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Abstract. The common detection of fasteners of automobile door panels is based
on the method of template matching, which has the problems of low detection ac-
curacy and poor real-time performance under the influence of different lighting and
different placement positions. To improve the detection speed and accuracy of fas-
teners in complex scenes, a small object detection algorithm, YOLO-DTO (Detect
Tiny Object), was proposed based on the YOLOv8 algorithm. Firstly, considering
that the algorithm uses strided convolution to compress the input image prema-
turely, resulting in the loss of fine-grained information in the early stage of the
image, which makes it difficult to recover the complete detail information in the
subsequent feature fusion process, this paper modifies the convolution module in
the early stage of the algorithm and introduces the SPD (SPace-to-Depth) module
to reconstruct the early stage of the original algorithm. Secondly, a selective atten-
tion module is embedded in the Neck output position of the algorithm to enhance
the algorithm’s ability to pay attention to the context information of fasteners. Fi-
nally, to optimize the regression efficiency of the bounding box, the MPDIoU loss
function replaced the CIoU loss function. Experimental results show that the aver-
age detection accuracy of the YOLO-DTO algorithm is 98.8%, which is 9.1% and
1.7% higher than that of the template matching method and YOLOv8 algorithm,
respectively, which meets the detection standards of factory production lines and
has the practical value.

Keywords: Automotive door panel fastener detection, selective attention, loss
function, deep learning, context information, YOLO algorithm
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1 INTRODUCTION

The automobile manufacturing industry is highly automated, necessitating the use
of advanced automation technologies across various production stages. To enable
unmanned operations in many aspects of manufacturing, reliable detection technol-
ogy is essential to verify the accuracy of each assembly process [1]. In the production
process of automobile door panels, there are higher requirements for installing and
detecting fasteners. Automotive door panel fasteners include ultrasonic welding
joints, plastic screws, metal screws, and more. The production workshop judges
that there are assembly defects in automobile door panels by testing these fas-
teners. Therefore, this article will provide a thorough investigation into fastener
detection.

Currently, the detection of fasteners in the production workshop mainly adopts
the template matching method. First, it is necessary to take a standard image
of the automobile door panel and preprocess it with grayscale, denoising, sharp-
ening, and more. Then, the edge detection algorithm is used to extract the edge
information, the similarity detection algorithm is used for template matching by
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the edge information, and the Hough transform is used to detect the number and
position of the fasteners. Finally, the same method must be used to process the
new image on the production line, and the number and position of fasteners in the
new image are detected. The fastener detection task is accomplished by comparing
two sets of images [2, 3]. To a certain extent, this method solves the problem of
early manual visual detection. However, it is limited to the fact that it takes about
8 seconds to detect each picture, which cannot reach the standard of the factory
production line, and when the product needs to be replaced, the template needs to
be redesigned for the new product, and the work efficiency is reduced. Therefore,
the template matching method needs to realize the detection task of fasteners un-
der specific conditions in specific scenes, and the detection quality depends mainly
on the quality of the template, and the design of the new template is also time-
consuming. To solve the above problems, there is an urgent need for a detection
algorithm that significantly improves the detection rate of fasteners while ensuring
accuracy.

In recent years, deep neural networks have stood out in the research of many
object detection algorithms, which have strong expression ability and learning abil-
ities and can be trained by large-scale data, automatically learning and extracting
features to achieve effective task-solving. There are two main types of deep neural
network algorithms in the field of object detection: the first type is the two-stage
object detection algorithm, including R-CNN [4], Fast R-CNN [5], and Faster R-
CNN [6], which first generates candidate boxes through a Region Proposal Network
(RPN), and then classifies and regresses the candidate boxes. This algorithm has
good accuracy, but the detection speed is low, and the number of parameters is
large, so it is unsuitable for edge terminal equipment deployed in automobile pro-
duction plants. The second type are single-stage object detection algorithms, such
as SSD [7] and YOLO [8], which directly complete the generation of candidate boxes
and target classification and localization through the network simultaneously. This
type of algorithm has its advantages in speed and is suitable for scenarios with high
real-time requirements. The YOLO algorithm has been continuously updated, and
the accuracy of the YOLOv8 [9] algorithm has been comparable to that of the two-
stage object detection algorithm. Due to the small number of parameters and fast
detection speed, it is more suitable for deployment on the edge terminal equipment
in automobile production plants.

