Computing and Informatics, Vol. 44, 2025, 467-492, doi: 10.31577 /cai_2025_2_467

SMRFC-PDCNN: AN EFFICIENT SCENE
MATCHING RECOGNITION WITH DCNN
AND FEATURE CLUSTERING ON SPARK

Jingguo DAI

School of Data Science, Guangzhou Huashang College
Guangzhou, 511300 China
e-mail: 6462571390qq . com

Yimin MAO

School of Information Engineering, Shaoguan University
Shaoguan, 512000 China
e-mail: mymlyc@163. com

Abstract. Scene recognition, an Al technology based on deep learning, has been
widely used in public safety, road traffic, and automatic driving, but applying it on
massive data in deep convolutional neural networks (DCNNs) results in performance
bottlenecks. This paper proposes SMRFC-PDCNN; an efficient scene matching
recognition algorithm that addresses three specific problems: decreased accuracy of
feature maps, redundant feature calculations, and low efficiency in parallel recog-
nition. The proposed algorithm includes a feature pooling selection strategy called
MI-IPSS, a feature selection strategy called DCPSO-FSS, a load balancing strat-
egy called CCG-LBS. MI-IPSS solves the problem of de-creased accuracy of feature
maps by adapting the pooling strategy based on mutual information coefficient be-
tween feature maps before and after pooling. DCPSO-FSS uses density clustering
and particle swarm optimization to locate clustering parameters quickly and rec-
ognize clustered features through sampling in the fully connected layer. CCG-LBS
dynamically calculates the computing overhead of feature maps and allocates data
between groups according to the over-head to solve the problem of low efficiency
in parallel recognition. Experimental results show that SMRFC-PDCNN has good
performance and is suitable for the fast scene matching recognition process of par-
allelized DCNNSs on large-scale datasets.

https://doi.org/10.31577/cai_2025_2_467

468 J. Dai, Y. Mao

Keywords: Scene recognition, parallel DCNN, Spark framework, Smart system

1 INTRODUCTION

Scene recognition is a critical computer vision task that involves analyzing images or
videos to identify objects, people, actions, and other elements in a scene [11, 2], 3, 4].
Then, we can get a better understanding of the overall semantic meaning of the
scene. The process of scene recognition involves extracting significant features from
the visual data and categorizing them into predefined scene types [3], 6]. These
deep level scene features can predict potential behaviors and help us achieve intel-
ligent decision-making [7, 8, 9]. The technology has played a crucial role in various
fields, including public safety, road traffic, and autonomous driving [10, [IT], 12, [13].
However, as storage media technology and IoT devices have advanced, the field of
public scene recognition has generated numerous massive, complex, and challenging-
to-handle datasets, which exhibit the “4V” characteristics of high volume, velocity,
variety, and value [14]. These 4V features make it challenging to uncover the poten-
tial features of big data, thus it impact the accuracy of scene recognition.

In order to extract scene features accurately, numerous studies have integrated
scene recognition with DCNNSs, it has the characteristics of automatic feature extrac-
tion, flexible model structure and shared parameters, these excellent features reduce
the computational cost of scene recognition and improve recognition accuracy.

1. Herranz et al. [I5] proposed the “Scene Recognition with CNNs: Objects, Scales
and Dataset Bias” approach. They ad-dressed the challenge of recognizing scenes
with objects of varying scales by designing a CNN architecture that can model
both object and scene information simultaneously. Additionally, they introduced
a dataset bias adaptation method to mitigate the impact of training data bias
on scene recognition performance.

2. Khan et al. [I6] proposed the “Integrating Multilayer Features of Convolutional
Neural Networks for Remote Sensing Scene Classification” approach, which ex-
tracts multi-layer features from images using pre-trained CNN models and com-
bines and classifies these features to obtain the final result.

3. Zhang et al. [I7] proposed the “Multi-Level Ensemble Network for Scene Recog-
nition” approach, which captures global scene information, focuses on local scene
details, and combines the outputs of these two levels for final scene classification,
this approach has demonstrated superior performance compared to traditional
single-network methods in scene recognition tasks.

These scene recognition methods based on DCNNs still have some problems.
In the process of large-scale and real-time scene recognition, plenty of repeated
scene feature maps can cause wastage of computing resources. Furthermore, the
computation of redundant feature maps in DCNNs can result in overfitting of the
recognition model, ultimately leading to a decline in real accuracy.

SMRFC-PDCNN 469

To address the aforementioned issues, we propose an efficient scene Matching
recognition with DCNNs and feature clustering on Spark. The main tasks of this
algorithm is as follows. Firstly, we propose a pooled selection strategy based on
improved mutual information, the strategy calculates the mutual information co-
efficient of feature maps before and after pooling, and adaptively adjusts the next
pooling strategy. Secondly, we design a feature selection strategy based on density
clustering and particle swarm optimization, The strategy uses particle swarm op-
timization algorithm to quickly locate density clustering parameters, then identify
clustering features in fully connected layers to avoid redundant computation. Mean-
while, we reduce computational costs by introducing the Spark framework into the
algorithm. To address the load balancing issue of DCNNs in the Spark framework,
we propose a load balancing strategy based on cluster characteristic graph. The
strategy dynamically calculates the computational cost of feature maps for each
node in a distributed system, and dynamically allocates data among groups based
on their costs. By implementing these strategies, algorithms can effectively address
the challenges of large-scale and real-time scene recognition.

2 RELATED WORK

These studies represent advancements in scene recognition algorithms that focus on
multi-scale feature fusion to increase robustness and accuracy, they also leverage
DCNNSs to accelerate feature extraction speed. However, it is important to note
that these approaches primarily focus on improving multi-scale feature extraction
and fusion, and do not address potential improvements in the computation process of
DCNNSs, which may limit their performance in large-scale data environments [18] [T9)].

To deal with the challenges of DCNNs in efficiently processing large data sets, the
integration of the Spark framework into DCNNs has emerged as a novel research di-
rection. Spark, being an in-memory distributed computing framework is extensively
employed in processing and analyzing big data owing to its ease of programming,
real-time responsiveness, load balancing, and support for diverse data sources [20)].
Numerous optimized algorithms for DCNNs scene recognition based on the Spark
distributed computing framework have also been extensively investigated. For ex-
ample, Wang et al. [2T] proposed the SASTCNN algorithm, a distributed DCNNs
recognition algorithm based on Hadoop. By creating data partitions and paral-
lelizing the recognition of DCNNs, the algorithm achieved parallel recognition of
DCNNS.

Building upon this work, Bello et al. [22] proposed the BDCNN algorithm. The
BDCNN algorithm associate neurons with pooling layers and calculates the corre-
lation between two neurons based on the Pearson correlation coefficient between
variables. This enables the algorithm to dynamically select the pooling layer strat-
egy. This method has accelerated the pooling steps of convolutional neural networks
under scene recognition algorithms. Boulila et al. [23] proposed the RS-DCNN algo-
rithm. This algorithm splits large images into smaller ones and applies a maximum

470 J. Dai, Y. Mao

likelihood classification supervised method for data set selection. While it processes
images using a distributed parallel framework, it selects data features through clas-
sification methods. Thus, the design of large images segmentation enhances the
detailed features of various sizes in the scene recognition process. Mao et al. [24]
introduced the PDCNNO algorithm. The PDCNNO algorithm employs the modi-
fied secant-based conjugate gradient method (CGMSE) for DCNNs. The modified
CGMSE is designed to obtain local classification results, leading to fast convergence
of the network model’s classification results. Moreover, the algorithm utilizes the
load balancing strategy (LBRLA) to regulate the load rate and obtain global clas-
sification results which implements large-scale scene recognition parallel training.

