = S [sample (O, r)] , (2)

where S denotes the sample bank, [·] is the value taking operation, and sample (·)
is the sampling function. The sampling function is calculated as follows:

sample (O, r) =

x, if diff
(
x = rand (1, size (S)) , O, r

)
,

sample (O, r) , otherwise,
(3)

where diff (i, O, r) means the observation rate of the ith sample in the sample bank
is not equal to O and the original sample number is not equal to r. size(S) is the
size of the sample bank S.

Equation (3) indicates that in the loop, one sample from the sample bank is
randomly selected each time, and if the observation rate of that sample is different
from the training sample and from a different original sample, it can be used as the
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Figure 2. Flow chart of the state discrimination task. Discriminant sample pairs are
constructed based on the observation rate and original sample number of the training
sample. The supervised signal is generated by training the model to compare the action
completeness between the two samples.

discriminant sample of XO, otherwise the random sampling is performed again. The
discriminant sample XD is obtained by cross-sample sampling, and the discriminant
pair⟨XO, XD⟩ is constructed. Let the observation rate corresponding to XD be OD,
and the label labelD of the state discrimination task can be obtained from the
following equation:

labelD =

1, O > OD,

0, O < OD.
(4)

As shown in Figure 2, XO and XD are input to the encoder E for feature
extraction, and the respective features F and FD are obtained. Then the difference
between F and FD is made to obtain the relative feature representation of the
two discriminant samples. Input it into the ranking network RN to determine the
relative action completeness size of the training and discriminant samples. The
ranking network RN is a multi-layer perceptron capable of mapping the input to
features in a high-dimensional space and downscaling to a one-dimensional output
to obtain the action state ranking results rank for XO and XD. The calculation
process is as follows:

rank = RN (F − FD) . (5)

Since labelD is a binary label, the problem can be viewed as a binary classification
problem. The loss LD for this task is obtained by applying the cross-entropy loss
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function:

LD =
1

N

N∑
i=1

CrossEntropy(ranki, labelD,i)

=
1

N

N∑
i=1

(
− log

exp (ranki [labelD,i])

exp (ranki [0]) + exp (ranki [1])

)
,

(6)

where N is the size of the batch, ranki is the result of the ranking network to
discriminate the state of the sample pair constructed from the ith sample in the
batch, and labelD,i is the label of the discriminant pair.

In this task, the shared encoder Es in the spatio-temporal feature extraction
network E performs feature extraction on samples, and the action discriminative loss
LD passes supervised signals through back propagation to simultaneously supervise
the optimization of the parameters of the shared encoder Es and the ranking network
RN , thus introducing generalized state information across samples and categories
into the feature representation of the encoder.

Figure 3. The framework of spatio-temporal contrast learning. For the training sam-
ple XO, after obtaining its corresponding complete sequence X, spatial augmentation is
performed on XO and X to obtain XO aug and Xaug, respectively, and cross-contrast
learning is performed between the four samples to learn spatio-temporal consistency in-
formation.

3.3 Spatio-Temporal Contrast

Three-dimensional human skeleton sequences contain rich temporal and spatial in-
formation. In the action prediction task, temporal information describes the cur-
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rent state of the action and the trend of motion change, while spatial information
describes the distribution and connection of human body joints in the spatial coor-
dinate system. Feature representations containing rich spatio-temporal information
can better describe incomplete action sequences and provide a more adequate basis
for action prediction.

Previous research [28] used a global regularization task to optimize the distribu-
tion of the feature space by learning the same samples under different observation
rates in contrast from a temporal perspective, introducing global information from
the complete sequence into the feature representation of the incomplete sequence,
thus compensating to some extent for the lack of discriminative information in the
incomplete sequence. However, this method only compares the samples transformed
in the temporal domain, and the learned feature representations are only temporally
consistent and lack learning about spatial features. Therefore, in this paper, we
propose a new temporal contrast learning framework that simultaneously imparts
temporal consistency, spatial consistency, and spatio-temporal consistency informa-
tion to the model about the actions by performing temporal transformations and
cross-contrasts on the samples. The framework of this method is shown in Fig-
ure 3.

