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Abstract. Aspect-Based Sentiment Analysis (ABSA) aims to predict the sentiment
polarity of the given aspect word within the sentence. Recent studies frequently
treat syntactic and semantic features as independent representations, thereby over-
looking their intrinsic correlation. Concurrently, most of the existing methods
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largely neglect the significance of dependency types, which eventually impacts the
accuracy of sentiment analysis. Research based on cognitive theory indicates a mu-
tual influence between syntax and semantics. Based on this, we propose an ABSA
model based on enhanced multi-feature graph convolutional network (Triple-GCN).
Firstly, a shared enhanced graph convolutional module is proposed to integrate syn-
tactic and semantic information. Following this, a thorough fusion of this syntactic
and semantic information is carried out. Besides, relation and adjacency matrices
are utilized for the innovative reconstruction of hidden state vectors. Syntactic
graph convolution module dynamically fuses hidden state vectors and dependency
features. Additionally, a position weight encoding function is designed to compre-
hend sentiment dependencies by drawing attention to aspect-near words. On the
semantic side, dynamic semantic graphs are constructed, enabling the capture of
semantic features. The model has been evaluated on three public datasets: Twitter,
Laptop14, and Restaurant14. Compared to existing baseline models, the effective-
ness of this model has noticeably improved.

Keywords: Aspect-based sentiment analysis, graph convolutional network,
attention mechanism, dependency tree, common information, shared weight ma-
trix

1 INTRODUCTION

Sentiment analysis is an important branch in natural language processing [1]. Early
studies in sentiment analysis mainly regarded an article or a sentence as an infor-
mation unit for overall sentiment analysis, but there may be multiple sentiment
polarities in an article or a single sentence, which cannot satisfy the user’s need to
analyze the sentiment tendency of different aspects.

Aspect-Based Sentiment Analysis (ABSA) aims to identify the sentiment polar-
ity of specific aspects in a given sentence [2, 3]. For instance, consider the review
shown in Figure 1, which is taken from Restaurant14: “The price was reasonable
although the service is poor.” The comment contains two aspect words “price” and
“service”, the former corresponds to the positive affective word “reasonable” and the
latter corresponds to the negative affective word “poor”. The former corresponds
to the positive sentiment word “good” and the latter corresponds to the negative
sentiment word “poor”.

The key of ABSA task lies in modeling the relationship between the aspect and
its opinion words. Early ABSA tasks mainly utilized traditional machine learning
methods, using manually extracted features, such as sentiment dictionaries and other
tools for analysis [4, 5].

These methods require manual intervention and have poor generalization ca-
pabilities. With the continuous development of neural networks, they have been
widely used in ABSA tasks. Previous studies have proposed various recurrent neu-
ral networks (RNNs) [6] with attention mechanisms to improved accuracy while
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Figure 1. An example sentence with its dependency tree

analyzing the sentiment of less complex sentences. But these networks fell short
when confronted with intricate sentences.

Incorporating an attention mechanism provides focused consideration on specific
aspects [7, 8, 9]. However, the attention mechanism solely engages with context and
aspect words at the semantic level, neglecting the syntactic relationship which exists
between words.

This oversight could potentially lead to the misinterpretation of sentiment polar-
ity. Syntactic information is mainly reflected in the dependency relationship between
words, usually described by a dependency tree [10, 11, 12].

Recently, many studies have used graph convolutional networks (GCN) [13] or
graph attention networks (GATs) [14] to encode syntactic, semantic, as well as
common information of both [15, 16]. The distance between aspect and opinion
words is shortened by the syntactic dependency tree, which effectively solves the
problem of long-distance dependency. However, the incomplete syntactic struc-
ture of some sentences generates noise during the processing, resulting in unstable
syntactic parsing results. In other words, the existing syntactic parsers are not
specifically tailored for ABSA tasks. Therefore, methods that rely only on syn-
tactic information also have shortcomings in ABSA tasks. Based on this, a dual-
channel model based on syntax and semantics is proposed [17, 18]. In dual-channel
models, syntactic and semantic information are processed in their own indepen-
dent channels, and the results are simply concatenated for sentiment classifica-
tion.

In the field of natural language processing, syntax and semantics are two key
aspects. Syntax involves the structure and combination rules between words and
phrases, while semantics involves the meaning and concept of words and phrases.
Based on Pylkkänen, the study found that there is a certain degree of intersection
and overlap between syntax and semantics [19, 20]. The posterior middle/superior
temporal gyrus (pM/STG) that processes syntactic information intersects with the
left anterior temporal lobe (LATL) and ventromedial prefrontal cortex (vmPFC)
that process semantics. The intersection of pM/STG and LATL is shown in Fig-
ure 2. This means that the two brain regions pM/STG and LATL share functions
when processing language. Specifically, the study conducted a comparison of the
brain area activities in syntactic and semantic tasks, observed the activity patterns
of these brain areas in different tasks, and concluded that it is difficult to distin-
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guish between syntactic effects and semantic effects, while it found the intersection
between pM/STG and LATL.

There are two limitations of existing ABSA methods:

1. In previous methods, syntactic and semantic information are usually processed in
separate channels, and the extracted syntactic and semantic features are simply
merged without fully utilizing the common information between them.

2. Some sentences lack obvious syntactic structure, which affects the accuracy of
sentiment analysis.

Figure 2. MEG results on processing stages of language comprehension

Based on these limitations, we propose an ABSA model based on enhanced
multi-feature graph convolutional network (Triple-GCN). This model uses depen-
dency syntactic analysis tools to construct a syntactic dependency graph, and em-
ploys a multi-head attention mechanism to construct a dynamic semantic graph to
extract semantic information. Further, it constructs a shared enhancement module
via a graph convolutional network to collate sentiment information from both syn-
tactic and semantic aspects. The fusion of these information types enhances model
performance. The main contributions of this paper are as follows:

• We propose a Triple-GCN model based on enhanced multi-feature graph con-
volutional network. This model integrates syntactic information with semantic
information to emphasize the sentiment dependence between context words and
aspect words.