In summary, the aforementioned parallel algorithms have partially addressed
the performance issues of DCNNs when dealing with large datasets. However, since
the model parameters are fixed during the recognition process, the Dropout strat-
egy of the BDCNN algorithm cannot be adjusted to accommodate changes in the
large-scale data. RS-DCNN cannot handle redundant feature calculation for non-
fixed class datasets. Meanwhile, the load balance strategy of PDCNNO may cause
an increase in global node load overhead due to the impact of abnormal node loads.
Therefore, the algorithm still cannot effectively solve the issue of low parallel recog-
nition efficiency.

3 PRELIMINARY

This section will introduce the relevant techniques utilized in the SMRFC-PDCNN
algorithm. Specifically, we will discuss mutual information, particle swarm opti-
mization algorithm, and cosine similarity. Below are their respective definitions.

3.1 Mutual Information

Mutual information [25] is a measure used in information theory to assess the cor-
relation between two random variables. It quantifies the reduction in uncertainty of
one random variable when we know the value of another. If we have two discrete
random variables, X and Y, with values x; and y;, respectively, and their probabil-
ities are p(a;) and p(y;), then the mutual information between X and Y is defined

=3 plaiy) xlog ——— iz p(xi.v;) (1)

z;) % p (y;)

where >~ > represents the sum over all possible (z;,y;), and log denotes the loga-
rithm with base 2.

3.2 Particle Swarm Optimization Algorithm

Particle Swarm Optimization [26] is an optimization algorithm based on swarm in-
telligence, which originated from the study of bird predation behavior. For swarm

SMRFC-PDCNN 471

intelligence algorithms, the problem is seen as searching for the optimal solution in
a multi-dimensional space. Each search point is called a “particle” and finds the
optimal solution by continuously updating its position and velocity. The algorithm
steps include initializing the particle swarm, computing the fitness function, updat-
ing particle velocity, updating particle position, updating the historical best position
and global best position, and determining the stop condition. The algorithm process
is as follows:

1.

Initialize particle swarm: The number of particles G = [, 39, ... ,ﬁ?\,p] in the
feasible solution space, as well as parameters such as position and velocity for
each particle, while randomly generating the position and velocity for each par-
ticle.

Compute fitness function: Determine the fitness function based on the charac-
teristics of the problem, and evaluate the performance of each particle. The
fitness function can be a maximization or minimization problem, depending on
the specific problem.

Update particle velocity: Update the velocity of each particle based on its his-
torical best position and the global best position. The velocity update formula
is as follows:

v =w x v 4 () x (pi— 2b) + cor() x (g; —), (2)
where w represents particle inertia weight, v represents the velocity of the i*"
particle in the ¢ iteration, c;, co are the learning factor, they represent individ-
ual and social learning factors, respectively, p;, g; represent the best positions of
the particle in the previous t iterations and the best positions of all particles in
the previous ¢ iterations, and x! represents the position of the i*! particle in the
' iteration, 7() is a uniform random number within the range of [0, 1].

Update particle position: Update the position of each particle based on the
updated velocity. The position update formula is as follows:

it = af + wol. (3)
Update historical best position and global best position: Based on the current
fitness function value, update the historical best position and global best position
of each particle. If the fitness value of the current position is better than that
of the historical best position, update the historical best position; if the fitness

value of the current position is better than that of the global best position,
update the global best position.

Determine stop condition: Check whether the algorithm has reached the preset
stop condition, such as reaching the preset iteration number or fitness function
value below a threshold. If the stop condition is met, output the global optimal
solution; otherwise, return to step 3. and continue the algorithm.

472 J. Dai, Y. Mao
3.3 Cosine Similarity

Cosine similarity [27] is a method used to measure the similarity between two vectors.
The similarity value ranges from —1 to 1, with a value closer to 1 indicating that
the two vectors are more similar, and a value closer to —1 indicating that the two
vectors are less similar. The calculation formula is as follows:

A-B
TATS TR (4)
[A]] [B]]

cosine_similarity =

where A - B represents the dot product of vectors A and B, ||A|l represents the
magnitude of vector A, and ||A|| represents the magnitude of vector B.

4 SMRFC-PDCNN ALGORITHM DESCRIPTION

Different from conventional scene recognition algorithms that extract and fuse fea-
tures at multiple scales, this paper focuses on improving the speed and accuracy
of scene recognition algorithms in large datasets. It achieves this by optimizing
the recognition structure of DCNNs and using the Spark parallel computing frame-
work. The proposed algorithm, SMRFC-PDCNN; is used in the optimization part
of the DCNNs for scene recognition. The designed model structure in this paper
performs parallel recognition on multiple Spark nodes, with each task node running
the SMRFC-PDCNN algorithm. This algorithm calculates the mutual information
coefficient of feature maps during the pooling stage to select appropriate pooling
methods and improve model accuracy. It then clusters the one-dimensional fea-
ture vectors formed by the final feature maps, and samples within the clusters for
computation in the fully connected layer to reduce redundant feature computations,
accelerates the algorithm process, and calculates the node load during the entire
process. Computation is allocated to achieve load balancing. Figure [I] provides the
scene recognition model structure.

Calculate the IMI(“(;,Z) before and
after pooling, choose pooling method

| Nodel run DCNN

o ; ! | with FIRM-PDCNN 'i';) e
; R Lo
| | | | Node2runDCNN | ! !

: | '\ with FIRM-PDCNN lJ::";/w ; conv n layer, :\ pooling layer conv n+1 layer | | :>' Bird
\ T - N iisrossissiszoszicoooo- :
‘; / | 3 3 3 :/ Calculatethe | | N ! Store
! : I e ik . () tomake | | |_— | ! Bar
(n {1 NodeNrunDONN oni ' digributed § | ||+ (clustering | ’ 1
" | { L with FRM-PDONN 711 gctemtond N\ 1 ||~ 2) e
\ / " balance___" ’ v gows) cofﬁl&lect final
N - N, - Syl R ST - layer predict

tul .
Input stream Spark framework \?gctéf FIRM-PDCNN ng%‘(fﬁ%r
with FIRM-PDCNN group Algorithm

Figure 1. The flowchart of scene recognition model with SMRFC-PDCNN algorithm

SMRFC-PDCNN 473
4.1 Parallel Pooling Selection

In scene recognition using parallel DCNN algorithms, there is currently an issue
with reduced feature map accuracy during the recognition process. In this stage, we
propose a solution to this problem using a pool selection strategy based on improved
mutual information (MI-IPSS). This strategy is composed of two main steps, which
are discussed in detail below:

1. Feature comparison: An improved mutual information correlation coefficient,

-

referred to as IMIC(d, b) has been proposed for the purpose of calculating and
comparing the IMIC(@, b) value of feature maps before and after pooling in par-
allel during recognition. This innovative approach provides an effective indicator

for selecting the optimal pool.

-,

2. Pool selection: We are comparing two different IMIC(d, b) values. One was
obtained from the previous pooling layer, while the other was obtained by com-

bining all the IMIC(a, b) values from the entire distributed system.

-,

By evaluating the difference between these two IMIC(d, b) value aggregations, we
can assess the effectiveness of the previous pooling strategy and determine whether
it is suitable for the current datasets. This allows us to address the problem of
reduced feature map accuracy and select the most appropriate pooling method for
our needs.

