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Ilkovičova 3, 812 19 Bratislava, Slovakia
&
Institute of Applied Informatics
Faculty of Informatics Pan-European University, Slovakia
Temat́ınska 10, 851 05 Bratislava, Slovakia
e-mail: p.farkas@ieee.org
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1 INTRODUCTION

In the past, the construction of practical erasure-correcting codes was mainly moti-
vated by their applications in packet-switched networks and distributed storage sys-
tems. A practical family of codes for erasure correction was proposed by McAuley
in [1]. It was named Weighted sum codes. Their main advantage is very efficient
simple hardware and software realizations of corresponding encoders and decoders.
In [2] Farkaš noted that these codes are equivalent to extended Reed Solomon codes
and shortened versions of extended Reed Solomon codes, respectively. In [2], it was
also demonstrated that it is possible to correct one error in each codeword of such
codes.

The Weighted sum codes inspired further research of codes with very simple
encoding and decoding procedures. In [3] Farkaš and Baylis proposed other families
of related codes, namely t-information error correcting codes, single error correcting
codes and conditionally double error correcting codes. In all these families the codes
are distinguished by high coding rates and low complexity of decoding. Later in [4]
following this direction of research a family of double error correcting codes was
proposed. More recently, continuation of these efforts brought a surprising result,
namely five times extended Reed Solomon codes constructed over finite fields GF (2ξ)
where ξ is an odd integer, that were discovered in [5]. In [6] it was shown that
these codes can correct up to two errors and they could be decoded using syndrome
decoding. In this paper a new family of three erasure correcting codes is proposed
which is distinguished by simple implementation of decoding procedures.

In recent times DNA computing, DNA communication and especially DNA stor-
age research have invoked fresh interest in constructing new coding schemes adapted
to the needs of these areas [7, 8].

DNA storage has several advantages that may make it the preferred storage
system of the future:

• it has high density,

• it has longevity,

• it has small CO2 footprint,

• it is a universal storage medium used by nature.

However, storage systems need to use codes which correct the impairments that
occur during synthesizes and reading the information stored in DNA strings [9, 10,
11, 12, 13].

Levick at al. showed in [14] that if the DNA multi-draw storage channel is
modeled as an erasure channel, then its capacity could be achieved using linear
codes. Reed Solomon codes, which belong to linear block codes, were used in [15]
to protect information in DNA storage. In [16, 17] the codes correcting single or
double deletions (erasures) were considered for DNA storage.

Data is stored in DNA strings with lengths of several hundred nucleotides. The
state-of-the-art results indicate that erasure correcting block codes over finite fields
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similar to Reed Solomon codes with some flexibility in the encoded block lengths
could be useful for DNA storage.

The paper is organized as follows. In Section 2 the basic theoretical background
is given. In Section 3 the new family of codes will be presented. In Section 4
the syndrome decoding algorithm for the new family of codes will be proposed. In
Section 5 the encoding procedures will be described. The last section will give some
concluding remarks on possible further research in this direction.

2 BASIC THEORETICAL BACKGROUND

A linear block code C is defined as a k-dimensional subspace of an n-dimensional
vector space defined over a finite field GF (q). In practical terms n can be interpreted
as a codeword length and k as the number of symbols which contain the encoded
information – the so called payload. Rk = k/n is a code rate. The Hamming weight
of the codeword c = (cn−1, cn−2, . . . , c0), is the number of its non-zero symbols or in
other words non-zero coordinates in the vector used for its mathematical description.

Any linear block code can be defined using its parity check matrix H with
dimensions: (n−k)×n. The rows of H describe the so-called parity check equations
valid for all c ∈ C. In a compact way it is expressed by the following equation

c.HT = 0. (1)

Error correcting linear block code construction has particularly contradictory
goals. On one hand the goal is to minimize their redundancy given by n − k and
on the other hand to maximize the minimal Hamming distance between their code-
words. The Hamming distance between two codewords ci ∈ C and cj ∈ C denoted
as d(ci, cj) is the number of coordinates by which the two vectors differ. The min-
imal Hamming distance between any two codewords of a code is denoted as dm. It
is well known that the number of errors t which can be corrected in one codeword
of a code with code distance dm is

2t+ 1 ≤ dm. (2)

In non-binary error control codes, the error can only be corrected if its position
and value is known, therefore each error is connected with two unknowns. In con-
trast, in case of erasure the position is known and only one unknown, namely the
erasure value has to be obtained in order to correct it. Therefore the number of
correctable erasures ε is connected with code distance by this expression

ε+ 1 ≤ dm. (3)

In some applications and for some codes it is also possible to use decoding of
errors and erasures. In this case the following inequality must hold

2t+ ε+ 1 ≤ dm. (4)
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The basic parameters of linear block codes are given in a compact way using
a triple [n, k, dm]GF (q). Different tables give the state-of-the-art knowledge about the
bounds on dm as function of n and k [18] which we will denote dm(n, k).