The image taken by the industrial camera in the automobile production work-
shop is 5 472 × 3 648. However, the approximate pixel of each fastener is 57 ×
66, which is 1/5 000 of the pixel size of the whole picture, which will cause the
YOLOv8 algorithm to easily ignore the feature information of small fastener tar-
gets in the detection process, resulting in missed detection or false detection. For
the problem of small object detection [10], Chen et al. [11] introduced CAM [12]
(Channel Attention Module) and FPN [13] (Feature Pyramid Network) to improve
the SSD algorithm, Ji et al. [14] introduced Swin Transformer [15] to improve
the YOLOv5 [16] algorithm, Pan et al. [17] improved the YOLOv5 algorithm by
introducing CBAM [18] (Convolutional Block Attention Module) and ASFF [19]
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(Adaptively Spatial Feature Fusion) to improve the detection accuracy of small tar-
gets.

The above analysis shows two critical problems in the current automotive door
panel fastener detection. First of all, the versatility of the current template match-
ing method is not strong, and it is not suitable for assembly line detection in the
production workshop. Secondly, because the YOLOv8 algorithm has small tar-
get features and substantial similarity in the process of detecting fasteners, it is
easy to cause missed detection and false detection. This paper proposes an im-
proved YOLO-DTO (Detect Tiny Object) real-time detection algorithm based on
the above discussion. The contributions and benefits of our research are as fol-
lows:

1. The backbone structure of the network is designed by introducing the SPD [20]
(space-to-depth) module into the network, and more feature information of fas-
teners is retained in the convolution process of the input image.

2. The SK [21] (selective kernel) module is introduced into the network’s neck
structure to obtain a wide range of fastener context information and enhance
the algorithm’s ability to distinguish similar fasteners.

3. To optimize the algorithm’s bounding box regression positioning ability, the
CIoU [22] loss function was replaced with the MPDIoU [23] loss function.

2 YOLO-DTO DETECTION ALGORITHM

In 2023, Ultralytics proposed the YOLOv8 algorithm. Since the detection task of
automobile door panel fasteners requires the deployment of detection terminals on
the edge side, a smaller model is suitable, so the YOLOv8n algorithm is used as
the basic framework. Regarding network structure, YOLOv8n is divided into four
parts: Input, Backbone, Neck, and Head.

Figure 1. YOLO-DTO network structure
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The structure of the YOLO-DTO algorithm proposed by us is presented in
Figure 1, and the main improvements are as follows:

1. The step sizes of the second and third strided convolutions of the Backbone
were modified to 1, and then the SPD module was introduced after the two
convolution blocks, as shown by the mark 1○ in Figure 1.

2. The SK module has been added to the output of Neck, as shown in the 2○
marker in Figure 1.

3. Replace the CIoU loss function with the MPDIoU loss function.

2.1 SPD Module

The convolution module in the YOLOv8 algorithm adopts a strided convolution
structure with a step size of 2. For the feature map of input X ∈ RW×H×C , after
C2 convolutional kernels with a step size of 2, a feature map with an output of
X ′ ∈ RW

2
×H

2
×C

2 is obtained, as shown in Figure 2.

Figure 2. Strided convolution structure

Stridden convolution reduces the size of the input feature map by increasing the
stride length, which decreases the number of spatial sampling positions between ad-
jacent pixels in the convolution operation. As a result, small target information may
become less noticeable or even completely disappear from the feature map, leading
to missed detections. Therefore, to retain more feature information of fasteners in
the convolution process of the input image, this paper introduces the SPD module
to improve the information loss problem of stridden convolution in the YOLOv8
algorithm.