In the spatio-temporal contrast task, a spatial augmentation module is intro-
duced in this paper. This module consists of a series of spatial transformation
operations on the 3D skeleton, including random flip, random rotation, Gaussian
noise, Gaussian filtering and coordinate masking, which can effectively expand the
spatial diversity of the skeleton samples. As shown in Figure 3, given a training
sample XO, its corresponding complete sample X = S [r] is obtained from the sam-
ple bank according to its original sample number r. Input XO and X into the
spatial augmentation module, respectively, and obtain the corresponding spatially
augmented sequences XO aug and Xaug for both after a series of spatial transforma-
tions.

The spatio-temporal contrast task assumes that these four samples describing
the same action process have common spatio-temporal features although they have
different distributions in the temporal and spatial domains. By performing cross-
contrast learning among these four samples, the model can be supervised to learn
feature representations with spatio-temporal consistency.

Specifically, the spatio-temporal feature extraction network consists of two parts,
the shared encoder Es and the momentum encoder Em, which have identical struc-
tures and both perform feature extraction on samples. Among them, the shared
encoder Es receives the supervision signal generated by the back propagation of the
loss function to update the weights, while the initial values of the weights in the
momentum encoder Em are the same as Es, but instead of gradient descent during
the training process, the momentum approach is adopted to update the weights
according to the parameters of Es in the following way:

param (Em, i+ 1) = m ∗ param (Em, i) + (1−m) ∗ param (Es, i+ 1) , (7)
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where param(E, i) denotes the weight of model E at the ith iteration and m is the
momentum coefficient.

As shown in Figure 3, after the samples have passed through the spatio-temporal
feature extraction network E, the resulting features are fed into the contrast map-
ping module CM . The contrast mapping module CM is a multi-layer perceptron
that can further map the features extracted by E into the contrast learning fea-
ture space. The incomplete sequence XO is input to E and CM in turn, and its
feature vector F is output, which consists of two parts, the query vector Fquery

and the key vector Fkey. The encoding process is given by the following equa-
tion:

F = CM (E (XO)) = {Fquery, Fkey} = {CM (Es (XO) , CM (Em (XO)))} , (8)

where Fquery is encoded by the shared encoder Es and Fkey is encoded by the mo-
mentum encoder Em. Similarly, as shown in Figure 3, the complete sequence X, the
partially enhanced sequence XO aug, and the complete enhanced sequence Xaug are
input into E and CM , respectively, to obtain Fcomplete consisting of Fcomplete,query

and Fcomplete,key, Faug consisting of Faug,query and Faug,key, and Fcomplete aug,query and
Fcomplete aug,key.

After obtaining the feature vectors of each of the four samples, the loss is gen-
erated by cross-contrast learning. The cross-prediction module CP is a multi-layer
perceptron that predicts the projection of the input features in the contrast learning
space. Given a feature pair ⟨F1, F2⟩, F1,query is input to CP and the output obtained
is compared with F2,key. At the same time, input F2,query to CP as well, and the
obtained output is compared with F1,key. The contrast learning loss of the feature
pair ⟨F1, F2⟩ is given by the following equation:

ctr (F1, F2) = −2 ·
(
⟨CP (F1,query) , F2,key⟩
∥CP (F1,query)∥2 ∥F2,key∥2

+
⟨CP (F2,query) , F1,key⟩
∥CP (F2,query)∥2 ∥F1,key∥2

)
, (9)

where ⟨a, b⟩ denotes the inner product of two vectors a and b. Applying Equa-
tion (9) for contrast learning between F and Fcomplete forces the features to be
invariant in time, and similarly between Faug and Fcomplete aug; contrast learning
between F and Faug forces the features to be invariant in space, and similarly
between Fcomplete and Fcomplete aug between Faug and Fcomplete aug as well. In ad-
dition, compared to the incomplete action sequence XO, the spatially enhanced
complete sequence Xaug transforms in both the temporal and spatial domains, and
thus contrast learning between F and Fcomplete aug can guide the model to learn
spatio-temporal invariant information, and similarly between Fcomplete and Faug. In
summary, the loss LC of the spatio-temporal contrast task is given by the following
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equation:

LC =
1

N

N∑
i=1

(ctr (Fi, Fi,complete) + ctr (Fi,aug, Fi,complete aug))

+
1

N

N∑
i=1

(ctr (Fi, Fi,aug) + ctr (Fi,complete, Fi,complete aug))

+
1

N

N∑
i=1

(α ∗ ctr (Fi, Fi,complete aug) + β ∗ ctr (Fi,aug, Fi,complete))

(10)

where N is the batch size and α and β are two coefficients for adjusting the weight
of losses.

In this task, the shared encoder Es and the momentum encoder Em in the spatio-
temporal feature extraction network E extract the query features and key features
of samples, respectively, and the spatio-temporal contrast loss LC passes the super-
vision signal through back propagation, while supervising the training of the shared
encoder Es, the contrast mapping module CM and the cross-prediction module
CP , and updating the weights of Em by momentum, so as to introduce the tempo-
ral consistency, spatial consistency and spatio-temporal consistency information in
3D actions into the feature representation of the encoder.

3.4 Spatio-Temporal Feature Extraction Network Based
on Graph Convolution Recurrent

The human action consists of the change of joint points in time and space, and the
rich spatio-temporal information in the 3D skeleton sequence is the key to describe
the action semantics. A single recurrent neural network or graph convolutional
network has certain shortcomings. In this paper, we propose a spatio-temporal
feature extraction network (STFEN) based on graph convolutional recurrent, which
combines graph convolutional and recurrent neural networks to extract local static
spatial features, inter-frame motion temporal features and global motion spatio-
temporal features of 3D action sequences in a hierarchical manner while retaining
the network’s sensitivity to time-domain information. The structure of this network
is shown in Figure 4.

The proposed spatio-temporal feature extraction network consists of two hetero-
geneous network modules in a hierarchy of spatial feature extraction and temporal
feature transfer. The spatial feature extraction module consists of a number of graph
convolutional networks with shared weights. In this module, graphs are constructed
on the input set of joint point coordinates with the natural connection of the human
skeleton as a priori. Specifically, the elements in the adjacency matrix A of the
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Figure 4. Schematic diagram of the spatio-temporal feature extraction network. The
network consists of two modules, the spatial feature extraction and the temporal feature
transfer, to extract the spatial and temporal features of the 3D skeleton sequence in
a hierarchical manner.

graph are calculated as follows:

Ai,j =

1, if connect(i, j),

0, otherwise,
(11)

where connect(i, j) indicates that there is a skeletal connection between the ith and
jth joint point in the human body structure. The set of 3D joint point coordinates
of each frame is input into the graph convolution network, and the local stationary
spatial features are extracted by graph convolution of the input information accord-
ing to the adjacency matrix A. The local spatial feature fspatial,t for the t

th frame is
calculated as follows:

fspatial,t = GCN (xt, A) . (12)

After obtaining all the single-frame local spatial features in the sample, these
features are input into the temporal domain feature transfer module for contextual
information extraction. The temporal domain feature transfer module consists of
a bidirectional recurrent neural network. After obtaining the stationary spatial
features of a single frame, they are input into the forward hidden layer and the
backwards hidden layer for information propagation in temporal order and temporal
inverse order, respectively, and the output of the states from the forward hidden
layer and the backwards hidden layer is concatenated as the features of this hidden
layer. After the temporal domain feature transfer, the motion features incorporating
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the contextual information are obtained. The tth frame feature is computed as the
following equation:

fmotion,t = concate(
−→
ht ,
←−
ht)