4.1.1 Feature Comparison

To select the most suitable pooling method for a given data set, it is crucial to
compare the feature maps both before and after each pooling layer in a distributed
DCNN. To accomplish this, we propose an improved mutual information correlation
coefficient, called IMIC(a, I;), to evaluate the adaptability of the current pooling
method to the data set, based on the similarity between the feature maps before
and after pooling. Here is the specific process we follow: We first divide the image
files into several blocks, and then use OpenCV to convert the initial image data for-
mat and assign an index to each block, which is then stored in HDFS and input into
the Spark job. Then, for each block, we run a Mapper and allocate a pre-trained
DCNN network model to it, and input the data in the block into the network model.
When the data reaches the pooling layer, the mutual information correlation coef-

-,

ficient IMIC(@, b) for all feature maps in the Mapper is calculated, and the overall

-,

mutual information correlation coefficient IMIC(d, b) of the system is aggregated.
Finally, the difference between the overall IMIC(d,b) aggregation value of the pre-
vious pooling and the current pooling is compared to determine the next pooling

method selection.

Theorem 1. Improved mutual information correlation coefficient, IMIC(a, E) As-
sume that @ represents the one-dimensional vector representation of the feature
map before pooling, and b represents the one-dimensional vector representation of

474 J. Dai, Y. Mao

the feature map after pooling. The calculation formula for the correlation coefficient
IMIC(a, b) is as follow.

—

/ “ p(d,b) o p(7b)
IMIC(@, b) = 2D x 1 g2p(d)p(g) (5)

-,

where p(@,b) represents the joint probability density of @ and b, p(@) and p(b) rep-
resent the probability density of @ and b respectively, and d(d,b) represents the

projection distance from @ and b.

Proof. IMIC(a, E) represents the correlation coefficient between the feature vectors
of @ and b. When @ and b are dissimilar, d(a, 5) approaches infinity, causing 1/(1 +
d(a, E)) to approach zero, while the probability density p(d, 5) of @ and b occurring
simultancously will also decrease, for this reason, the p(@,b) - log,(p(@, b)/p(@)p(b))
will also decrease. As a result, the value of IMIC(&, b) will be in a low-level position.

On the contrary, when @ and b are similar, d(@, b) tends to zero, causing 1/(1 +
d(a@,b)) to approach 1, and the probability density p(@,b) of @ and b occurring simul-
taneously will also increase, and the mutual information p(d@, b) log, (p(a@, b) /p(@)p(b))
will increase accordingly. At this time, the value of IMIC(d@, b) is in a high-level po-
sition.
Therefore, when @ and b are dissimilar, the value of IMIC(a, 5) is small, and
when @ and b are similar, the value of IMIC(a, 5) is large. It can be used as an
indicator to measure the correlation coefficient of feature vectors. 0

4.1.2 Pool Selection

After completing the calculation of the IMIC(@, b) of the system, the IMIC(@, b) of
the entire distributed system is aggregated to obtain ZJ IMIC(d, b) and save it to the
variable sum_this, and compare it with the last accumulated value sum_last compar-
ison to select the pooling method suitable for the current data, the specific process
is as follows: First, set the pooling matrices for 1x1, 2%2, 3%3, and 4x4, and set the
stride of the pooling matrix to 1, 1, 2, 2. Initially, use a pooling matrix of size 4 x 4
for computation. After that, subtract sum_this from sum_last to calculate whether
there is a significant decrease in feature accuracy. If sum_this — sum_last > 0, it
means that the pooling method used in this iteration is acceptable, so it is retained.
If sum_this — sum_last < 0, it indicates a significant decrease in feature accuracy,
so the matrix size and step size need to be reduced until the data is computed into
a one-dimensional feature vector. Then, the next step of feature selection strategy,
DCPSO-FSS based on density clustering and particle swarm optimization will be
performed.

SMRFC-PDCNN 475
4.2 Parallel Feature Clustering

In scene recognition, the DCNN algorithm uses a large amount of data to parallelly
compute the fully connected layer during the recognition process. However, a sig-
nificant issue arises with the feature vectors of repeated class data that generates
a lot of redundant computation. This problem can be particularly severe in big data
environment, where excessive feature redundancy calculation can occur. To address
this issue, a feature selection strategy called DCPSO-FSS has been designed. This
strategy is based on density clustering and particle swarm optimization. It starts
by proposing an adaptive feature selection particle swarm optimization algorithm
that finds the clustering parameters of feature vectors before parallel DCNN model
computing to the fully connected layer. After clustering and sampling these fea-
ture vectors, they are used for recognition in the fully connected layer. By utilizing
this feature selection strategy, the DCNN algorithm can significantly reduce the
computational load and processing time. Moreover, it can enhance the recognition
accuracy and improve the efficiency of the entire scene recognition system. This
strategy mainly includes two steps:

1. feature selection clustering: an adaptive particle speed is proposed to adaptively
select particle speed based on clustering feature vectors, and a characteristic
graph fitness function (CGFF) is designed to quickly obtain accurate density
clustering parameters;

2. inter-group recognition of feature vectors: after completing the clustering of
feature vectors in the previous stage, the data of each category is sampled for full
connection operation, and the top5 accuracy of final classification is evaluated
to determine the category of the entire group.

4.2.1 Feature Selection Clustering

To reduce the redundant calculations caused by the generation of a large number
of repetitive data feature vectors, an adaptive particle speed algorithm (v'*!) and
a characteristic graph fitness function (CGFF) have been designed. These techniques
aim to quickly locate the density clustering parameters (¢ and minpts), increase the
accuracy of feature clustering, and reduce the computational cost of recognition op-
erations. The specific process is as follows: First, in the initial stage of the algorithm,
the Master node reads all the feature vector collections that were parallel computed
in the previous stage from HDFS. It then proceeds to determine the initialization
range and number of particle swarm based on the number of feature vectors available.
Once this is done, the Master node randomly generates the position and velocity
vectors of the particles. Next, the algorithm calculates the fitness function value of
each particle according to the CGFF. The maximum number of iterations Maxiter
is also set at this stage. To ensure efficient convergence, the velocity of each particle
is calculated using the adaptive particle speed v'*! formula. Using this formula, the
velocity and position of each particle are then updated. Then, the algorithm checks

476 J. Dai, Y. Mao

whether the maximum number of iterations Maxiter has been reached or whether
the CGFF value meets the predetermined accuracy requirement. If either of these
conditions are met, the algorithm is stopped. This ensures that the algorithm does
not run unnecessarily and saves computational resources. Finally, after obtaining
the density clustering parameters € and minpts, all feature vectors are clustered,
and the recorded category and feature vectors are stored in HDSF to complete the
feature selection clustering.

Theorem 2. Adaptive particle velocity, v'*!. Given v! is the velocity of the i‘h
particle in the '™ iteration, c;, ¢y are the learning factors representing the individual
and social learning factors, respectively. p;, ¢g; represent the best positions of the
particle in the previous t iterations and the best positions of all particles in the
previous t iterations, respectively. z! represents the position of the i*" particle in
the t'" iteration, while X and Y represent the two clusters formed by feature vectors.
The formula for calculating the adaptive particle velocity v**! is as follows.

UEH t/ (’

t+1

)+m x (pi — 2t) + car() x (gi — 2t). (6)

vt is an adaptive particle velocity based on feature vectors, and the reciprocal of
A represents the Euclidean distance between the two clusters formed by X Y.