The SPD module is an algorithm that converts image spatial dimension informa-
tion into channel dimension information. The feature map is sliced and reorganized
in the spatial dimension to obtain a plurality of sub-feature maps with different
spatial information. The sub-feature map is then stitched together in the channel
dimension. Considering the arbitrary-sized feature map X ′ ∈ RS×S×C1 , the sub-
feature map sequence is sliced as shown in Equation (1).
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f0,0 = X[0 : S : scale, 0 : S : scale],

f1,0 = X[1 : S : scale, 0 : S : scale],

...

fscle−1,0 = X[scale− 1 : S : scale, 0 : S : scale];

f0,1 = X[0 : S : scale, 1 : S : scale],

...

fscale−1,1
= X[scale− 1 : S : scale, 1 : S : scale];

...

f
0,scale−1

= X[0 : S : scale, scale− 1 : S : scale],

...

fscale−1,scale−1
= X[scale− 1 : S : scale, scale− 1 : S : scale].

(1)

In this work, scale represents the size of the feature map when slicing, scale = 2,
and f represents a pixel of the image.

When scale = 2, input the feature mapX ∈ RW×H×C1 , split the feature map into
four feature maps, and then stitch the four feature maps in the channel dimension
to transform them into feature map X, and realize the down-sampling operation of
the image Y ∈ R W

scale
× H

scale
× scale

2
×C1 , as shown in Figure 3.

Figure 3. SPD structure

During the down-sampling process, the SPD module retains more spatial infor-
mation about the feature map. By setting it in the early stage of the algorithm
backbone network, the low-level high-resolution feature map can retain more fine-
grained information in the feature extraction process, thereby reducing the loss of
feature information of small fastener objects.

2.2 SK Module

In fastener detection tasks, automotive door panel images are typically taken with
a high-resolution top-down view, and most fasteners are small-dimensional, as shown
in Figure 4.
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Figure 4. Partial fastener image

White solder joints, metal screws, and plastic screws are very similar in sepa-
rate scenarios, and the successful detection of these targets is more dependent on
their surroundings. The SK module applies the idea of attention mechanism to the
convolution kernel, allowing the network to dynamically select the appropriate con-
volution kernel to help the algorithm better understand different fastener categories
in the image.

The SK module consists of three structures: split, fuse, and select, as shown in
Figure 5.

Figure 5. SK module

1) Split: Perform two deep convolution operations [24] with different convolution
kernels on the input feature map X, and use the convolution kernels of 3 × 3
and 5× 5 to process at the same time to obtain two different feature maps U1

and U2.

2) Fuse: Add the features of the different feature maps obtained by Split and fuse
the information of all branches to obtain the feature map U, then use the global
average pooling method to compress all the spatial information into vector S,
and finally linearly map the vector S to vector Z through full connection, as
shown in Equations (2), (3), (4), and (5). This step reduces the information
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dimension and better represents the importance of different feature informa-
tion.

U = U1 +U2, (2)

Z = Ffc (Fgp(U)) , (3)

Fgp(U) =
1

H×W

H∑
i=1

W∑
j=1

U(i, j), (4)

Ffc(g) = δ (J (Ws)) , (5)

where Ffc is the fully connected layer function, Fgp is the global average pooling
function, W is the width of the feature graph, H is the height of the feature
graph, δ is the ReLU activation function, and J is the batch normalization op-
eration. Z is obtained after S passing through the fully connected layer, and
the information dimensions of Z are d× 1, d = max

(
C
r
, L

)
, r and L are two hy-

perparameters, r represents the conversion ratio and L represents the minimum
value of d. Set r = 16, L = 32 in this work.

3) Select: Perform softmax operation on vector Z to obtain a and b, then mul-
tiply the feature map U1 and U2 obtained by Split with a and b to ob-
tain two feature maps V1 and V2 with different points of interest, and fi-
nally obtain the feature map Y by adding the features, as shown in Equa-
tion (6).

Y = a×U1 + b×U2. (6)

Based on the unique prior knowledge in the fastener detection scenario, the SK
module obtains a wider range of fastener context information by dynamically
adjusting the spatial receptive field of the model, providing valuable clues about
fasteners to the algorithm, thereby effectively improving the algorithm’s ability
to distinguish similar fasteners.