• Combining human cognitive practice, this paper proposes a shared enhanced
weight matrix to exchange features between syntax and semantics and learn
similar feature representations at different levels. Besides, parameter sharing
is implemented during the graph convolution process to reduce the amount of
calculation.

• We design a dependency-based syntactic graph convolution (SynGCN) module
to dynamically merge hidden state vectors and dependency features. And the
position weight encoding function is proposed to comprehend sentiment depen-
dencies by drawing attention to aspect-near words.

• Experiments were administered on three public datasets to ascertain the perfor-
mance of Triple-GCN. The experimental results show that compared with the
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most advanced ABSA model, the Triple-GCN model outperforms most main-
stream baseline methods, establishing its proficiency in ABSA tasks. Further-
more, this paper analyzes the contribution of each module of the Triple-GCN
model to its overall performance through ablation experiments, verifying the
rationality and role of the model.

2 RELATED WORK

In recent years, the development of deep learning has given rise to numerous methods
in ABSA. Various methods have been proposed to address the issues existing in
ABSA, such as unstable syntactic parsing, insufficient utilization of syntactic and
semantic information, and ignoring the connection between them. Currently, the
main focus of existing ABSA methods is to model the correlation between a given
aspect and its context. All of these methods can be classified into three primary
categories:

1. semantic-based models;

2. syntactic-based models;

3. dual-channel models based on syntax and semantics.

2.1 Semantic-Based Models

Attention networks combined with deep neural networks can establish semantic re-
lationships between themselves and their contexts. Therefore, most semantic-based
models are developed on the basis of the attention mechanism. Wang et al. [11]
proposed an Atention-based LSTM with Aspect Embedding, the model using atten-
tion can pay close attention to the upper and lower aspects of specific aspects. Ma
et al. [21] proposed Interactive Attention Network for determining the attentional
weights of the context. Fan and Feng [22] added a fine-grained attention mechanism
to construct a multi-granular attention network model on this basis. Although the
methods based on the attention mechanism achieved good results, due to the lack of
utilization of syntactic information, the judgment of sentiment polarity was wrong
when dealing with complex sentence structures or multiple aspects.

2.2 Syntactic-Based Models

By constructing a dependency tree through syntactic analysis, a syntax-based model
is used to reduce the long-distance dependency between the subject and its opinion
words. Zhang et al. [23] constructed an undirected graph based on the depen-
dency tree and used GCN to learn contextual representations containing syntactic
information. Huang and Carley [24] proposed a target dependency graph attention
network and constructed a graph attention network based on the dependency tree
for representation learning. Wang et al. [25] introduced dependency relationship
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information to construct a relationship graph attention network, but this method is
overly dependent on the dependency tree. When the sentence structure is complex
or the dependency tree parsing is wrong, the model performance will be affected.
Sun et al. [26] stacked a GCN layer to extract rich representations over dependency
tree. Liang et al. [27] build aspect-focused and inter-aspect graphs to learn aspect-
specific sentiment features. Zhang and Qian [28] constructed a global lexical graph
to capture the word co-occurrence relation and combined a global lexical graph and
a syntactic graph.

2.3 Dual-Channel-Based Models

To solve above problems, the study tried to use a dual-channel model based on
syntax and semantics to integrate syntactic and semantic information. Li et al. [17]
constructed a dual-graph convolutional network based on syntax and semantics,
extracted syntactic and semantic features respectively, and then realized the inter-
action between the two through a dual affine module, achieving good results. Pang
et al. [16] built a semantic graph via multi-head self-attention mechanism. It takes
dual-channel GCN to encode the sentence syntax and semantics, respectively.

3 THE APPROACH

The architecture of Triple-GCN is presented in Figure 3. The proposed model
contains five major components:

1. Encoding layer;

2. GCN layers;

3. Masking layer;

4. Average-Pooling layer; and

5. Sentiment classification layer.

Details of each component are described as follows.

3.1 Encoding Layer

Given a sentence s = {w1, w2, . . . , wa1 , wa2 , . . . , wam , . . . , wn} with n words, the
aspect a = {wa1 , wa2 , . . . , wam} is a subsequence of sentence s. The aim of the
Aspect-Based Sentiment Analysis (ABSA) task is to predict the sentiment polarity
y ∈ {P,O,N} for a given aspect, where P , O and N represent “Positive”, “Neutral”,
and “Negative”, respectively.

Each word in the sentence is embedded into a low-dimensional vector via a pre-
trained word embedding matrixEe ∈ R|Ve|×de , where |Ve| is the size of the vocabulary
list and de denotes the dimensionality of the word embedding, yielding the word em-
bedding vectors V = {v1,v2, . . . ,vn}, where vi ∈ Rde signifies the word embedding
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Figure 3. Triple-GCN model structure diagram

vector for the ith word. These embeddings are then fed into a BiLSTM layer, gen-
erating the hidden state vectors H = {h1,h2, . . . ,hn}, H ∈ Rdlstm×n, containing
the contextual information between aspect words and opinion words, where dlstm is
the output dimension of the hidden state vector from the BiLSTM.

A sentence-aspect pair “[CLS] sentence [SEP ] aspect [SEP ]” is sent to BERT-
base uncased [29] to obtain the hidden state vectors of the sentence. The BERT-
base uncased model is a 12-layer transformer with 768 hidden units and 12 attention
heads, pretrained on lower-cased English text. Then, the hidden representations of
the sentence are input into the SynGCN and ASGCN, respectively.