It is worth noting that for some of the codes mentioned in the introduction it
is known that they are reaching the upper bounds on dm(n, k) and so belong to the
class of so-called best linear block codes. For example the five times extended Reed
Solomon codes defined in [5] belong to such a class. However, the tables give data
about the bounds and basic parameters of best-known linear block codes only up to
certain values of codeword lengths and code dimensions, therefore it is not possible
to decide whether all mentioned codes belong to such a class of the best linear block
codes.

Some linear block codes belong to the class of cyclic codes. They have the
property that each cyclic shift of codeword from a cyclic code is also a codeword from
that code. For cyclic codes it is very useful to denote the codewords as polynomials

c(x) = cn−1x
n−1 + cn−2x

n−2 + · · ·+ c1x+ c0. (5)

One of the advantages of such an expression is that some polynomials are directly
connected to hardware realizations of different linear shift registers with feedback
and digital filters which are used to realize the encoders and decoders of cyclic codes.

The other advantage is that many codes are defined by roots of the polynomials
which represent codewords of cyclic codes. BCH codes and Reed Solomon codes are
the most popular examples of it.

This allows for checking whether a given polynomial is a codeword by substi-
tuting all roots by which the code is defined into the corresponding polynomial.
If, for some roots, the evaluation gives nonzero values, these values are known as
syndromes and can be used in so-called syndrome decoding in order to correct the
corresponding polynomial or vector in such a way that, as a result, an estimation of
the codeword is obtained.

The model which will be used to describe erasures is depicted in Figure 1.

c v 

e 

Figure 1. Erasure channel model where c and v and e denote transmitted codeword,
received vector and erasures modelling vector respectively. In this model erasures (non-
zero coordinates of e) are inverse elements with respect to addition in GF (q).

Alternatively, polynomials c(x), v(x) and e(x) can be used to represent these
vectors as well, which will be more convenient for the decoding description in this
paper.
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3 THREE ERASURE CORRECTING LINEAR BLOCK CODES

The new family of codes proposed in this paper is defined by the parity check
matrix of the codes defined by different finite fields GF (q) with characteristic 2 in
Theorem 1.

Theorem 1. The following control matrix:

H =

[
A . . . A A A A

Bq−2 . . . B3 B2 B1 B0

]
, (6)

where

A =

 1 . . . 1 1 1
αq−2 . . . α2 α1 1
α2(q−2) . . . α4 α2 1

 , (7)

B0 =

[
1 . . . 1 1 1
1 . . . 1 1 1

]
, (8)

B1 =

[
α . . . α α α
α2 . . . α2 α2 α2

]
, (9)

B2 =

[
α2 . . . α2 α2 α2

α4 . . . α4 α4 α4

]
, (10)

B3 =

[
α3 . . . α3 α3 α3

α6 . . . α6 α6 α6

]
, (11)

. . .

Bq−2 =

[
α(q−2) . . . α(q−2) α(q−2) α(q−2)

α2(q−2) . . . α2(q−2) α2(q−2) α2(q−2)

]
(12)

and α is a primitive element from GF (q), defines a family of linear block codes over
GF (q), which could correct up to 3 erasures in each codeword.

Proof. In order to correct 3 erasures we need to obtain a system of three linearly
independent equations from which the erasure values could be computed. By ob-
serving the structure of the matrix H defined in (6) it is obvious that it is possible to
obtain at least 3 linearly independent equations from the rows of H for any possible
combination of 1, 2 or 3 erasure positions. Therefore this control matrix defines
a 3 erasure correcting code. □

(More details on decoding will be given in the next section). Let us, however,
first introduce the basic parameters of the codes constructed using matrix H (6).
The codeword lengths depend on q, namely n = (q − 1)2. On the other hand the
number of parity check symbols is constant, namely n− k = 5. Therefore the code
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rate of the proposed code is: Rk = [(q − 1)2 − 5]/(q − 1)2. For example, if the
proposed code is constructed over GF (16) then n = 225 and k = 220 with the code
rate of Rk = 0.977. The standard Reed Solomon code correcting three erasures
defined over GF (16) has n = 15, k = 12 and Rk = 0.8. It can be seen that the
proposed codes have higher code rates than Reed Solomon codes constructed over
the same finite fields.