2.3 Loss Function Design

The bounding box regression loss function measures the accuracy of the algorithm’s
predictions about the target location and scale. The YOLOv8 algorithm uses the
CIoU loss function as the bounding box regression loss function, which calculates
the distance and aspect ratio of the center point between the predicted bounding
box and the real bounding box based on the IoU [25] (Intersection over Union) loss
function.

IoU =
Bgt ∩ Bprd

Bgt ∪ Bprd

, (7)

where Bgt is the real bounding box, Bprd is the predicted bounding box, the IoU is
the ratio of the intersection and union between the predicted bounding box and the
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real bounding box.

V =
4

π2

(
arctan

wgt

hgt
− arctan

wprd

hprd

)2

, (8)

α =
V

1− IoU + V
, (9)

where V is used to calculate the consistency of the aspect ratios of the prediction
and target boxes, α is the parameter for measuring the aspect ratio, wgt and hprd

are the width and height of the real bounding box, wgt and hprd are the width and
height of the predicted bounding box.

CIoU = IoU− ρ2 (Bgt,Bprd)

C2
− α× V. (10)

The complete CIoU loss calculation method is obtained, as shown in Equa-
tion (10), where ρ2 is the Euclidean distance between the center point of the pre-
dicted bounding box and the real bounding box, and C2 is the diagonal length of
the smallest closed rectangle that can contain both the predicted bounding box and
the real bounding box. The CIoU must calculate the diagonal length of the com-
plete intersection and the complete union, which is highly computationally com-
plex.

The fasteners tested in this paper are mostly square, and the predicted bounding
box and the real bounding box may have the same aspect ratio and different heights
and widths at this time, as shown in Figure 6 a) and 6 b). In Figure 6 a), the outer
frame is the predicted bounding box, the width and height are 4, and the inner
frame is the real bounding box, and the width and height are 2; in Figure 6 b), the
outer frame is the real bounding box with a width and height of 2, and the inner
frame is the predicted bounding box with a width and height of 1, and in both cases,
α, V , and ρ2 are all 0, the CIoU loss function will be degraded into the IoU loss
function, which may lead to the reduction of the convergence speed and detection
accuracy of the algorithm.

MPDIoU is a bounding box similarity comparison measure based on the mini-
mum point distance, which can compare any two bounding boxes.

d21 =
(
xprd
1 − xgt

1

)2

+
(
yprd1 − ygt1

)2

, (11)

d22 =
(
xprd
2 − xgt

2

)2

+
(
yprd2 − ygt2

)2

, (12)

MPDIoU = IoU− d21
w2 + h2

− d22
w2 + h2

. (13)

where w and h are the widths and heights of the input feature map, (xprd
1 , yprd1 , xprd

2 ,
yprd2 ) are the coordinates of the upper-left and lower-right corners of the predicted
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a) b)

Figure 6. The real bounding box and the predicted bounding box of the fastener

bounding box, (xgt
1 , y

gt
1 , x

gt
2 , y

gt
2 ) are the coordinates of the upper-left and lower-

right corners of the real bounding box, d21 and d22 are the upper-left and lower-right
distances between the predicted bounding box and the real bounding box, as shown
in Figure 7.

Figure 7. MPDIoU factor of fastener

The points in the upper-left and lower-right corners can uniquely identify a
bounding box. The prediction is correct only when the predicted bounding box
and the real bounding box exactly coincide, when d21 = 0 and d22 = 0 appear in
Equations (11) and (12). Except that the two bounding boxes coincide precisely,
there will be no case where d21 and d22 are 0. Therefore, the MPDIoU loss function
does not degenerate to the IoU loss function when the prediction bounding box is
regressively located.

The MPDIoU loss function contains all the relevant factors considered in the
existing loss functions, such as overlapping or non-overlapping regions, center point
distances, width, and height deviations. It simplifies the calculation process and
reduces the computational complexity.
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3 EXPERIMENTS AND ANALYSIS OF RESULTS

3.1 Experimental Environment

3.1.1 Environment Configuration

This experiment is trained in the Windows 11 environment using the PyTorch deep
learning framework, as shown in Table 1.