= concate(
−−→
Wxhfspatial,t +

−−→
Whh

−→
ht +

−→
bh ,
←−−
Wxhfspatial,t +

←−−
Whh

←−
ht +

←−
bh),

(13)

where concate (·) denotes the join operation,
−−→
Wxh,

−−→
Whh,

−→
bh denotes the weight

and bias in the forward hidden layer, and
←−−
Wxh,

←−−
Whh,

←−
bh denote the weights and

biases in the backwards hidden layer. Finally, the single-frame motion features
passed through the temporal domain features are concatenated to obtain the spatio-
temporal feature F of the whole 3D action sequence. The feature contains rich
spatio-temporal information and has powerful action semantic description capabil-
ity.

4 EXPERIMENTS

4.1 Datasets and Experimental Settings

Following previous studies on 3D action prediction [30, 31, 32, 33, 34, 35], the
proposed method is evaluated on the NTU RGB + D dataset [44]. NTU RGB + D
dataset is a large-scale multimodal human action recognition dataset containing
60 action categories and 56 800 skeleton sequences. The recordings were performed
by 40 volunteers and captured with the Microsoft Kinect v2 sensor. Each action is
captured by 3 cameras at the same time, those have the same height but different
horizontal angles: −45◦, 0◦ and 45◦. Two evaluation benchmarks are provided for
this dataset:

1. Cross-Subject(CS): The dataset is divided into a training set and a testing set
by subject, where the training set and the testing set each contains 20 sujects.
For this evaluation, the training and testing sets have 40 320 and 16 560 samples,
respectively.

2. Cross-View(CV): The dataset is divided by camera, where samples from cam-
eras 2 and 3 are used for the training set while samples from camera 1 are used
for the testing set. For this evaluation, the training and testing sets have 37 920
and 18 960 samples, respectively.

SYSU 3D HOI dataset [45] contains 12 categories of actions performed by 40 vol-
unteers, with a total of 480 samples. All these actions are human-object interactions,
captured by a Kinect camera. Since the skeleton data cannot represent the manip-
ulated objects and some actions have the same manipulated objects and motions, it
is more difficult to predict 3D actions on this dataset. We adopt the cross-subject
criterion provided by the authors to evaluate the proposed method. In this set-
ting, samples performed by half of the subjects are used as the training set and
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the remaining half as the testing set. The authors provided 30 random splits, we
evaluate the model under each split separately, and finally report the average accu-
racy.

Self-Supervised Tasks
Feature Encoder

Average Prediction Accuracy
SD STC Cross-Subject Cross-View

× × STFEN 43.89 47.50√
× STFEN 45.71 46.80

×
√

STFEN 49.09 48.85√ √
STFEN 50.19 55.13

Table 2. Self-supervised tasks ablation experiment results (%) on NTU RGB+D

The specific implementation of the proposed self-supervised learning method
uses a multi-task learning framework. In addition to the state discrimination task
and the temporal contrast task described in Section 3, a motion prediction task is
introduced with reference to the approach in the self-supervised 3D action recogni-
tion study [10]. For the incomplete action sequence input XO, the corresponding
complete sequence XP is generated based on its encoded features:

XP = FC (GRU (F )) +XO. (14)

The loss calculation for the motion prediction task is then obtained as follows:

LM =

∑N
i=1 ∥XP,i −Xi∥22

N
, (15)

where N is the batch size.

The proposed spatio-temporal feature extraction network consists of two parts
with the same structure, the shared encoder Es and the momentum encoder Em,
where Es is used for feature extraction in the state discrimination task, the motion
prediction task, and the encoding of the query feature vector in the spatio-temporal
contrast task, and Em is used for the encoding of the key feature vector in the spatio-
temporal contrast task. In the multi-task self-supervised training, Es receives the
supervision signal generated by the losses of each self-supervised task to optimize
weights, and the total loss Lself are calculated as follows:

Lself = aLD + bLC + cLO + dLM . (16)

Since different losses have different ranges of value distribution, a, b, c and d are
introduced to balance the magnitude of losses for each self-supervised task, which
are set to 0.01, 0.1, 1 and 1 in the experiments. The initial values of weights in
Em are the same as Es, but instead of receiving the back propagation generated
by losses, a momentum update is taken and calculated by applying Equation (7),
where the value of momentum m is set to 0.9. Both α and β in Equation (10) are
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set to 0.01. After self-supervised training, the weights of Es are fixed as the feature
extractor for 3D action prediction task.