3.2 Graph Convolutional Networks

Drawing inspiration from conventional convolutional neural networks (CNNs) and
graph embedding, Graph Convolutional Networks (GCNs) are an efficient variant of
CNNs that operate directly on graphs. GCN takes a graph as its input and generates
an updated feature representation for each node within the graph as output. In
handling graph-structured data, GCN can execute the convolution operation on
immediately connected nodes, thereby encoding local information. Through the
message-passing mechanism of multilayer GCNs, each node in a graph is capable of
processing and learning from a wider range of information. For a graph containing
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n nodes, we define the lth layer graph structure as G = (A,H(l)), where A ∈ Rn×n

acts as the adjacency matrix, H(l) is the feature representation of the lth layer of
the GCN, and the computation of the (l+1)th layer of the GCN is shown as follows:

H(l) = σ
(
AH(l−1)W (l) + b(l)

)
, (1)

where W (l) is the learnable weight matrix, b(l) is the bias, and σ(·) denotes the
activation function.

In the research, we have incorporated three distinct graph convolution module,
each contributing significantly to our work in unique ways. The SynGCN focuses
on syntactic relations while the ASGCN handles aspects of semantic graphs. Lastly,
the SEGCN serves as a shared enhanced graph convolutional network module for
a more comprehensive understanding.

3.2.1 SynGCN

Inspired by [26], the Stanford parser is utilized to parse the sentence and obtain
its syntactic dependency information. Meanwhile, The type of dependency and the
distance between the aspect and its opinion word are also considered. Based on this,
the Dependency-based Syntactic graph convolution (SynGCN) module is proposed.
The dependency tree is transformed into the syntactic adjacency matrix Aij ∈ Rn×n

as follows:

Aij =

1, wi, wj contains dependencies,

0, otherwise.
(2)

Next, the obtained dependency type information is embedded into the low-
dimensional vector space Er ∈ R|Vr|×dr , where |Vr| is the size of the dependency
type vocabulary and dr is the dimension of the dependency type word embedding.
Then, BiLSTM or BERT is used as the sentence encoder to extract the hidden state
vectors H and the dependency type representation Htype.

Combining Htype with the output H of the BiLSTM yields H
(0)
sy . With this

operation, the model dynamically determines the extent to which semantic and
dependency type information is used during the fusion process:

H(0)
sy = αH + (1− α)Htype, (3)

where α is a hyper-parameter.

Specifically, there are L layers of SynGCN, H
(0)
sy is used as the initial input of

the first SynGCN layer. When l ∈ [1, L − 1], the output of the l − 1 layer before
splicing is used as the input of the graph convolution of the l layer, and the graph
convolution of the l layer is as follows:

H(l)
sy = SynGCN

(
A(l)

sy , H
(l
sy,in,W

(l)
sy

)
, (4)
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where A
(l)
sy is the adjacency matrix of the lth SynGCN layer, H

(l)
sy,in is the input

of the lth SynGCN layer, W
(l)
sy ∈ R(dlstm+(l−1)×dgcn)×dlstm , dlstm is the dimension of

the hidden state vector, dgcn is the output dimension of the graph convolution layer,

and H
(l)
sy is the feature representation of the lth SynGCN layer.

Words indicating sentiment tendencies are usually located near aspect words,
and those more distant from aspect words generally contain less sentiment informa-
tion. To enhance the importance of words neighboring to aspect words, a Position
Weight (PW) encoding function was designed:

PWi =

{
1− i

k
, 0 ≤ i < k,

0, k ≤ i ≤ T,
(5)

where PWi is the syntactic dependency distance of the ith word, k represents the
slope of the weight distribution function. Different k values correspond to different
position weights, as shown in figure. T represents the predefined distance boundary.

The positional weights of H
(L)
sy are encoded using the syntactic dependency

distance PW , as shown in Equation (6):

H(L)
sy = PWH(L)

sy , (6)

where PW are positional weights used to reduce noise generated during dependency

syntax analysis. The position-weighted H
(L)
sy is used as the final output of SynGCN.

3.2.2 ASGCN

The syntactic structure of some phrases is confusing, and their semantic information
has a greater impact on the judgment of sentiment polarity. In order to obtain
the deep semantic information, a dynamic semantic graph is designed, and the
Attention-based Semantic graph convolution (ASGCN) module is proposed.

Specifically, the hidden state vector H is utilized as the first layer input of
the L-layer ASGCN, with each layer’s output of ASGCN serving as the succeeding
layer’s input. The M -head attention mechanism that ASGCN employs results in M
attention score matrices (A1, A2,. . . , AM), as demonstrated in Equation (7):

A(l) =
H

(l)
as,inWas,q × (H

(l)
as,inWas,k)

T√
dlstm
M

, (7)

where H
(l)
as,in denotes the input of the lth layer of ASGCN, Was,q and Was,k are the

learnable weight matrices, dlstm is the dimensionality of the hidden state vectors,
and M is the number of attention heads.

Interpreting the attention score matrix as a fully connected graph allows irrele-
vant context words to contribute to feature extraction, which introduces noise. To
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address this issue, the sorta (sorted attention select) method is proposed, as shown
in Figure 4.

Figure 4. sorta attention selection method

The figure illustrates the sorta attention selection method used in our model,
which plays a crucial role in refining the attention mechanism for aspect-based sen-
timent analysis. In the first stage, multiple attention score matrices (A1, A2, . . . ,
AM) are generated through the multi-head attention mechanism. These matrices
represent how different parts of the input sequence influence each aspect word, with
each head focusing on different contextual elements.