4 ERASURE DECODING IN CODEWORDS
OF THE PROPOSED CODES

In this chapter a decoding algorithm, which could be used for any code from the
proposed family of 3 erasure correcting codes will be described. It was inspired by
the well-known syndrome decoding of Reed Solomon codes. Reed Solomon codes
in their original form could be defined by an H matrix, which is equivalent to
a single Vandermonde matrix. In contrast to the Reed Solomon codes the first
3 rows (from top) of the H matrix (6), which defines the new codes are com-
posed of q − 1 Vandermonde matrices A and the last 2 (bottom) rows are com-
posed of matrices B0, B1, . . . , Bq−2. By closer inspection of Bj; j = 0, . . . , q − 2
it could be seen that the last two rows contain columns which represent “block-
interleaved” Vandermonde matrices. In particular, B0 is composed of columns con-
taining the rightmost elements of the last two rows of A (7). B1 is composed of
columns containing the second rightmost elements of the last two rows of A and so
on.

This special structure guarantees that enough linearly independent equations
for syndrome decoding are available to the decoder independently of the positions
of the 3 erasures. The model in Figure 1 represents a transmission channel with
erasures which can be described as

v = c+ e, (13)

where vectors c, v and e represent the transmitted codeword, received word and
erasure vector, respectively.

In this model erasures (non-zero coordinates of vector e) are inverse elements
with respect to addition in GF (q). Therefore, the goal of decoding is to calculate the
values of erasures. One method is to use syndromes or, more specifically, syndrome
equations.

In the syndrome decoding algorithm the first step is to calculate syndromes
using equation

S = v.HT , (14)

where S = (S0, S1, S2, S3, S4) is a syndrome vector, andHT is a transposedHmatrix.
Its coordinates are syndromes, corresponding to the five rows of control matrix H
given by indices in order from the top to the bottom.
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In order to get a more detailed description for calculating particular syndromes
let’s use the following notation for the received vector:

v = (vq−2,q−2, . . . , vq−2,1, vq−2,0 |, . . .

· · · | vq−2,1, . . . , v1,1, v0,1, | · · · | vq−2,0, . . . , v1,0, v0,0).
(15)

Using this notation:

S0 = (v0,0 + v1,0 + v2,0 + · · ·+ vq−2,0)

+ (v0,1 + v1,1 + v2,1 + · · ·+ vq−2,1)

...

+ (v0,q−2 + v1,q−2 + v2,q−2 + · · ·+ vq−2,q−2), (16)

S1 = (v0,0 + v0,1 + v0,2 + · · ·+ v0,q−2)α
0

+ (v1,0 + v1,1 + v1,2 + · · ·+ v1,q−2)α
1

...

+ (vq−2,0 + vq−2,1 + vq−2,2 + · · ·+ vq−2,q−2)α
q−2, (17)

S2 = (v0,0 + v0,1 + v0,2 + · · ·+ v0,q−2)α
0

+ (v1,0 + v1,1 + v1,2 + · · ·+ v1,q−2)α
2

...

+ (vq−2,0 + vq−2,1 + vq−2,2 + · · ·+ vq−2,q−2)α
2(q−2), (18)

S3 = (v0,0 + v1,0 + v2,0 + · · ·+ vq−2,0)α
0

+ (v0,1 + v1,1 + v2,1 + · · ·+ vq−2,1)α
1

...

+ (v0,q−2 + v1,q−2 + v2,q−2 + · · ·+ vq−2,q−2)α
q−2, (19)

S4 = (v0,0 + v1,0 + v2,0 + · · ·+ vq−2,0)α
0

+ (v0,1 + v1,1 + v2,1 + · · ·+ vq−2,1)α
2

...