Proof. When X , Y are very similar, the particle swarm needs a large inertia to
drive the update of the particle position, and at this time, the value of A is large,
which satisfies the requirement of a large inertia for the particle swarm. When X , Y
are dissimilar, it means that the particle swarm needs to reduce its inertia to search
for the optimal position, and at this time, the value of X is small, which satisfies the
requirement of a small inertia for the particle swarm. Therefore, v**! can meet the
requirements of velocity update in the particle swarm algorithm very well. O

Theorem 3. Fitness function of characteristic graph, CGFF. Given a clustering
with a total number of ¢ clusters, where c, represents the total average value of
the moduli of all feature vectors in the 2™ cluster, and p represents the feature
and Hf}
formed by the feature vectors. The calculation formula for the compactness and the
separability fitness function (CGFF) is as follows.

represent the moduli of the two clusters

vectors within the cluster. H)?)

CGFF = min ZZdlst C2,D) +Z Z

(7)
2=1 peC, 2=1 X,YeC. YH—&-H?H
Proof. CGFF is a function that describes the fitness of feature map clustering. Ac-
cording to the principle of high intra-cluster similarity and low inter-cluster similar-
ity, this function calculates the distance square of dist(c,, p)2‘ When the magnitude

SMRFC-PDCNN 477

of the feature vectors in the cluster is closer to the average feature vector in the
cluster, the smaller the value of dist(c,, p)2 is, and the closer it is to the minimum
value of CGFF. When two feature vector clusters X and Y are dissimilar, the value
of X - 17/ H)?H + H?” also becomes smaller. Therefore, CGFF meets the require-
ments for the fitness function of feature map density clustering and can be used to
select parameters for feature map density clustering. O

4.2.2 Inter-Group Recognition of Feature Vectors

After completing feature selection clustering, the algorithm utilizes the parallel pro-
cessing power of the Spark framework to perform the final recognition using fully
connected layers on the clustered feature vectors. The process can be divided into
several steps: Firstly, each category is randomly sampled at a ratio of 20% and
distributed to various computing nodes for fully connected operations. The purpose
of this step is to obtain the feature prediction results for each category. Next, the
current category recognition top5 accuracy is verified in the validation set. If the
accuracy exceeds 90 %, the algorithm determines that the current clustered features
belong to the same category. However, if the accuracy does not meet the predeter-
mined value, the feature selection clustering process is repeated until the algorithm’s
toph accuracy reaches the desired level. This iterative process of feature selection
clustering and validation continues until the desired level of accuracy is achieved.
Once the algorithm reaches the desired level of accuracy, the feature vectors are
clustered together into the same category, and the recognition process is considered
complete.

4.3 Feature Dynamic Load Balancing

In scene recognition, traditional distributed systems for parallel DCNN algorithms
have typically used round-robin or least-connection strategies to achieve load bal-
ancing. These strategies work well for tasks with a fixed amount of computation.
However, in the case of parallel DCNN recognition algorithms, deep pooling and con-
volution can result in significant changes in the computational load of distributed
nodes. This, in turn, can lead to low parallel recognition efficiency. To address this
issue, a new load balancing strategy called CCG-LBS has been developed. This
strategy is based on cluster feature maps and dynamically calculates the computa-
tional cost of feature maps for each distributed node. It then allocates data among
groups based on this cost, achieving dynamic load balancing. The CCG-LBS strat-
egy works as follows: first, several DCNN models are assigned to each node, with
only one model in the active state to input data for calculation. This ensures that
the computing nodes reach their maximum load at the beginning. After each round
of convolution and pooling, the load of each node is calculated and proposed as
LVV(s4). Then, when the load is below the load threshold, a new model is enabled
and new data is added for calculation on that node. The amount of input data

478 J. Dai, Y. Mao

is LVV(s4), and dynamic load balancing is achieved. Finally, the balanced data is
calculated by each model to obtain the final recognition result.

Theorem 4. Balance load quantity, LVV(s4). Given that FML(sy) represents the
computation load of all feature maps for the d'" computing node, where s4 is the
feature map, FML(S,,4,) Tepresents the maximum node load, and Ziivzl FML(s4)
represents the total load of all nodes, where N represents the total number of nodes.
The calculation formula for the load with respect to its quantity LVV(s,) is as
follows.

LVV(54) = FML(8pmas) — FML(54) + Y _ FML(s4)/N. (8)

d=1

Proof. LVV(s,) is a value used to supplement input data and balance the workload
of a distributed system when there is an imbalance due to convolutional pooling
operations on feature maps. The formula for LVV(s,) can be split into two parts.
The incremental part, represented by FML(8,,4,) —FML(s4), indicates the difference
in workload calculation between the maximum node and the current node. This
difference represents the amount by which the system’s remaining nodes can still
operate at maximum capacity, and can be used to fill in the missing workload of
deficient nodes. In addition, when the workload of a node is below the load threshold
7, the maximum capacity node is not operating at full capacity. Therefore, based on
the current system average workload, 327 | FML(s,)/N can be used to supplement
the missing workload of the current node. L]

4.4 Time Complexity Analysis

The SMRFC-PDCNN is composed of three stages: parallel pooling selection, parallel
feature clustering and feature dynamic load balancing.

The stage of parallel pooling selection: Set the number of samples be n, the
number of cluster nodes be k, and the total number of pooling layers be s. Then
the time complexity of parallel pooling selection is O(s * n?/k + n).

The stage of parallel feature clustering: Set the number of samples be n, the
number of cluster nodes be k, the initial population number of particle swarm op-
timization algorithm be p, and the overall evolution times be t. Then the time
complexity of parallel feature clustering is O(p * n®/k + t * n).

The stage of feature dynamic load balancing: Set the number of samples be n
and the number of cluster nodes be k. Then the time complexity of feature dynamic
load balancing is O(n?/k).

The time complexity of the SMRFC-PDCNN algorithm is O(n?/k).

5 EXPERIMENTAL EVALUATION

Here, the experimental setup will be discussed, the experimental results as well as
the corresponding analysis.

SMRFC-PDCNN 479

5.1 Experimental Setup

Experiments was performed in a Spark cluster of five nodes (1 Master node, 7 Slaver
nodes). Each node contains an Intel i9 13900k, RTX 4080, 64 GB RAM, a 8 TB
SSD, and each node is connected through a 1000 Mb/s network. The algorithm is
implemented in Java, and runs on CentOS 7.2, the JDK version is 17. The node
configuration is presented in Table [T}

‘ Node Type ‘ Double Scan ‘ Triangle ‘
Primary Node Primary Node | 192.168.2.116
Secondary Node | Slaver 192.168.2.117 ~ 120

Table 1. Node configuration information

5.2 Experimental Datasets

To verify the feasibility and effectiveness of the SMRFC-PDCNN;, four datasets from
different domains are used for the experiments, namely PASCALVOC2012, COCO
2012, Caltech256, and ImageNet. The details of the above datasets are shown in
Table Bl

PASCALVOC2012 | Caltech256 | COCO ImageNet
Sample size 17125 30607 3300000 14197122
Image size 20 256 80 1000
Categories 256 * 256 256 * 256 32 % 32 32+ 32 ~ 160

Table 2. Experimental datasets

The PASCALVOC2012 data set provides a standard image annotation data set
and a standard evaluation system for detection algorithms and learning performance.
The official data set consists 17 125 records and every record consists of 20 items.
This data set is widely used for small-scale scene recognition.

The Caltech256 dataset is a data set collected by the California Institute of
Technology which contains 30 607 records, each including 256 items which is widely
used in tasks such as scene recognition and object detection.

The COCO is a large, rich object detection, segmentation and captioning data
set and can be used for scene recognition and image detection, which contains
3300000 records, each including 80 items. It is widely used for scene recognition
and matching.