After generating these matrices, a softmax normalization is applied across each
matrix to convert the attention scores into probabilities. This process ensures that
the scores are comparable and interpretable as probabilities. Following this, the
max function is used to select the highest probability values at each position across
all matrices. This step is crucial because it identifies the most relevant attention
heads, thereby highlighting the most significant contextual words for the current
aspect word.

Next, using the sorta attention selection method, the most pertinent attention
values corresponding to the top m context words are retained, and all other values
are set to zero. This focused attention mechanism ensures that the model only
considers the most relevant context when determining the sentiment of the aspect
word. By reducing noise and focusing only on the most influential words, the model
can better capture the sentiment nuances.
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A′ = max
(
A(1), . . . ,A(M)

)
, (8)

Aas = sorta(A′), (9)

where A(i) denotes the ith attention score matrix, Aas is the semantically most
relevant attention score matrix, which serves as the neighbor matrix of ASGCN.

The lth layer ASGCN is computed as shown in Equation (10):

H(l)
as = ASGCN (A(l)

as ,H
(l)
as,in,W

(l)
as ), (10)

where A
(l)
as is the adjacency matrix of the lth layer of ASGCN, the vector H

(l)
as,in

serves as the input for the convolution process in the lth layer of the graph. It
represents the output from the (l− 1)th layer, processed before splicing, ready to be
utilized in the lth layer, where l ∈ [1, L− 1].

The sorta method’s ability to distill the attention to only the most critical words
directly impacts the accuracy of sentiment classification, particularly in complex
sentences where multiple sentiments might be present. Practically, this approach
can be beneficial in applications like customer feedback analysis, where accurately
identifying key sentiment drivers can lead to better insights and decision-making.
Additionally, the effectiveness of this attention selection strategy could inspire fu-
ture research in refining attention mechanisms for other natural language processing
tasks.

3.2.3 SEGCN

As described by Pylkkänen [20], syntax and semantics are intrinsically linked, and
common information needs to be highlighted in the feature extraction process to en-
hance sentiment transmission. To this end, a Shared Enhanced graph convolutional
(SEGCN) module is designed, as shown in Figure 5.

In the SEGCN module, two separate Graph Convolutional Networks (GCNs)
are used: one for syntactic information (SynGCN) and the other for semantic infor-
mation (ASGCN). The syntactic graph Asy and the semantic graph Aas serve as
inputs to these GCNs, producing output features Hsy and Has, respectively. The
shared weight matrix Wse then processes these features to generate new output fea-
tures Hs−sy and Hs−as, which are further combined using a parameter λ to form
the final output Hse:

Hs−sy = SynGCN(Asy,Hsy,Wse), (11)

Hs−as = ASGCN(Aas,Has,Wse). (12)

The final output of SEGCN Hse is as shown in the formula:

Hse = λHs−sy + (1− λ)Hs−as, (13)
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Figure 5. Shared Enhanced graph convolutional module

where λ is the weight coefficient used to dynamically compromise and fuse two
feature representations with different semantics.

The SEGCN module’s ability to share parameters between the syntactic and
semantic spaces ensures that the most critical information is retained, thereby im-
proving the model’s understanding of complex language structures. This method
is particularly effective in capturing the nuances of sentiment in text, where both
syntax and semantics play crucial roles. The practical implications of this module
extend to various natural language processing tasks, such as customer feedback anal-
ysis, where understanding the underlying sentiment is vital for decision-making. Ad-
ditionally, this approach can inspire future research in developing more sophisticated
models that better integrate multiple linguistic features for enhanced performance
in sentiment analysis and related tasks.

3.3 Masking Layer and Average Pooling Layer

After the graph convolution layers, we obtain a shared feature representation Hse =
{hse,1, . . . ,hse,n} that fully integrates syntactic and semantic information. In order
to highlight the important features of aspect words, the output vector Hse of the
final GCN layer is context-masked, and only the final representation of aspect words
is retained:

ht =

{
0, 1 ≤ t < a+ 1, a+m < t ≤ n,

1, a+ 1 ≤ t ≤ a+m,
(14)

where t represents the position of the word in the text sequence, ht represents the
vector representation of the position t in the text sequence, and a represents the
starting point of the aspect word in the text sequence The starting position, m,
represents the length of aspect.
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Perform mask operation on the output of the last layer of SEGCN:

Hmask = {0, . . . ,ha+1,ha+2, . . . ,ha+m, . . . , 0} , (15)

where Hmask represents the masked output vector of the last layer of SEGCN, and
ha+m is the retained feature representation corresponding to the aspect word.

Perform an average pooling operation on the feature representation Hmask out-
put by the mask layer:

Hp = Average(Hmask), (16)

where Average(·) represents average pooling, and Hp is the final aspect feature
representation.

3.4 Affective Classification Layer

In order to predict the sentiment polarity of a given aspect, the final aspect fea-
ture representation Hp is used as the input of the fully connected layer and the
probability distribution y is obtained through the softmax layer:

y = softmax (WHp + b), (17)

where W and b represent the trainable weight matrix and bias of the fully connected
layer, respectively.

3.4.1 Model Training

The objective function of the model uses the cross entropy loss function and is
trained using the standard gradient descent method:

loss = −
S∑

i=1

C∑
j=1

yji log ŷ
j
i + λ||θ||2, (18)

where S represents the size of the training set, i represents the ith sample, C rep-
resents the number of sentiment polarity categories, j represents the jth sentiment
polarity, y is the true probability distribution, ŷ is the predicted probability distri-
bution, λ is the weight coefficient of L2 regularization, and θ is the model parameter.