Configuration Version

Operating System Windows 11 x64
CPU Intel i7-12700H
Running Memory 16GB
GPU NVIDIA RTX 3060
Graphics Memory 6GB
Pytorch 1.12.0
CUDA 11.6
YOLOv8 8.0.125
Python 3.8.18

Table 1. Configuration of the experimental environment

3.1.2 Parameter Optimization

In this work, the model’s learning rate is dynamically generated by Equation (14).
The model uses a larger learning rate to accelerate convergence at the beginning
and gradually decreases it to refine the weight adjustment. The initial learning rate
is lr0 = 0.01, the learning rate decay is lrf = 0.125, and the final learning rate is
lr = 0.00125.

lr = lr0×
[(

1− x

epochs

)
× (1− lrf ) + lrf

]
, (14)

where x is the number of rounds currently being trained, and epochs is the total
iteration round. This strategy provides flexibility and robustness in the training
process, allowing the model to approximate the global optimal solution more effec-
tively.

This paper adopts the weight decay regularization strategy in the optimizer to
alleviate the problem of overfitting in the case of less data. We set the hyperpa-
rameter momentum to accelerate the algorithm’s convergence speed, which reduces
the oscillation and accelerates through the flat region by considering the histor-
ical gradient in the parameter update to improve the learning efficiency. Three
sets of parameters were selected in the preselection range for the experiment, and
as shown in Figure 8, although the change is not obvious, the algorithm’s con-
vergence is more stable when momentum (m) = 0.9 and weight decay (wd) =
0.0005.
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Figure 8. Parameter comparison experiment

3.2 Dataset Preprocessing

The dataset images used in this paper are provided by an automobile company
in Hebei Province and contain 421 images. Random flipping, cropping, and tonal
transformation of the dataset images enhanced the diversity of the dataset image
features. Finally, the dataset was expanded to 2 065 images, with a total of about
90 000 fastener instances. All images were annotated by labeling in Python, includ-
ing four target categories, namely plastic screws, metal screws, black solder joints,
and white solder joints. The dataset images are divided into training set, validation
set, and test set at a ratio of 7 : 2 : 1 for training, and the dataset images and
annotated images are shown in Figure 9.

Figure 9. Dataset image (left) and labeled image (right)
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3.3 Evaluation Indicators

In this experiment, precision, recall, average detection accuracy mAP50 and
mAP50 : 95, and params were used as evaluation indicators to evaluate the model’s
performance. The specific formula is shown in Equations (15), (16), (17), and (18).

P =
TP

TP + FP
, (15)

R =
TP

TP + FN
, (16)

AP =

∫ 1

0

P(r) dr, (17)

mAP =
1

n

n∑
i=0

AP(i). (18)

Among them, TP is the number of positive samples predicted as correct, FP is
the number of negative samples predicted as correct, FN is the number of positive
samples predicted as wrong, AP is the lower area of the P-R curve of a certain
category, n is the number of detection categories, and n = 4, mAP is the average
detection accuracy of all categories in this experiment. mAP50 represents the aver-
age detection accuracy at the IoU threshold of 50%, and mAP50:95 is the average
detection accuracy of the IoU threshold from 50% to 95% (in steps of 5%).

3.4 Comparative Experiments

3.4.1 Ablation Experiments

This paper introduces the SPD module, attention mechanism, and loss function.
Five groups of N0 to N4 ablation experiments were carried out to verify the effec-
tiveness of the improvement points. “✓” indicates the improvement points applied
in this group of experiments, “–” indicates the improvement points that were not
applied in this group of experiments, and the ablation experiments are shown in
Table 2.

Number SPD SK MPDIoU mAP50 mAP50:95 Params

N0 – – – 97.1% 74.0% 3 006 428
N1 ✓ – – 98.3% 76.5% 3 021 788
N2 – ✓ – 98.1% 76.1% 3 073 532
N3 – – ✓ 98.1% 76.2% 3 006 428
N4 ✓ ✓ ✓ 98.8% 78.4% 3 088 908