In the spatio-temporal feature extraction network, the graph convolutional net-
work of the spatial feature extraction module uses a single-layer ST-GCN [46] with
the number of channels set to 64, and the temporal feature transfer module is a two-
layer bidirectional GRU network [47] with 300 neurons per layer. The ranking net-
work RN is a two-layer perceptron with the structure (600, 2 048)-batchnorm-relu-
(2 048, 2). The contrast mapping module CM is a two-layer perceptron with the
structure (600, 2 048)-batchnorm-relu-(2 048, 1 024). The cross-prediction module
CP is a three-layer perceptron with the structure (1 024, 2 048)-batchnorm-relu-
(2 048, 2 048)-batchnorm-relu-(2 048, 1 024). The FC in Equation (1) is a fully
connected layer with the structure (600, 1), GRU in Equation (14) is a two-layer
GRU with 600 units in each layer. Adam optimizer is used to train the network
with the batch size of 128. In the self-supervised training phase, the training epoch
is set to 10, the initial learning rate is set to 5× e−4, and decays with a factor of 0.1
at epoch 6. In the action prediction training phase, the training epoch is set to 30,
the initial learning rate is set to 1 × e−2, and decays with a factor of 0.1 every 10
epochs.

4.2 Ablation Study

To validate the contribution of the self-supervised tasks and network structure pro-
posed in this paper, the following ablation experiments are conducted on the NTU
RGB +D dataset.

4.2.1 Effectiveness of Self-Supervised Tasks

The effectiveness of the state discrimination task and the spatio-temporal contrast
task proposed in this paper is verified under two division criteria of cross-subject
and cross-view in NTU RGB + D dataset. We train the network with only two
losses in Equation (1) and Equation (15) as the baseline. The average prediction
accuracy for different combinations of self-supervised tasks is shown in Table 2.
Besides, “SD” represents State Discrimation and “STC” represents Spatio-Temporal
Contrast.

As can be seen in Table 2, when the spatio-temporal feature extraction network
proposed in this paper is used as the feature encoder, the average prediction accu-
racy of the model decreases by 1.10% and 6.28% under cross-subject and cross-view,
respectivly, when the state discrimination task is removed. This indicates that the
proposed state discrimination task can effectively introduce generic state informa-
tion to the feature representation and enrich the action semantics in the features.
Removing the spatio-temporal contrast task, the average prediction accuracy of the
model decreases by 4.48% and 8.33% under the two divisions, respectively. This
indicates that the proposed spatio-temporal contrast task can effectively train the
model to learn temporal consistency, spatial consistency and spatio-temporal consis-
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tency knowledge, thus significantly improving the representation of features. When
the state discrimination task and the spatio-temporal contrast task are removed
simultaneously, the average prediction accuracy of the model decreases by 6.30%
and 7.63% under the two divisions, respectively. This fully validates the useful-
ness of the two self-supervised tasks proposed in this paper for the model to learn
feature representation. The prediction accuracy of the model at each observation
rate under different combinations of self-supervised tasks is shown in Figure 5 and
Figure 6.

Figure 5. Comparison of prediction accuracy under different observation rates for self-
supervised task combinations (Cross-Subject)

It can be visualized from Figure 5 and Figure 6 that the prediction accuracy of
the model decreases under all observation rates without the state discrimination task
to guide the model to learn state information across instances and categories; and the
prediction accuracy of the model also decreases significantly under all observation
rates without the spatio-temporal contrast task to force the encoder to learn feature
representations with spatio-temporal consistency. This further demonstrates that
the state discrimination task and the spatio-temporal contrast task proposed in this
paper can effectively train the model to learn feature representations that contain
rich action semantics.