4 EXPERIMENTAL SETTINGS

This section introduces the benchmark datasets used for evaluation and the baseline
models used for comparison. The experimental results are analyzed from different
perspectives, including datasets, implementation and parameter settings, baseline
models, comparative experiments, ablation experiments, sample analysis, hyper-
parameters, and the number of model layers.
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4.1 Datasets

To verify the effectiveness of the Triple-GCN model, experiments were conducted
on three widely used benchmark datasets: Twitter, Laptop14, and Restaurant14.
These datasets are particularly suitable for aspect-based sentiment analysis tasks
and provide a comprehensive evaluation of the model’s performance.

The Twitter dataset, originally provided by Dong et al. [30] and later adapted
by Zhang et al. [23], includes 6 051 training samples and 677 testing samples. It
focuses on sentiment polarities in short texts from tweets, capturing the challenges
of analyzing sentiment in unstructured social media environments where language
is often informal and varied.

The Laptop14 and Restaurant14 datasets, both derived from the SemEval-2014
Task 4 [31], contain detailed aspect-specific sentiment annotations. These datasets
are crucial for training and evaluating models that perform aspect-based sentiment
classification. Laptop14 comprises 2 282 training samples and 632 testing samples
from laptop reviews, making it particularly suitable for sentiment analysis in the
consumer electronics domain. Restaurant14 consists of 3 608 training samples and
1 119 testing samples from restaurant reviews, providing insights into the model’s
robustness across diverse product review contexts. Additionally, following Chen et
al. [7], instances labeled as “conflict” were removed to maintain dataset consistency.
The consistent use of these datasets in research underscores their reliability and
richness in annotated sentiment data.

The sample label distribution of the dataset is shown in Table 1. The column
headers use abbreviations to represent specific aspects of dataset statistics relevant
to sentiment analysis. The Datasets column indicates the name or identifier, such
as Twitter, Laptop14, or Restaurant14. Samples refers to the total number of en-
tries in each dataset subset (Training, Testing). Positive denotes Positive samples,
Neutral stands for Neutral samples, and Negative indicates Negative samples. Un-
derstanding these terms is crucial for interpreting dataset statistics in sentiment
analysis tasks, which in turn helps researchers and practitioners evaluate dataset
quality, sentiment balance, and aspect diversity.

Datasets Division Samples Positive Neutral Negative

Twitter
Training 6 051 1 507 3 016 1 528
Testing 677 172 336 169

Laptop14
Training 2 282 976 455 851
Testing 632 337 167 128

Restaurant14
Training 3 608 2 164 637 807
Testing 1 119 727 196 196

Table 1. Statistics for the experimental datasets
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4.2 Implementation Details

The experiment uses consistent implementation and parameter settings across dif-
ferent models, employing Stanford CoreNLP [32] as the dependency parser and
300-dimensional pre-trained GloVe embeddings [33] to initialize word embeddings.
Additionally, part-of-speech embeddings and position embeddings are used to enrich
sentence representations.

Specifically, part-of-speech embeddings encode the grammatical category of each
word using a vector representation. Position embeddings encode the relative distance
of aspect words within sentences to enhance aspect-based sentiment analysis. The
dimensions of these two embedding vectors are set to 30. The word, part-of-speech,
and position embeddings are concatenated as the output of the embedding layer,
serving as input to the Bi-LSTM layer. To mitigate overfitting, a dropout parameter
of 0.7 is applied to BiLSTM, SynGCN, ASGCN, and SEGCN layers. The hidden
state vector from BiLSTM has a dimensionality of 100, and the Adam optimizer is
employed with a learning rate of 1.0× 10−3.

The number of layers for SynGCN, ASGCN, and SEGCN is set to 3 for Laptop14
and Restaurant14 datasets because these datasets contain more complex syntactic
structures that benefit from deeper layers to capture intricate relationships between
words. For the Twitter dataset, the number of layers is set to 2 as the text is shorter
and generally simpler in structure, making fewer layers sufficient for capturing rele-
vant syntactic and semantic information.

For the BERT-based model, the BERT-base uncased version [29] is used, with
a word embedding dimension of 768. The batch size is set to 16, and the learning
rate is adjusted to 0.00002. Model performance is evaluated using Accuracy (Acc)
and Macro-F1 (MF1) scores. Detailed parameter settings are available in the code.

4.3 Baseline Methods

In order to verify the effectiveness of the model, 11 related methods are selected for
comparison:

• ATAE-LSTM [11]: The aspect vector is embedded into the word vector and
hidden vector, so that the aspect information participates in the calculation of
attention weight, which strengthens the performance of LSTM on the ABSA
task.

• MGAN [22]: A multigrained attention mechanism is designed to capture word-
level interactions between the aspect and context.

• IAN [21]: Using interactive attention to learn the association between different
aspects and emotions in text, it can effectively capture the emotional information
related to specific aspects in text, and can adjust its focus when considering
different aspects.

• IGATs [34]: An interactive graph attention network model is proposed to cap-
ture dependency information, semantic relations and position information.
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• ASGCN [23]: The syntactic dependency tree and dependency graph of the
sentence are constructed and input into the graph convolutional network to
model the syntactic relationship between aspect words and context.

• CDT [26]: Through the concatenation of BiLSTM and GCN, the information
between aspect words and context in the text is extracted.

• Bi-GCN [28]: A two-layer interactive graph convolutional network is proposed
to distinguish various types of dependency relations or word co-occurrence re-
lations by building a concept hierarchy on the syntactic graph and semantic
graph.

• R-GAT [25]: The dependency tree is reconstructed and GAT is applied for rep-
resentation learning, removing redundant information and taking aspect words
as the root nodes of the dependency tree.

• DGEDT [35]: Use GCN to process graph features, use Transformer to process
plane features, and then fuse the feature representations.