The ImageNet is a computer vision system recognition project, which is currently
the largest scene recognition database in the world. It consists of 14 197 122 records,
and each record includes 1000 items.

480 J. Dai, Y. Mao
5.3 Experimental Metrics

5.3.1 Speedup Ratio

Speed-up ratio [28] is used as a substantial indicator to compute the parallelization
performance of the algorithm. The speed-up ratio is the ratio of time, defined as
follows.

S, = 11/1;, (9)

where T7 and T}, denote the running time of the algorithm on a single node and in
parallel, respectively. The larger S, is, the relative time spent in parallel computing
is less, and the cluster efficiency is greater.

5.3.2 Top5 Accuracy

Topb accuracy [29] refers to the accuracy of the model’s top 5 predictions in a multi-
classification task, by comparing the model’s predicted results with the true labels,
to determine whether the correct label is included among the top 5 most likely
predictions.

correct(n)

TopbAce = x 100 %. (10)

In this case, n represents the total number of samples in the test set, correct(n)
represents the number of samples in which the correct label is included among the
top 5 predicted labels. If the top 5 most likely labels predicted by the model include
the correct label, it is considered a correct prediction.

5.4 Data Set Texture Enhancement

To improve the reliability of the data set, texture augmentation was applied to four
datasets in the experimental section. Firstly, the data was decoded from the original
image file format to in-memory image data using OpenCV, and the pixel values were
normalized to the range of [0, 1]. Secondly, Local Binary Patterns (LBP) were used
to extract texture features from the initial data, capturing the texture information
in the images. The calculation formula for Local Binary Patterns is as follows.

LBP(z¢,y.) = s(gp — ge) * 2. (11)
p

b
—

I
<)

In the formula, (x.,y.) represents the coordinates of the central pixel, g. rep-
resents the grayscale value of the central pixel, g, represents the grayscale value of
the ptt pixel in the circular neighborhood centered at the central pixel with a radius
of R. P represents the number of pixels in the neighborhood, and s() is the sign
function. It outputs 1 when the parameter is greater than or equal to 0, and 0 when
it is less than 0.

SMRFC-PDCNN 481

Finally, Adaptive Histogram Equalization (AHE) was employed to enhance the
contrast and details of local regions in the image, adapting to the grayscale distribu-
tion characteristics of different image regions. The calculation formula for Adaptive
Histogram Equalization is as follows.

B Zf:o H(z,y,i) (L —1)

CDF eq (z,y, k) = (N + M) . (12)

In this formula, H (z,y, k) represents the histogram of the local neighborhood
N (x,y), where N (z,y) is a fixed-size rectangular window or a circular window with
a fixed radius centered at (z,y). N and M represent the width and height of the
neighborhood N (z,y), respectively. k represents the intensity levels ranging from
0 to L — 1, where L is the number of intensity levels in the image. CDF_eq (z,y, k)
represents the enhanced pixel value in the output image after adaptive histogram
equalization.

5.5 Experimental Analysis

The verification of the performance of the SMRFC-PDCNN algorithm. We conduct
a comparative experiment on the above experimental datasets, and compare the
performance of the algorithm among the PDCNNO algorithm, the RS-DCNN algo-
rithm and the BDCNN algorithm. We evaluate the speedup ratio, topb accuracy,
reduction of FLOPs and running time of the four algorithms, respectively.

5.5.1 Acceleration Performance Analysis

To verify the feasibility of SMRFC-PDCNN, the experiment compares the acceler-
ation effect of SMRFC-PDCNN on the datasets of PASCALVOC2012, Caltech256,
COCO and ImageNet. In addition, to ensure the accuracy of the experimental re-
sults, the average of the speedup ratio of running the algorithm 10 times was taken
as the final experimental results. The Speedup radio on four data sets is presented
in Figure]

It can be seen from Figure [2] that the speedup ratio of the SMRFC-PDCNN
algorithm increases steadily with the increase of the number of nodes. When the
number of nodes is 2, the SMRFC-PDCNN algorithm has little difference in the
speedup ratios of the four data sets; when the number of nodes is 4, the speedup
ratios of the algorithm are increased by 2.655, 2.457, 3.541 and 4.814; when the
number of nodes is 8, the SMRFC-PDCNN algorithm has significantly improved in
each data set, reaching 6.921, 7.384, 9.218 and 8.114, respectively.

These results are produced because the SMRFC-PDCNN algorithm designs
a feature selection DCPSO-FSS strategy. The strategy proposes adaptive particle
velocity and quickly finds the feature vector clustering parameters through adaptive
inertia. Then, these feature vectors are clustered and sampled to the fully connected
layer for recognition, which significantly improves the speedup ratio of scene recogni-
tion. As the data scale increases, the improved effect of the algorithm becomes more

482 J. Dai, Y. Mao

—=— PASCALVOC2012
10 q | —e— Caltech256
—A—COCO
—wv— ImageNet

Speedup Ratio

2 4 6 8
Number of Nodes

Figure 2. Speedup radio of SMRFC-PDCNN on four datasets

and more obvious. This also shows that the SMRFC-PDCNN algorithm is suitable
for scene recognition, and the model parallel recognition of deep convolutional neural
networks.

5.5.2 The Strategy of MI-IPSS Analysis

To analyze the effect of the MI-IPSS strategy on the accuracy of the feature map,
we visualized the feature maps of the SMRFC-PDCNN algorithm on whether to use
the MI-IPSS strategy on VGG-16 model. The visualization result is presented in
Figure 3|

It can be seen from Figure [, compared with the algorithm without using the
MI-IPSS strategy, the feature information of the feature map on each convolutional
layer is more abundant after the algorithm uses the MI-IPSS strategy, and as the
network deepens, the strategy extracted Feature information is more efficient and
centralized. We can see in Figure , after using the MI-IPSS strategy, the feature
information of each feature map is relatively clear, and the light-dark boundary line
in the feature information is relatively gentle compared with Figure

The reason for this phenomenon is that the MI-IPSS strategy selects the ap-
propriate pooling strategy through feature comparison, and the appropriate pooling
strategy enhances the ability of the SMRFC-PDCNN algorithm to extract feature
information, which effectively improves the accuracy of scene recognition. In sum-
mary, the MI-IPSS strategy is feasible, and using the MI-IPSS strategy can signif-

SMRFC-PDCNN 483

400 600

a) The source data

¢) The Feature map using MI-IPSS strategy

Figure 3. The visualization results on whether to use the MI-IPSS

484 J. Dai, Y. Mao

icantly improve the performance of the SMRFC-PDCNN algorithm for extracting
feature information.

5.6 Performance of SMRFC-PDCNN

To verify the performance of the SMRFC-PDCNN algorithm. We conduct a compar-
ative experiment on the above experimental datasets, and compare the performance
of the algorithm among the PDCNNO algorithm, the RS-DCNN algorithm and the
BDCNN algorithm. Evaluate the speedup ratio, top5 accuracy, reduction of FLOPs
and running time of the four algorithms respectively.