Table 2. Ablation experiments
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N0 is the experimental result of YOLOv8n. The mAP50 value is 97.1%, the
mAP50:95 value is 74.0%, and the parameter quantity is 3 006 428, which is used
as the algorithm’s evaluation standard. N1 is the experimental result after the
introduction of the SPD module. The mAP50 is increased by 1.2%, the mAP50:95 is
increased by 2.5%, and the computation and parameter amount is slightly increased.
N2 is the experimental result after the introduction of the SK module. The mAP50
is increased by 1%, mAP50:95 is increased by 2.1%, and the amount of computation
and parameters is slightly increased. N3 is the experimental result of replacing the
CIoU loss function with the MPDIoU loss function, with a 1% increase in mAP50
and a 2.2% increase in mAP50:95. N4 is the experimental result of the YOLO-
DTO algorithm proposed in this paper, which increases the mAP50 by 1.7% and
mAP50:95 by 4.4% by increasing a small amount of computation and parameters.

3.4.2 Visual Analytics

Figures 10 a), 10 d), and 10 g) are fastener images under different lighting and dif-
ferent angles, Figures 10 b), 10 e), and 10 h) are the results of fastener detection
by YOLOv8 algorithm, and Figures 10 c), 10 f) and 10 i) are the results of fastener
detection by YOLO-DTO algorithm under the same scenario.

The fasteners in the image are classified using different identification frames,
and a target confidence score is annotated on each identification frame. As can
be seen from the detection result diagram in Figure 10 b), the YOLOv8 algorithm
misses the detection of black solder joints and mistakenly detects white solder joints
as metal screws for fasteners in dim conditions. As can be seen from the detection
result in Figure 10 e), the YOLOv8 algorithm will have more missed detections
when the fastener angle in the image is different. When the fasteners are dense, and
the surrounding local images are complex, there will be slight false detections and
missed detections of YOLOv8 in Figure 10 h). In the same scenario, the YOLO-DTO
algorithm accurately detects the fastener, and the confidence score is significantly
improved, as shown in the detection results in Figures 10 c), 10 f), and 10 i).

To deeply understand the main reasons for the YOLOv8 algorithm’s detection
error, the neural network heat map visualization tool was used to represent the algo-
rithm’s attention distribution to the image area in the prediction process. The per-
formance impact of the algorithm on fastener detection after adjusting the YOLOv8
algorithm at different stages was compared and analyzed.

In Figure 11, the blue area represents the area the algorithm does not notice.
In contrast, the green, yellow, and red regions represent the gradual increase in the
algorithm’s attention to the image area. The red areas expressly point out the areas
where the algorithm gives the highest level of attention.

Figure 11 a) shows the YOLOv8 algorithm’s attention distribution of fasteners
in automotive door panels. The fastener area is less weighted, reflected in the lighter
color on the heat map, which is dominated by green. Figure 11 b) shows the reduc-
tion of the convolution step size from 2 to 1 in the Backbone and the introduction of
the SPD module. This adjustment significantly increases the algorithm’s attention
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a) Image of fastener in a dim
scene

b) The YOLOv8 algorithm mis-
takenly detects the white solder
joints as metal screws, and misses
the black solder joints

c) Accurate detection by YOLO-
DTO algorithm

d) Images of fasteners at differ-
ent angles

e) The YOLOv8 algorithm
misses the detection of black
solder joints

f) Accurate detection by YOLO-
DTO algorithm

g) Fastener image in dense
scenes

h) The YOLOv8 algorithm mis-
takenly detects the next parts as
black solder joints, and there is a
missed detection

i) Accurate detection by YOLO-
DTO algorithm

Figure 10. Comparison chart of test results (marked in the false detection and missed
detection charts)
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a) YOLOv8 b) YOLOv8 + SPD c) YOLO-DTO

Figure 11. The visualization of different methods

weight to the fastener, and the color of the fastener area on the heat map changes
to red, indicating an increase in weight. However, we observed that some of the
fasteners in the upper area of the car door panels did not receive enough attention.
Figure 11 c) shows the integration of the SK module in the network’s neck structure.
This improvement significantly improves the algorithm’s overall focus on automotive
door panels, reducing attention to extraneous context and enhancing the ability to
identify fasteners and their surrounding areas.