• DualGCN [17]: Use SynGCN to capture syntactic information, while SemGCN
is used to capture semantic information. Differential regularizers and orthogonal
regularizers are then designed to improve model performance.

• DMGCN [16]: A multi-channel GCN method is designed to encode the syntax,
semantics and correlated information from the generated graph.

4.4 Comparative Experiment

Type Model
Twitter Laptop14 Restaurant14

Acc. MF1 Acc. MF1 Acc. MF1

Syn.

CDT 74.13 72.05 75.23 72.26 81.65 73.39
R-GAT 75.21 73.97 76.27 73.32 82.91 75.52
IGATs 75.07 73.84 77.42 73.47 82.51 76.25
DGEDT 74.80 74.51 76.76 72.63 83.30 75.87

Att.
ATAE-LSTM 66.10 65.32 68.28 65.51 76.64 67.87
IAN 72.12 70.12 72.29 70.03 79.15 70.27
MGAN 72.95 70.81 75.29 72.03 80.15 73.27

GCN

ASGCN 72.30 70.81 74.42 71.36 80.93 73.54
BiGCN 73.68 72.42 74.12 71.35 81.48 75.87
DualGCN 77.50 75.15 77.87 75.09 82.21 78.08
DMGCN 77.76 75.61 77.45 74.83 82.64 78.35

Ours Triple-GCN 78.53 76.25 79.03 74.80 83.52 78.44

BERT

DGEDT-BERT 76.30 75.21 79.42 75.36 86.63 80.04
DualGCN-BERT 77.48 77.02 80.12 77.35 87.19 81.47
DMGCN-BERT 77.74 76.28 80.42 78.03 86.42 81.29
Triple-GCN-BERT 77.50 77.15 80.67 78.29 87.21 81.52

Table 2. Comparative experiment
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In this section, we evaluate ABSA models using two main evaluation met-
rics: Accuracy and Macro-averaged F1-score, across three established benchmark
datasets. The comparative results, displayed in Table 2, show that the Triple-
GCN model outperforms others, particularly on Twitter and Restaurant14, where
it achieves the best Accuracy and MF1 scores. Although it performs slightly less
effectively on Laptop14 compared to DualGCN, the overall performance underscores
the model’s capability in ABSA tasks.

The significant improvements in Accuracy and MF1 on Twitter, particularly by
3.73% and 1.74% over syntax-based models like DGEDT, indicate that Triple-GCN
is well-suited for analyzing short and informal texts common in social media. The
integration of semantic information proves crucial in enhancing sentiment analysis in
such contexts, effectively capturing nuances and improving overall model accuracy.

On Laptop14 and Restaurant14, Triple-GCN shows improved performance over
attention-based models like MGAN, with gains in Accuracy and MF1 up to 5.17%.
This indicates that the design of the model, which combines syntactic and semantic
information via a shared weight matrix, effectively captures essential elements of
sentiment analysis, providing robustness across different types of text inputs.

Compared to DMGCN, Triple-GCN further demonstrates its strength, particu-
larly on Twitter, with an additional increase in Accuracy and MF1 by 0.77% and
0.64%, respectively. This improvement is attributed to the shared enhanced graph
convolution module, which effectively integrates syntax and semantics, especially in
less structured text environments, highlighting the model’s adaptability in varied
contexts.

Finally, the introduction of BERT-based models further boosts Triple-GCN’s
performance, especially on Laptop14 and Restaurant14, where Accuracy and MF1
saw modest gains. This underscores the robustness and flexibility of Triple-GCN
when leveraging pre-trained language models for encoding, making it a strong con-
tender for future sentiment analysis applications.

4.5 Ablation Experiments

In order to verify the impact of SynGCN, ASGCN, and SEGCN on the overall
performance of Triple-GCN, ablation experiments were conducted to compare the
performance of Triple-GCN and its variants on three public datasets, as shown in
Table 3. The variants include GCN, w/o SynGCN, w/o ASGCN, and w/o SEGCN.
GCN represents the result obtained by using only the graph convolution network,
w/o represents the model without the corresponding module, SynGCN represents
the syntactic graph convolution module, ASGCN represents the semantic graph con-
volution module based on the attention mechanism, SEGCN represents the shared
enhanced graph convolution module, and Triple-GCN is the baseline model.

Table 3 clearly illustrates that the three graph convolution modules consider-
ably enhance the model’s performance. This is particularly evident in the significant
Accuracy and MF1 improvements across all datasets when each module is included,
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demonstrating that these modules are crucial for capturing both syntactic and se-
mantic information effectively.

Without the syntactic graph convolution module (w/o SynGCN), the model’s
proficiency on Laptop14 has notably diminished, as indicated by decreases in Ac-
curacy and MF1 of 3.53% and 3.58%, respectively, and on Restaurant14 by 1.38%
and 1.87%, respectively. This underlines the critical role syntactic information plays
in sentiment analysis, particularly in domains where sentence structure heavily in-
fluences sentiment.

If the semantic graph convolution module is neglected (w/o ASGCN), the per-
formance of the model markedly falls across three datasets. This drop is especially
apparent within Twitter, with Accuracy and MF1 decreasing by 5.06% and 3.74%,
respectively. This can be attributed to the non-standard syntax used in Twitter
comments and their minimal reliance on syntactic information, emphasizing the im-
portance of the ASGCN module in effectively extracting deep semantic data from
less structured text environments.

Without the shared enhanced graph convolution module (w/o SEGCN), the
performance of the model on Laptop14 notably declines, with Accuracy reducing
by 2.84% and MF1 by 1.68%. This illustrates that the SEGCN module is critical
in seamlessly amalgamating syntactic and semantic information, ensuring that the
model adapts well to varying text structures and generates more precise feature
representations. The results highlight the importance of integrating both syntax
and semantics in emotion classification tasks.