5.6.1 The Runtimes of Four Algorithms

To investigate the training time consumed by SMRFC-PDCNN in multimodal data,
the runtimes required for the PDCNNO, RS-DCNN, BDCNN algorithms to achieve
stable training accuracy on four datasets are recorded and compared in the experi-
ments. The experimental results are shown in Figure [

14000 SMRFC-PDCNN
PDCNNO S_
12000 4 [RX\\JRS-DCNN 77
BDCNN N
§ 10000 7— EEEE
?E{
& 8000
on
-g
£ 6000 -
=1
~
4000 —
2000 —
(N | 7]
0 T T
PASCALVOC Caltech256 COCO ImageNet

Figure 4. The training time of each algorithm on four datasets

From Figurefd] it can be seen that for small-scale datasets like PASCALVOC2012
and Caltech256, there is little difference in recognition time among the different
algorithms. However, for large-scale datasets such as COCO and ImageNet, the
SMRFC-PDCNN algorithm significantly outperforms PDCNNO, RS-DCNN, and
BDCNN, reducing their running times by 6 581s, 7396, 6970s, and 5698s, 7253 s,
5789s, respectively. Notably, the SMRFC-PDCNN algorithm demonstrates a re-
markable reduction in training time as the training data size increases, outpacing
PDCNNO, RS-DCNN, and BDCNN by a considerable margin. These results are
clearly depicted in the graph.

SMRFC-PDCNN 485

These results were achieved because the SMRFC-PDCNN algorithm proposes
a load balancing strategy called CCG-LBS, which is based on clustered feature
maps. By dynamically calculating the computational cost of feature maps on dis-
tributed system nodes and distributing data between groups based on this cost, the
algorithm achieves dynamic load balancing of data, thereby avoiding slowing down
the overall speed of the algorithm due to uneven distribution of computational re-
sources. As a result, the SMRFC-PDCNN algorithm significantly reduces running
time compared to PDCNNO, RS-DCNN, and BDCNN algorithms. In conclusion,
the SMRFC-PDCNN algorithm is superior to PDCNNO, RS-DCNN, and BDCNN
algorithms, and is suitable for model parallelization of deep convolutional neural
networks in scene recognition.

5.6.2 The Top5 ACC and FLOPs of Four Algorithms

In order to verify the accuracy and model optimization effectiveness of the SMRFC-
PDCNN algorithm in a big data environment, this study computes the top5 accuracy
and FLOPs of the Baseline, SMRFC-PDCNN, PDCNNO, RS-DCNN, and BDCNN
algorithms using above four datasets. The Baseline refers to the VGG16 model’s
benchmark data under 1/8 data load. The experimental results are presented in
Table Bl

Dataset Algorithm Top5 Acc FLOPs Reduction of FLOPs
Baseline 87.18% | 3.26 x 105 -
PDCNNO 91.75% | 2.97 x 105 8%
f/?)SCCQA(?lLQ RS-DCNN 90.78% | 3.06 x 105 6 %
BDCNN 89.56 % | 3.16 x 105 3%
SMRFC-PDCNN 94.66 % | 1.36 x 105 58 %
Baseline 86.81% | 7.59 x 106 -
PDCNNO 90.78% | 6.31 x 106 17%
Caltech256 | RS-DCNN 91.69% | 6.38 x 106 16 %
BDCNN 87.74% | 7.29 x 106 4%
SMRFC-PDCNN 93.75% | 2.73 x 106 64 %
Baseline 88.38% | 1.76 x 107 -
PDCNNO 91.58% | 1.41 x 107 20 %
COCO RS-DCNN 94.87% | 1.65 x 107 6 %
BDCNN 93.79% | 1.49 x 107 15%
SMRFC-PDCNN 95.73% | 1.16 x 107 34 %
Baseline 91.92% | 9.72 x 107 -
PDCNNO 96.24 % | 7.39 x 107 24 %
ImageNet RS-DCNN 95.64% | 9.14 x 107 6 %
BDCNN 92.48% | 8.16 x 107 16 %
SMRFC-PDCNN 97.78% | 5.54 x 107 43 %

Table 3. The accuracy rate and FLOPs of each algorithm

486 J. Dai, Y. Mao

From Table [}, it is evident that when dealing with relatively small datasets
such as PASCALVOC2012 and Caltech256, each algorithm’s FLLOPs are reduced to
varying degrees. Notably, compared to PDCNNO, RS-DCNN, and BDCNN algo-
rithms, SMRFC-PDCNN algorithm has 14 %, 28 %, 19%, and 19 %, 37 %, and 27 %
lower FLOPs, respectively. On the other hand, when processing larger datasets
such as COCO and ImageNet, the SMRFC-PDCNN algorithm exhibits higher top5
accuracy and lower FLOPs than other three algorithms. Specifically, the SMRFC-
PDCNN algorithm’s top5 accuracy is 3.07 %, 2.01%, 6.02%, and 3.11%, 4.08%,
5.31 % higher than PDCNNO, RS-DCNN, and BDCNN algorithms, respectively.
Furthermore, the SMRFC-PDCNN algorithm’s FLOPs are reduced by 50 %, 52 %,
55 %, and 47 %, 48 %, 60 %, respectively.

These remarkable results stem from SMRFC-PDCNN’s MI-IPSS pooling selec-
tion strategy, which is based on improved mutual information. It judges the current
pooling method’s adaptability to the current dataset by comparing the similarity of
relevant features before and after pooling. This addresses the problem of accuracy
degradation of feature maps and allows the algorithm to maintain stable accuracy
while significantly reducing FLOPs. Experimental data demonstrate that SMRFC-
PDCNN has higher convergence speed and accuracy than the other three parallel
algorithms, making it suitable for model parallelism recognition in scene recognition
using deep convolutional neural networks.

5.6.3 The Speedup Ratio of Four Algorithms

In order to compare the parallel computing performance of SMRFC-PDCNN in
a large data environment, the PDCNNO, RS-DCNN, and BDCNN algorithms were
tested 10 times on each of the four data sets, and the average of the speedup ratios
of each algorithm with different numbers of computational nodes was used as the
comparison standard. The experimental results are shown in Figure [5

From Figures and it can be seen that when dealing with relatively small-
scale data sets such as PASCALVOC2012 and Caltech256, the speedup ratios of the
four algorithms increase slowly as the number of nodes increases. Among them,
when the number of cluster nodes When it is 4, the acceleration ratio of SMRFC-
PDCNN is 1.93, 1.05, 0.22, and 0.68 lower than that of the BDCNN and RS-DCNN
algorithms with a low degree of parallelization; but in Figure and 7 it can be
seen that when dealing with relatively large data sets such as COCO and ImageNet,
the acceleration ratio of the SMRFC-PDCNN algorithm is relatively large, reaching
8.98 and 9.07 when the number of cluster nodes is 8, which are higher than those
of PDCNNO and RS-DCNN respectively. And the BDCNN algorithm is 1.47, 2.31,
1.89 and 1.41, 3.43, 3.39 higher.

The reason for these results is that when the SMRFC-PDCNN algorithm is pro-
cessing relatively small-scale data sets such as PASCALVOC2012 and Caltech256,
the distribution of data to each computing node will lead to a rapid increase in the
communication time overhead between nodes. The running speed improvement is
extremely limited; when the SMRFC-PDCNN algorithm is dealing with relatively

SMRFC-PDCNN 487

—&— SMRFC-PDCNN
74 —— PDCNNO
—A— RS-DCNN
—v— BDCNN
6 .
.S
= 5
(4
o
5 4+
Q
Q
)
3 -
2 -
1 -
T T T T
2 4 6 8
Number of Nodes
a) PASCALVOC2012
—&— SMRFC-PDCNN
;| | —8—PDCNNO
—&— RS-DCNN
—w— BDCNN
6 -
=
® 5
~
o
3 4
Q
o
)
3 -
2
1 .