Based on the above analysis, we find that in the fastener detection scenario,
the error detection generated by the original algorithm is mainly reflected in two
aspects. Firstly, the use of stridden convolution in the early stage of the algorithm
will cause the feature information of the fastener to be lost prematurely, resulting in
the fastener information becoming weaker or completely disappearing in the feature
map, resulting in missed detection. Secondly, due to the imbalance in the distribu-
tion of target information and background information of fasteners, the algorithm
cannot obtain enough information to distinguish the category of fasteners, resulting
in false detection. With the introduction of SPD and SK modules, the algorithm
can capture the feature information of fasteners more comprehensively, which helps
to improve the accuracy of discriminating different fastener categories.

3.4.3 Comparative Experiment with Loss Function

The MPDIoU loss function selected in this work is compared with the loss functions
of CIoU, Focal CIoU, GIoU [26], EIoU [27], SIoU [28], Focal SIoU, and WIoU [29].
The experimental results are shown in Figure 12.

The CIoU loss function in the original algorithm was used as the evaluation
criterion. Compared with the CIoU loss function, the mAP50 of Focal CIoU and
GIoU did not increase significantly, and the mAP50 : 90 decreased slightly, indi-
cating that the detection accuracy of Focal CIoU and GIoU decreased with the
increase of the IoU threshold. Compared with the CIoU loss function, there is no
significant improvement in mAP50 and mAP50 : 90 in EIoU. Compared with the
CIoU loss function, the mAP50 : 90 of WIoU and SIoU increased by about one
percentage point, but there was no significant improvement in mAP50. The mAP50
and mAP50 : 90 of Focal SIoU significantly improve compared with the CIoU loss
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Figure 12. Comparison of different loss functions

function, but compared with the loss function in the algorithm in this paper, the
MPDIoU has a higher average detection accuracy than the Focal SIoU loss function.
Therefore, the effectiveness of the MPDIoU loss function in predicting the bounding
box regression localization in the fastener detection task is verified.

3.4.4 Comparative Experiments with Different Algorithms

To verify the effectiveness of the YOLO-DTO algorithm, the same dataset was
trained with SSD, Faster R-CNN, YOLOv5, YOLOv6 [30], and RetinaNet [31] al-
gorithms in the same experimental environment, in which Resnet50 [31] was used
as the backbone network for feature extraction for SSD and Faster R-CNN. In
addition, the main methods used in the current small target detection research,
CAM, CBAM, and the latest feature fusion ASPN [32] (Asymptotic Feature Pyra-
mid Network) method were tested, and the experimental results are shown in Ta-
ble 3.

Algorithm Param/KB ACC

Template matching – 89.7%
Faster R-CNN 5170.95 96.4%
SSD 3818.62 54.5%
YOLOv8 375.80 97.1%
YOLOv8 + CAM 376.02 97.4%
YOLOv8 + CBAM 376.07 97.7%
YOLOv8 + AFPN 392.31 98.5%
YOLO-DTO 377.06 98.8%

Table 3. Test results
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Experimental results show that the proposed algorithm has a small increase
in the number of parameters compared with the original algorithm. The average
accuracy reaches 98.8%, which is 9.1%, 2.4%, 44.3%, and 1.7% compared with
the template matching method, Faster R-CNN algorithm, SSD algorithm, and the
YOLOv8 algorithm, respectively. Compared with the YOLOv8 algorithm with CAM
attention, CBAM attention, and ASPN feature fusion, they are improved by 1.4%,
1.1%, and 0.3%, respectively. The average detection time of the proposed algorithm
is 63.8ms, which is much lower than the commonly used template matching methods
and comparable to the average detection time of the original algorithm. These results
verify that the YOLO-DTO algorithm has high accuracy and real-time performance
in fastener detection tasks.

3.5 Generalization Analysis

The model’s generalization ability is a measure of the algorithm’s ability to identify
samples that are not involved in training. In our work, we improve the generalization
ability of the model in two aspects: firstly, the data augmentation of the training
dataset is carried out to simulate more data samples that may appear in different
forms in practical applications. Then, we use dynamic adjustment of the learning
rate and add regularization weight attenuation coefficients to the optimizer to re-
duce overfitting during model training, thereby enhancing the model’s generalization
ability in different image data.

a) The shooting angle is rotated slightly, and the image brightness is gradually increased.

b) The shooting angle is rotated drastically, and the image brightness is gradually reduced.