Furthermore, replacing the graph convolution module with a traditional graph
convolution network (GCN) leads to a significant performance drop, proving that
the Triple-GCN structure proposed in this article is more effective in learning com-
plex syntax and semantics. Through these ablation experiments, we confirmed the
effectiveness of each component of the Triple-GCN model and demonstrated that
its overall structure provides strong performance in aspect-level sentiment analysis
tasks.

Models
Twitter Laptop14 Restaurant14

Acc. MF1 Acc. MF1 Acc. MF1

GCN 71.68 70.05 74.12 68.35 77.43 71.87
w/o SynGCN 75.18 73.82 76.50 73.22 82.14 75.27
w/o ASGCN 73.47 72.31 76.97 73.77 82.82 75.85
w/o SEGCN 76.56 75.32 76.19 73.12 82.76 76.14
Triple-GCN 78.53 76.25 79.03 74.80 83.52 78.44

Table 3. Comparison of experimental results

4.6 Sample Analysis

In order to explore the impact of syntactic graph convolution and semantic graph
convolution on the Triple-GCN model in more detail, real samples were collected



Enhanced Multi-Feature Graph Convolutional Network for ABSA 511

from the test set. GCN, SynGCN, ASGCN, and Triple-GCN were used to predict
the sentiment polarity of the model, and the results are shown in Table 4. In the
table, underscores are used to represent aspect words in the sentence, “P”, “O”,
and “N” are used to indicate whether the model correctly predicts the sentiment
polarity of the sample.

Sample Syn. Sem. Trip.

1 The food not worth the price. (N) N(T) N(T) N(T)
2 The settings are not convenient either. (N) N(T) N(T) N(T)

3 I thought that it will be fine, if I do some settings. (O) O(T) P(F) O(T)

Table 4. Sample prediction results

For the sample 1, only GCN cannot make a correct prediction because “food”
is syntactically closer to “worth” which represents positive sentiment, so GCN gives
an incorrect prediction. The SynGCN module increases the weight of “not” and
decreases the weight of “worth” through dependency information, thereby making
a correct prediction. The ASGCN module based on the attention mechanism can un-
derstand the semantics well and give a correct prediction. Triple-GCN contains two
modules, SynGCN and ASGCN, so it can correctly predict the sentiment polarity
of the sample 1.

From the prediction results of the sample 2, we can observe that ASGCN can
effectively reduce the negative impact of dependency parsing. The dependency tree
of the sample 2 and the attention weight in ASGCN are shown in Figure 6. In the
dependency tree, the aspect word “settings” is directly connected to the positive
word “convenient”, leading SynGCN make a incorrect prediction (Positive). How-
ever, ASGCN can capture deep semantic information, making “not” have higher
weight, consequently producing a correct prediction (Negative). After integrating
the feature information of SynGCN and ASGCN, Triple-GCN can make correct
predictions.

In the sample 3, unlike sample 2, the word “settings” in the dependency tree is
not linked to the word “fine” which indicates a positive implication, which enables
the syntax-based SynGCN model to provide the accurate answer. In the ASGCN’s
attention weight matrix, “fine” possesses heightened weight, leading to a predic-
tion error on ASGCN’s part. After combining the feature information of SynGCN
and ASGCN, Triple-GCN persists in rendering the correct prediction. These three
sentences further prove the effectiveness of Triple-GCN.

4.7 Attention Visualization

With the effectiveness of SynGCN and ASGCN in capturing semantic relevance,
respectively. We aim to visualize the attention score matrix. Figure 7 shows the
visualization of attention distribution for words. Observably, when using only the
syntax or semantic convolution module, the model erroneously directs the highest
attention to “wonderful”.
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Figure 6. Dependency trees and attention weights

Treating “wonderful” as a viewpoint word of aspect “dinner” ultimately leads
to misjudgment of the sentence. However, the proposal of Triple-GCN (line 3) can
adaptively reduce attention to the irrelevant word “wonderful”, adaptively increase
the score of “dinner”, and obtain the most relevant words from syntax, semantics
and their combinations information, verifying the effectiveness of the Triple-GCN
model.

Misinterpreting “wonderful” as a viewpoint word relative to the aspect “din-
ner” ultimately results in an incorrect judgment of the sentence. Conversely, the
implementation of Triple-GCN (line 3) can adeptly lessen the attention on the irrel-
evant word “wonderful”, increment the score of “dinner” adaptively, and secure the
most relevant words from syntax, semantics, and their combined information. This
evidences the efficiency of our Triple-GCN model.

Figure 7. Attention visualization for sentence 1

Again, we take the sentence “The environment is great but the service attitude
is poor.” in Figure 8 as a sample to illustrate attention visualization. As shown in
Figure 8, the darker the color of the area block, the greater the attention weight
and the higher the attention. Figure 8 also presents the attention weights of the two
aspect terms and their corresponding attention weights within the contexts. When
“environment” is used as an aspect term, the model allocates higher attention to the
descriptive word “great” within the context. Concurrently, the model’s attention is
predominantly focused on the relevant descriptions of “environment”, while rarely
attending to “service attitude”. Similarly, when “service attitude” is the aspect
term, the model directs greater attention to the relevant descriptions of “service
attitude”, demonstrating the attention mechanism’s ability to focus on words as-
sociated with the aspect terms. In particular, when an aspect term is composed
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of multiple words, the model calculates the weight of each word within the aspect
term. For example, in the case of “service attitude”, “attitude” is the primary word,
while “service” is used to modify it. As such, “attitude” should hold greater impor-
tance in expressing the overall aspect term. It can also be observed from Figure 8
that the model indeed allocates greater attention to “attitude”, which demonstrates
the model’s ability to identify the more salient word information within multi-word
aspect terms.