2 4 6 8
Number of Nodes

b) Caltech256

488 J. Dai, Y. Mao

—&— SMRFC-PDCNN
10 { | —e— PDCNNO
9] —&— RS-DCNN
—w— BDCNN
8 -
g 7.
<
~ 6
g
2
d 51
)
4
3 -
2 -
1 -
T T T T
2 4 6 8
Number of Nodes
¢) COCO
—&— SMRFC-PDCNN
10 { | —e— PDCNNO
9 —&A—RS-DCNN
| | —v—BDCNN
8 -
g 7-
~ 6
&
B
@ 5
)
4 4
3 -
2 -
1 -
T T T T
2 4 6 8
Number of Nodes

d) ImageNet

Figure 5. Speedup radio of SMRFC-PDCNN on four datasets

SMRFC-PDCNN 489

large data sets such as COCO and ImageNet, because the algorithm proposes the
CGFF function in the DCPSO-FSS strategy, the particle swarm can quickly con-
verge to find the applicable Based on the clustering parameters of the feature map,
the speedup ratio of the algorithm is improved, and compared with the other four
algorithms, the speedup ratio improvement effect is also more obvious. The experi-
ment shows that the parallelization ability of SMRFC-PDCNN algorithm increases
significantly with the increase of the number of cluster nodes. Enhanced, it is suit-
able for scene recognition, model parallel recognition of deep convolutional neural
network, and has better performance.

6 CONCLUSIONS

To address the issues of decreased accuracy of feature maps, more redundant fea-
ture calculations and low efficiency in parallel recognition process of deep paral-
lel convolutional neural networks, this paper proposes an efficient Scene Match-
ing Recognition with DCNN and Feature Clustering on Spark, named SMRFC-
PDCNN.

Firstly, a pool selection strategy MI-IPSS, based on improved mutual informa-
tion, is proposed. It adaptively adjusts the next pooling strategy by calculating the
mutual information coefficient of feature maps before and after pooling, thus solv-
ing the problem of feature map accuracy degradation. Secondly, a feature selection
strategy DCPSO-FSS based on density clustering and particle swarm optimization
is designed. This quickly locates density clustering parameters through particle
swarm optimization and recognizes clustered features through feature sampling in
the fully connected layer, thus solving the problem of feature redundancy. Finally,
a load balancing strategy CCG-LBS based on cluster feature maps is designed. It
dynamically calculates the computation cost of feature maps on each node of the
distributed system and dynamically allocates data among groups based on this cost
to achieve dynamic load balancing of data, thus solving the problem of low parallel
recognition efficiency.

To verify the performance of the SMRFC-PDCNN algorithm, relevant experi-
ments were designed and the SMRFC-PDCNN algorithm was compared with the
PDCNNO algorithm, the RS-DCNN algorithm, and the BDCNN algorithm on four
datasets, namely COCO, ImageNet, PASCALVOC2012, and Caltech256. The ex-
perimental results and analysis demonstrate that the SMRFC-PDCNN algorithm is
suitable for the field of scene recognition and the model parallel recognition of deep
convolutional neural networks compared with other algorithms.

In the future, we will work on solving the defects of SMRFC-PDCNN. For ex-
ample, the scene recognition algorithm proposed in this article is based on train-
ing and optimization of discrete images, and it does not take into account rele-
vant work in the time dimension. Therefore, future research can start from this
aspect and build more accurate and meaningful scene recognition algorithm mod-
els.

490 J. Dai, Y. Mao

Acknowledgement

This work was supported by the Special Project in Key Fields of Colleges and
Universities in Guangdong Province (No. 2023ZDZX4069).

REFERENCES

[1] L6PEZ-CIFUENTES, A.—ESCUDERO-VINOLO, M.—BEscés, J.—MIGUEL, J. C. S.:
Attention-Based Knowledge Distillation in Scene Recognition: The Impact of a DCT-
Driven Loss. IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 33, 2023, No. 9, pp. 47694783, doi: [10.1109/TCSVT.2023.3250031}

[2] RAFIQUE, A. A.—GoOCHOO, M.—JALAL, A.—Kim, K.: Maximum Entropy Scaled
Super Pixels Segmentation for Multi-Object Detection and Scene Recognition via
Deep Belief Network. Multimedia Tools and Applications, Vol. 82, 2023, No. 9,
pp. 13401-13430, doi: 10.1007/s11042-022-13717-y.

[3] KRAGEL, J. E.—Voss, J.L.: Temporal Context Guides Visual Exploration During
Scene Recognition. Journal of Experimental Psychology: General, Vol. 150, 2021,
No. 5, pp. 873-889, doi: [10.1037/xge0000827.

[4] MasooD, S.—AHSAN, U.—MUNAWWAR, F.—Rizvi, D. R.—AHMED, M.: Scene
Recognition from Image Using Convolutional Neural Network. Procedia Computer
Science, Vol. 167, 2020, pp. 1005-1012, doi: [10.1016/j.procs.2020.03.400.

[6] HANDALL, J. P.—SCHNEIDER, J.—GAU, M.—HOLZWARTH, V.—VvOM BROCKE, J.:
Visual Complexity and Scene Recognition: How Low Can You Go? 2021
IEEE Virtual Reality and 3D User Interfaces (VR), 2021, pp. 286-295, doi:
10.1109/VR50410.2021.00051.

[6] WAaNG, S.—YaAo0, S.—Niu, K.—Dong, C.—QiN, C.—ZHUANG, H.: Intelli-
gent Scene Recognition Based on Deep Learning. IEEE Access, Vol. 9, 2021,
pp. 24984-24993, doi: 10.1109/ACCESS.2021.3057075.

[7] KOCHAKARN, P.—DE MARTINI, D.—OMEIZA, D.—KUNZE, L.: Explainable Ac-
tion Prediction Through Self-Supervision on Scene Graphs. 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2023, pp. 1479-1485, doi:
10.1109/ICRA48891.2023.10161132.

[8] Hu, Y.—DonG, B.—Huang, K.—Dinag, L.—WanNe, W.—Huang, X.—
WANG, Q.F.: Scene Text Recognition via Dual-Path Network with Shape-Driven
Attention Alignment. ACM Transactions on Multimedia Computing, Communica-
tions and Applications, Vol. 20, 2024, No. 4, Art. No. 107, doi: [10.1145/3633517.

[9] GHOSH, J.—TALUKDAR, A.K.—SArRMA, K.K.: A Light-Weight Natural Scene
Text Detection and Recognition System. Multimedia Tools and Applications, Vol. 83,
2024, No. 3, pp. 6651-6683, doi: [10.1007/s11042-023-15696-0.

[10] MipDYA, A.I.—KUMAR, S.—RoOY, S.: Activity Recognition Based on Smart-
phone Sensor Data Using Shallow and Deep Learning Techniques: A Comparative
Study. Multimedia Tools and Applications, Vol. 83, 2024, No. 3, pp. 9033-9066, doi:
10.1007/s11042-023-15751-w.

https://doi.org/10.1109/TCSVT.2023.3250031
https://doi.org/10.1007/s11042-022-13717-y
https://doi.org/10.1037/xge0000827
https://doi.org/10.1016/j.procs.2020.03.400
https://doi.org/10.1109/VR50410.2021.00051
https://doi.org/10.1109/ACCESS.2021.3057075
https://doi.org/10.1109/ICRA48891.2023.10161132
https://doi.org/10.1145/3633517
https://doi.org/10.1007/s11042-023-15696-0
https://doi.org/10.1007/s11042-023-15751-w

SMRFC-PDCNN 491

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

HELLER, L. M.—ELIZALDE, B.—RAJ, B.—DESHMUKH, S.: Synergy Between Hu-
man and Machine Approaches to Sound/Scene Recognition and Processing: An
Overview of ICASSP Special Session. CoRR, 2023, doi: 10.48550/arXiv.2302.09719.
SoNG, X.—Liu, C.—ZeNG, H.—Znu, Y.—CHEN, G.—QIN, X.—JIANG, S.:
Composite Object Relation Modeling for Few-Shot Scene Recognition. IEEE
Transactions on Image Processing, Vol. 32, 2023, pp. 5678-5691, doi:
10.1109/TIP.2023.3321475.