4.2.2 Effectiveness of STFEN

We evaluate the performance on NTU RGB + D dataset with RNN and the pro-
posed STFEN as feature encoder, respectively. The experimental results of the
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Figure 6. Comparison of prediction accuracy under different observation rates for self-
supervised task combinations (Cross-View)

average prediction accuracy of the model under all observation rates are shown in
Table 3.

Self-Supervised Tasks
Feature Encoder

Average Prediction Accuracy
SD STC Cross-Subject Cross-View√ √

RNN 49.06 49.02√ √
STFEN 50.19 55.13

Table 3. Feature encoder ablation experiment results (%) on NTU RGB+D

As shown in Table 3, after replacing the feature encoder from the spatio-temporal
feature extraction network proposed in this paper with a recurrent neural network,
the average prediction accuracy of the model decreases by 1.13% and 6.11% under
cross-subject and cross-view, respectively. This indicates that the proposed spatio-
temporal feature extraction network based on graph convolutional recurrent can
capture action features containing rich spatio-temporal information and has good
descriptive ability for 3D skeleton sequences. The detailed prediction accuracy of
the model using different feature encoders under each observation rate is shown in
Figure 7.
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Figure 7. Comparison of prediction accuracy under different observation rates for feature
encoder

Figure 7 visualizes the prediction accuracy of the model under different observa-
tion rates when using the recurrent neural network as the feature encoder and when
using the spatio-temporal feature extraction network proposed in this paper as the
feature encoder. It can be clearly seen that, compared to the recurrent neural net-
work, the prediction accuracy of the model under all observation rates is somewhat
improved when the spatio-temporal feature extraction network is used as the fea-
ture encoder on both divisions of the NTU RGB+D dataset. This fully illustrates
the effectiveness of the spatio-temporal feature extraction network based on graph
convolutional recurrent for feature encoding proposed in this paper.

4.3 Comparison with Other Methods

To the best of our knowledge, there are no other publically available studies on self-
supervised 3D action prediction. Therefore, the performance of supervised 3D action
prediction methods is listed in the comparison as a reference. The experimental
results on NTU RGB + D dataset under two divisions are detailed in Table 4 and
Table 5.

It can be seen that the prediction accuracy of the proposed self-supervised
method has outperformed that of some supervised learning methods [27, 28, 48]
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Methods Backbone
Observation Ratios

0.2 0.4 0.6 0.8

Supervised Methods

F-RNN-EL (ICRA 16) [27] RNN 7.07 18.98 44.55 63.84
MTLN (CVPR 17) [48] CNN 8.34 26.97 56.78 75.13
Local + LGN (TIP 19) [30] CNN 32.12 63.82 77.02 82.45
CEL (TCSVT 20) [31] RNN 35.56 54.63 67.08 72.91
HARD-Net (ECCV 20) [32] GCN 42.39 72.24 82.99 86.75
Local + AGCN-AL(TCDS 21) [33] GCN 38.18 71.19 82.25 86.33
GCN-EAM (ICPR 22) [34] GCN 41.50 72.23 82.07 85.61
S1 + S2 (SPL 22) [35] GCN 42.32 73.62 84.1 87.83

Self-Supervised Method

Ours RNN 25.07 50.99 61.89 66.13

Table 4. Action prediction accuracy (%) on NTU RGB+D (Cross-Subject)

Methods Backbone
Observation Ratios

0.2 0.4 0.6 0.8

Supervised Methods

CEL (TCSVT 20) [31] RNN 37.22 57.18 69.92 75.41
HARD-Net (ECCV 20) [32] GCN 53.15 82.87 91.34 93.71

Self-Supervised Method

Ours RNN 27.85 55.96 68.42 73.15

Table 5. Action prediction accuracy (%) on NTU RGB+D (Cross-View)

at each observation rate. Under two divisions of the NTU RGB + D dataset, the
performance of our self-supervised method is already close to that of the supervised
3D action prediction method [31] in 2020. Compared with the latest supervised
3D action prediction methods [34, 35], the prediction accuracy of the proposed self-
supervised method is about 20% lower on average at each observation rate. This
fully illustrates the effectiveness of the self-supervised learning method for 3D action
prediction proposed in this paper.