+ (v0,q−2 + v1,q−2 + v2,q−2 + · · ·+ vq−2,q−2)α
2(q−2). (20)
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If we introduce:

ρi =

q−2∑
j=0

vi,j, i = 0, . . . , q − 2, (21)

κi =

q−2∑
i=0

vi,j, i = 0, . . . , q − 2 (22)

then:

S0 =

q−2∑
i=0

κi, (23)

S1 =

q−2∑
i=0

ρiα
i, (24)

S2 =

q−2∑
i=0

ρiα
2i, (25)

S3 =

q−2∑
i=0

κiα
j, (26)

S4 =

q−2∑
i=0

κiα
2j. (27)

This notation allows us to illustrate the “block interleaved” structure of the code
in Figure 2. In Figure 2 the received vector is stored in a 2-dimensional storage. It
is obvious that ρi; i = 0, . . . , q − 2 and κj; j = 0, . . . , q − 2 could be obtained by
adding the values in corresponding rows and columns from the obtained table.

ν0,0 ν0,1 ν0,2

ν1,0 ν1,1 ν1,2

ν2,0 ν2,1 ν2,2

ν0,q−2

ν1,q-2

ν2,q-2

ν
q-2,0 ν

q-2,1 ν
q-2,2 ν

q-2,q-2

...

...

...

...

...

...

...

...

...

...

ρ0

ρ1

ρ2

ρ
q-2

κ0 κ1 κ2 κ
q-2

Figure 2. Received vector symbols stored in a 2-dimensional memory (“block interleaver”)
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In the second step the syndrome equations are formed. From (1), (13) and (14)
it is obvious that

S = e.HT . (28)

An appropriate subset of linearly independent equations has to be selected from
which the estimations of erasure values are calculated. The following subsections
analyse any possible combination of erasure location in the received vector for up to
3 erasures. In the following text, the erasures will be denoted as Ei, where i equals
I, II , III .

4.1 One Erasure

If one erasure occurs, it is obvious that only one equation necessary for decoding
always exists and can be obtained be multiplying v with the first row of HT . For
example, an equation which corresponds to the first syndrome S0 could be used to
compute the value of one erasure denoted as EI . In this case from (13) and (15) it
follows:

S0 = EI . (29)

4.2 Two Erasures

If two erasures occur in the received vector, a system of two linearly independent
equations has to be formed. A more detailed analysis is required depending on the
positions of the erasures.

Two erasures EI and EII will be in the positions which are inside the same
matrix A (7) or in two different matrices A localized in different columns.
In these cases, the two linearly independent equations that are necessary to calculate
the values of the erasures could be formed using the first two syndromes.

S0 = EI + EII , (30)

S1 = αiIEI + αiIIEII . (31)

where αiI and αiII are the known locators (since the positions of erasures are known)
of the erasures inside the A matrices. In more detail, the first erasure is in the ithI
column from the right and second erasure is in the ithII column from the right inside
their A matrices.

In a practical decoding algorithm, in the first step the syndromes S0 and S1 are
calculated using (23) and (24). Then EI and EII are calculated. From (30) and (31)
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it follows:

EI =
S1 + αiIIS0

(αiI + αiII )
, (32)

EII = S0 +
S1 + αiIIS0

(αiI + αiII )
. (33)

Two erasures EI and EII will be in the positions which are inside two
different A matrices localized in the same columns of A or in the other
words: iI = iII. In this case, the two linearly independent equations stem from
multiplication of v with the first, fourth and the fifth (from top) transposed row of
the H matrix (6).

Because the erasures are localized in two different matrices A, they are also
located in different matrices B.

S0 = EI + EII , (34)

S4 = α2jIEI + α2jIIEII . (35)

Using (30) and for example (34) we get

EI =
S3 + αjIIS0

(αjI + αjII )
, (36)

EII = S0 +
S3 + αjIIS0

(αjI + αjII )
. (37)

4.3 Three Erasures

Three erasures EI, EII and EIII will be in the positions which are inside
the same A matrix or in three different A matrices localized in three
different columns. In this case, the first three syndromes could be exploited to
form a system of 3 linearly independent equations necessary to compute EI , EII ,
and EIII . The syndromes S0, S1 and S2 are calculated using (23), (24) and (25):

S0 = EI + EII + EIII , (38)

S1 = αiIEI + αiIIEII + αiIIIEIII , (39)

S2 = α2iIEI + α2iIIEII + α2iIIIEIII . (40)
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This system could be solved using the following determinants:

EI =

∣∣∣∣∣∣
S0 1 1
S1 αiII αiIII

S2 α2iII α2iIII

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1
αiI αiII αiIII

α2iI α2iII α2iIII

∣∣∣∣∣∣
, (41)

EII =

∣∣∣∣∣∣
1 S0 1
αiI S1 αiIII

α2iII S2 α2iIII

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1
αiI αiII αiIII

α2iI α2iII α2iIII

∣∣∣∣∣∣
, (42)

EIII =

∣∣∣∣∣∣
1 1 S0

αiI αiII S1

α2iI α2iII S2

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1
αiI αiII αiIII

α2iI α2iII α2iIII

∣∣∣∣∣∣
(43)

or by Gaussian elimination.