SoNG, S.—WAN, J.—YANG, Z.—TanNG, J.—CHENG, W.—BA1, X.—Yao0, C.:
Vision-Language Pre-Training for Boosting Scene Text Detectors. 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2022,
pp. 15660-15670, doi: 10.1109/CVPR52688.2022.01523.

Zuou, B.—LAPEDRIZA, A.—KHOSLA, A.—OLIVA, A.—TORRALBA, A.: Places:
A 10 Million Image Database for Scene Recognition. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol. 40, 2018, No. 6, pp. 1452-1464, doi:
10.1109/TPAMI.2017.2723009.

HERRANZ, L.—JI1ANG, S.—L1, X.: Scene Recognition with CNNs: Objects, Scales
and Dataset Bias. 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016, pp. 571-579, doi: [10.1109/CVPR.2016.68.

KHAN, S.H.—HAvAT, M.—BENNAMOUN, M.—TOGNERI, R.—SOHEL, F.A.:
A Discriminative Representation of Convolutional Features for Indoor Scene Recog-
nition. IEEE Transactions on Image Processing, Vol. 25, 2016, No. 7, pp. 3372-3383,
doi: 10.1109/TIP.2016.2567076.

ZHANG, L.—L1, L.—PaN, X.—CA0, Z.—CHEN, Q.—YANG, H.: Multi-Level En-
semble Network for Scene Recognition. Multimedia Tools and Applications, Vol. 78,
2019, No. 19, pp. 28209-28230, doi: [10.1007/s11042-019-07933-2.

L, E.—Xia, J.—Du, P.—LiN, C.—SAMAT, A.: Integrating Multilayer Features
of Convolutional Neural Networks for Remote Sensing Scene Classification. IEEE
Transactions on Geoscience and Remote Sensing, Vol. 55, 2017, No. 10, pp. 56535665,
doi: 10.1109/TGRS.2017.2711275.

Zuou, K.—ZHANG, M.—WAaANG, H.—TaN, J.: Ship Detection in SAR Images
Based on Multi-Scale Feature Extraction and Adaptive Feature Fusion. Remote Sens-
ing, Vol. 14, 2022, No. 3, Art. No. 755, doi: 10.3390/rs14030755.

JUNAID, M.—WAaGAN, S. A.—QUREsHI, N. M. F.—NawM, C. S.—SHIN, D. R.: Big
Data Predictive Analytics for Apache Spark Using Machine Learning. 2020 Global
Conference on Wireless and Optical Technologies (GCWOT), 2020, pp. 1-7, doi:
10.1109/GCWOT49901.2020.9391620.

WanaG, Q.—Zuao, J.—GoNG, D.—SHEN, Y.—Li, M.—LEI, Y.: Parallelizing
Convolutional Neural Networks for Action Event Recognition in Surveillance Videos.
International Journal of Parallel Programming, Vol. 45, 2017, No. 4, pp. 734-759,
doi: 10.1007/s10766-016-0451-4.

BELLO, M.—NAPOLES, G.—SANCHEZ, R.—BELLO, R.—VANHOOF, K.: Deep
Neural Network to FExtract High-Level Features and Labels in Multi-Label
Classification Problems. Neurocomputing, Vol. 413, 2020, pp. 259-270, doi:
10.1016/j.neucom.2020.06.117.

https://doi.org/10.48550/arXiv.2302.09719
https://doi.org/10.1109/TIP.2023.3321475
https://doi.org/10.1109/CVPR52688.2022.01523
https://doi.org/10.1109/TPAMI.2017.2723009
https://doi.org/10.1109/CVPR.2016.68
https://doi.org/10.1109/TIP.2016.2567076
https://doi.org/10.1007/s11042-019-07933-2
https://doi.org/10.1109/TGRS.2017.2711275
https://doi.org/10.3390/rs14030755
https://doi.org/10.1109/GCWOT49901.2020.9391620
https://doi.org/10.1007/s10766-016-0451-4
https://doi.org/10.1016/j.neucom.2020.06.117

492

[23]

[24]

[25]

[26]

[27]

[28]

[29]

J. Dai, Y. Mao

BouriLA, W.—SeLrami, M.—DRriss, M.—AL-SAREM, M.—SAFAEI, M.—
GHALEB, F.A.: RS-DCNN: A Novel Distributed Convolutional-Neural-
Networks Based-Approach for Big Remote-Sensing Image Classification. Com-
puters and Electronics in Agriculture, Vol. 182, 2021, Art.No. 106014, doi:
10.1016/j.compag.2021.106014.

MAoO, Y.—ZHANG, R.—CaA0, W.: Parallel Deep Convolutional Neural Network
Optimization Algorithm Based on Big Data. Computer Application Research, Vol. 38,
2021, No. 05, pp. 1416-1421, doi: [10.19734/j.issn.1001-3695.2020.04.0112.

KM, J.H.—LEE, D.S.—LEE, S. H.: Density Change Adaptive Congestive Scene
Recognition Network. The International Journal of Advanced Smart Convergence,
Vol. 12, 2023, No. 4, pp. 147-153.

Q1a0, J.—WANG, G.—YanNg, Z.—Lvo, X.—CHEN, J.—L1, K.—Liu, P.: A Hy-
brid Particle Swarm Optimization Algorithm for Solving Engineering Problem. Sci-
entific Reports, Vol. 14, 2024, No. 1, Art. No. 8357, doi: [10.1038/s41598-024-59034-2.
STECK, H.—EKANADHAM, C.—KALLUS, N.: Is Cosine-Similarity of Embeddings
Really About Similarity? Companion Proceedings of the ACM Web Conference 2024
(WWW '24), 2024, pp. 887-890, doi: 10.1145/3589335.3651526.

SuN, X. H.—Lu, X.: The Memory-Bounded Speedup Model and Its Impacts in Com-
puting. Journal of Computer Science and Technology, Vol. 38, 2023, No. 1, pp. 64-79,
doi: [10.1007/s11390-022-2911-1.

Sanu, A.—Das, P.K.—MEgHER, S.: High Accuracy Hybrid CNN Classi-
fiers for Breast Cancer Detection Using Mammogram and Ultrasound Datasets.
Biomedical Signal Processing and Control, Vol. 80, 2023, Art.No. 104292, doi:
10.1016/j.bspc.2022.104292.

Jingguo DAI is Professor at the Guangzhou Huashang College.
His research interests include network and information security,
graphics and image processing, and machine learning.

Yimin MAo is Professor at the Shaoguan University, Ph.D.
supervisor. Her main research interests include data mining and
artificial intelligence.

https://doi.org/10.1016/j.compag.2021.106014
https://doi.org/10.19734/j.issn.1001-3695.2020.04.0112
https://doi.org/10.1038/s41598-024-59034-2
https://doi.org/10.1145/3589335.3651526
https://doi.org/10.1007/s11390-022-2911-1
https://doi.org/10.1016/j.bspc.2022.104292