Therefore, the interactive attention mechanism not only allows the model to
focus on the interaction between context and aspect terms, but also enables it to
attend to the meaning of the context and aspect terms themselves. This provides
richer information for recognizing the sentiment polarity of aspect terms.

Figure 8. Attention visualization for sentence 2

4.8 Hyper-Parameter

The results of the study on the impact of the hyper-parameter m value and the
number of attention heads M of the semantic graph convolution module are shown
below.

• The influence of the m value: According to the results in Figure 9, on the
three datasets, the model performance is best when the value of m is 2, 2, and
4, respectively. As the value of m increases, the accuracy of the model on the
three datasets decreases. In summary, a larger value of m will introduce more
irrelevant noise, thereby interfering with the model’s judgment of sentiment
polarity.

• The influence of the number of attention heads M: Taking the Twitter
dataset as an example, Figure 11 shows the impact of the number of heads M of
the multi-head attention mechanism in the model on performance. Intuitively,
when the number of heads is 3, the model performance is best, and too small or
too large a number of heads will affect the model effect. Therefore, m is set to
2 or 4 in the Triple-GCN model, and the number of attention heads M is set to
3 to achieve the best performance.

• The influence of the hyper-parameter α: In order to optimize the hyper-
parameter α, an experimental design was utilized. This exercise revolved around
calibrating α across the 0.0 to 1.0 range and assessing how these alterations im-
pacted model effectiveness. Upon application to the Twitter, Laptop14, and
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Restaurant14 datasets, the ideal α varied, attributed to each corpus’ unique
data attributes. For the Twitter dataset, where tweets are typically brief and
semantic information is predominant, a relatively high α of 0.8 achieved optimal
precision. In contrast, the Laptop14 and Restaurant14 datasets, characterized
by detailed and complex review inputs, revealed a dependency on type infor-
mation. Consequently, a more moderate α value of 0.6 yielded the greatest
precision. The integral role of adjusting α to enhance model efficiency across
varied datasets was validated through this exercise.

Figure 9. The influence of the m value

4.9 Number of Model Layers

To thoroughly explore the impact of layer count on the performance of the Triple-
GCN model, we conducted a series of experiments across three distinct datasets:
Twitter, Laptop14, and Restaurant14. These experiments were specifically designed
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Figure 10. The influence of the number of attention heads M

to monitor how the model’s performance varied as the number of layers was sys-
tematically increased from 1 to 5. The findings from these experiments are visually
represented in Figure 12.

The Laptop14 and Restaurant14 datasets, both of which possess standard syn-
tactic structures, exhibit similar performance trends when the Triple-GCN model
is applied. As indicated in Figure 12, the model achieves its peak performance on
these datasets when the number of layers is set to N1 = 2. This suggests that
for datasets with more conventional and structured syntax, a two-layer configura-
tion of the Triple-GCN model is sufficient to capture the essential syntactic and
semantic information, providing an optimal balance between model complexity and
performance.

Conversely, the performance trend observed on the Twitter dataset, character-
ized by its non-standard syntactic structure, differs noticeably from that of Laptop14
and Restaurant14. In this case, the Triple-GCN model attains its highest perfor-
mance when the number of layers is set to N1 = 3. This indicates that the additional
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Figure 11. The influence of the hyper-parameter α

layer helps the model better adapt to the informal and often fragmented language
typical of social media texts found on Twitter, where syntactic rules are less rigid
and more variable.

Overall, these results underscore the necessity of tailoring the number of layers
in the Triple-GCN model to the specific syntactic characteristics of the dataset being
analyzed. For datasets with well-structured and conventional syntax, fewer layers
may suffice. In contrast, datasets with less structured and more complex syntax,
such as those from social media, may benefit from additional layers to enhance
performance.

5 CONCLUSION

In response to the under-utilization of syntactic structures and the overlooked link
between syntax and semantics, this study introduces an innovative aspect-level sen-
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Figure 12. The influence of GCN layers

timent analysis model called Triple-GCN. This model leverages a multi-channel
graph convolutional network architecture that includes three carefully designed
modules: Syntactic Graph Convolution (SynGCN), Semantic Graph Convolution
based on Attention Mechanism (ASGCN), and Shared Enhanced Graph Convolu-
tion (SEGCN). Each module contributes uniquely to the model’s effectiveness. Syn-
GCN focuses on mining syntactic information, especially through position weight
encoding that improves the understanding of sentiment dependency relations. AS-
GCN emphasizes semantic information linked to key nodes, while SEGCN bridges
the gap between syntax and semantics, ensuring optimal utilization of both. Ex-
perimental verification on three widely used benchmark datasets has demonstrated
that Triple-GCN effectively integrates relation-type information to connect syntax
and semantics, resulting in superior performance in aspect-level sentiment anal-
ysis. Compared to similar studies, such as DualGCN and MGAN, Triple-GCN
shows a more balanced integration of syntactic and semantic features, leading to
enhanced accuracy and generalization capabilities. Despite these advances, current
research, including this study, still faces challenges in fully capturing the complex-
ities of sentiment information, especially in nuanced or context-dependent scenar-
ios. The insights gained from this study can guide future research, particularly
in refining sentiment analysis models through the integration of sentiment knowl-
edge graphs, lexicon knowledge, and common-sense knowledge. As the field pro-
gresses, the fusion of syntax and semantics is likely to become even more crucial,
leading to models with greater expressiveness and applicability in areas such as
customer feedback analysis, brand reputation management, and social media mon-
itoring.
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