Methods Backbone
Observation Ratios

0.2 0.4 0.6 0.8

Supervised Methods

F-RNN-EL (ICRA 16) [27] RNN 31.61 53.37 68.71 73.96
MTLN (CVPR 17) [48] CNN 26.76 52.86 72.32 79.40
Local + LGN (TIP 19) [30] CNN 58.81 74.21 82.18 84.42
Local + AGCN-AL (TCDS 21) [33] GCN 63.46 80.93 87.92 90.38

Self-Supervised Method

Ours RNN 25.98 51.84 62.73 67.67

Table 6. Action prediction accuracy (%) on SYSU 3D HOI (Cross-Subject)
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The experimental results on SYSU 3D HOI dataset are detailed in Table 6. It
is evident that the performance gap between our self-supervised method and the
supervised method is maintained within an acceptable range.

In addition, we have conducted experiments on 3D action recognition task. The
experimental results on NTU RGB + D dataset under two divisions are detailed in
Table 7. It can be seen that the performance of our method is competitive compared
to the recent self-supervised 3D action recognition method [20].

Methods Backbone Cross-Subject Cross-View

LongTGAN (AAAI 18) [9] RNN 39.1 48.1
MS2L (ACM MM 20) [10] GCN 52.6 –
CSSL-SAR (NeurIPS Workshop 20) [12] ResNet 52.3 62.1
PCRP (TMM 21) [13] GRU 53.9 63.5
CAE+ (Information Sciences 21) [14] LSTM 58.5 64.8
P&C FW-AEC (CVPR 20) [15] GRU 50.7 76.1
CRRL (TIP 21) [18] RNN 67.6 73.8
SkeletonCLR (CVPR 21) [16] GCN 68.3 76.4
AimCLR (AAAI 22) [20] GCN 64.3 79.7
MG-AL (TCSVT 22) [25] GCN 64.7 68.0
Ours RNN 74.5 78.9

Table 7. Comparison of self-supervised action recognition methods on NTU RGB+D

4.4 Qualitative Analysis

The confusion matrix of the proposed method on the NTU RGB + D dataset is
shown in Figure 8. As can be seen from the figure, the proposed method is less
able to discriminate between actions with smaller amplitude and finer granularity of
motion areas, such as “drink water” and “eat meal/snack”, “make a phone call” and
“playing with phone”. This may be due to the fact that the discriminative of these
actions is the object with which the person interacts, but no object information is
reflected in the skeleton sequence, and the distinction in action performance is small,
resulting in less discriminative features extracted by the network.

5 CONCLUSION

In this paper, we propose a self-supervised learning method for 3D action prediction
based on state discrimination and spatio-temporal contrastive graph convolution re-
current. It guides the model for cross-instance and cross-category state information
learning through relative action completeness perception, and endowing the feature
representation with temporal consistency, spatial consistency and spatio-temporal
consistency through spatio-temporal cross-contrast learning. For the rich spatio-
temporal information in 3D action sequences, a spatio-temporal feature extraction
network based on graph convolution recurrent is proposed, including two modules of
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Figure 8. Comparison of prediction accuracy under different observation rates for feature
encoder

spatial feature extraction and temporal feature transfer, to enrich the action seman-
tics in the feature representation by combining the characteristics of heterogeneous
networks. The proposed self-supervised learning method and the spatio-temporal
feature extraction network are evaluated on two 3D action datasets, and the ex-
perimental results fully demonstrate the effectiveness of each part of the proposed
method.
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