Three erasures EI, EII and EIII will be in the positions which are inside
three different A matrices localized in the same columns. In this case,
a system of 3 linearly independent equations necessary to compute EI , EII , and
EIII can be formed using the first, fourth and fifth syndrome:

S0 = EI + EII + EIII , (44)

S3 = αjIEI + αjIIEII + αjIIIEIII , (45)

S4 = α2jIEI + α2jIIEII + α2jIIIEIII (46)

This system could be solved using determinants or Gaussian elimination as in
case 4.3.

Three erasures. Two erasures EI, EII are localized in the same column of
A and the third erasure EIII is in a different column of A. This situation
can occur in different sub cases.

Case A. Two erasures are localized within the same matrix A and the third one is
in different matrix A. For example let: iI = iII ̸= iIII , jI = jIII ̸= jII , iI ̸= jIII .
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In this case the decoder can form five equations for computing all five syndromes
S0, S1, S2, S3, and S4

S0 = EI + EII + EIII , (47)

S1 = αiIEI + αiIEII + αiIIIEIII , (48)

S2 = α2iIEI + α2iIEII + α2iIIIEIII , (49)

S3 = αjIEI + αjIIEII + αjIEIII , (50)

S4 = α2jIEI + α2jIIEII + α2jIEIII , (51)

From (50) and (51) we get

EII =
αjIS4 + α2jIS3

α2jIαjII + αjIα2jII
(52)

and from (48) and (49) we get

EIII =
αiIS2 + α2iIS1

α2iIαiIII + αiIα2iIII
(53)

and by using (47)
EI = S0 + EII + EIII . (54)

Case B. Three erasures are localized in three different matrices A while two of
them are localized in the same columns of two different A matrices. Then:
iI = iII , iI ̸= iIII , jI ̸= jII ̸= jIII .

S0 = EI + EII + EIII , (55)

S1 = αiIEI + αiIEII + αiIIIEIII , (56)

S2 = α2iIEI + α2iIEII + α2iIIIEIII , (57)

S3 = αjIEI + αjIIEII + αjIIIEIII , (58)

S4 = α2jIEI + α2jIIEII + α2jIIIEIII . (59)

In this case, (55), (58) and (59) could be solved using determinants or Gaussian
elimination as in case 4.3.

The last step in the decoding algorithm is to correct the erasures in known
positions, which is straightforward from (13).

The analysis of the decoding algorithm serves as a detailed proof of the previous
theorem. Another confirmation that the presented family of codes has code dis-
tance 4 was obtained by calculating its weight spectra. An examples of the weight
spectra of code constructed over GF (4), GF (8), and GF (16) follows.
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The weight spectrum of [9, 4, 4]GF (4) code: a0 = 1, a4 = 27, a6 = 54, a7 = 108,
a8 = 54, a9 = 12.

The relevant part of the weight spectrum of [49, 44, 4]GF (8) code: a0 = 1, a4 =
32 585, a5 = 806 736, a6 = 50 853 866, a7, . . . , a49 ̸= 0.

The relevant part of the weight spectrum of [225, 220, 4]GF (16) code: a0 = 1,
a4 = 10 135 125, a5 = 3193 835 400, a6 = 1834 779 161 250, a7, . . . , a225 ̸= 0.

5 CONCLUSION

In this paper, a construction of new family of three erasure correcting linear block
codes over GF (q) together with their syndrome decoding procedures was presented.
The designed code possesses code distance of four which enables correcting up to
3 erasures. This code distance was confirmed by weight spectra of their dual codes
using Krawtchouck polynomials. These code could be potentially useful in DNA
storage systems. However this will need further future research.
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From 2021 to 2022, she continued as IT tester and was leased to Shell Plc Corporation by
Sanae Slovakia s.r.o. in order to work on international payment system for track drivers.



444 P. Farkaš, K. Farkašová, F. Pavelka, M. Rakús
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