Figure 13. Detection results of YOLO-DTO under different conditions

In the fastener detection scenario, the angle at which workers place the car
door panels on the production line may differ each time, and the lighting in the
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production hall will be slightly different at different times. By rotating the angle of
the automobile door panel image to simulate different placement angles and changing
the HSV color space of the image to simulate the illumination of different periods, the
generalization ability of the YOLO-DTO algorithm for different fastener detection
scenarios was tested. We selected several representative prediction images in the
experimental results, as shown in Figure 13.

In Figure 13 a), the door panel rotates slightly and gradually increases the bright-
ness. In Figure 13 b), the door panel rotates significantly and decreases brightness.
For the above different input conditions and environmental changes, the YOLO-
DTO algorithm can accurately predict the position target of the fasteners in the
automotive door panel, which verifies the stability and reliability of the algorithm
in practical applications.

4 CONCLUSIONS

To improve the accuracy and real-time detection of automotive door panel fasten-
ers, we propose an improved algorithm YOLO-DTO, which fuses the SPD module in
the backbone network, introduces the SK module in the neck network, and replaces
the bounding box regression positioning ability of the MPDIoU loss function opti-
mization algorithm. Experiments show that the average detection accuracy of the
proposed algorithm is 98.8%, which is 9.1% higher than that of the template match-
ing method and 1.7% higher than that of the original YOLOv8 algorithm, and the
average detection time is 63.8 ms. Moreover, the average detection accuracy of the
proposed algorithm on the public remote sensing dataset RSOD [33] is 1.6% higher
than that of the YOLOv8 algorithm. In the future, we will continue to expand the
data set for the detection of automotive door panel parts and study the detection
algorithm that is more suitable for small targets on the basis of YOLO-DTO to
further improve the detection accuracy of different parts. Our research mainly aims
to detect parts of automotive door panels. However, it can be extended after the
corresponding optimization to a broader range of industrial component detection
fields, which has great development prospects.

REFERENCES

[1] Zhu, Y.—Yin, D.—Zou, S.—Wang, H.—Zhou, W.: The Development and Ap-
plication of Machine Vision in the Automotive Industry. Automobile Applied Tech-
nology, Vol. 42, 2017, No. 22, pp. 8–11, doi: 10.16638/j.cnki.1671-7988.2017.22.004
(in Chinese).

[2] Liu, J.: The Research on Algorithm of Vehicle Door Solder Joint Recognition
Based on Machine Vision. Master Thesis. South China University of Technology,
Guangzhou, China, 2018 (in Chinese).

https://doi.org/10.16638/j.cnki.1671-7988.2017.22.004


404 X. Wang, Y. Jia, F. Guo

[3] Pei, Z.: The Research on Welding Components and Solder Joint Recognition Algo-
rithm of Automobile Door Panel. Master Thesis. South China University of Technol-
ogy, Guangzhou, China, 2019 (in Chinese).

[4] Girshick, R.—Donahue, J.—Darrell, T.—Malik, J.: Rich Feature Hierar-
chies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Con-
ference on Computer Vision and Pattern Recognition, 2014, pp. 580–587, doi:
10.1109/CVPR.2014.81.

[5] Girshick, R.: Fast R-CNN. 2015 IEEE International Conference on Computer Vi-
sion (ICCV), 2015, pp. 1440–1448, doi: 10.1109/ICCV.2015.169.

[6] Ren, S.—He, K.—Girshick, R.—Sun, J.: Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol. 39, 2017, No. 6, pp. 1137–1149, doi:
10.1109/TPAMI.2016.2577031.

[7] Liu, W.—Anguelov, D.—Erhan, D.—Szegedy, C.—Reed, S.—Fu, C.Y.—
Berg, A.C.: SSD: Single Shot MultiBox Detector. In: Leibe, B., Matas, J., Sebe, N.,
Welling, M. (Eds.): Computer Vision – ECCV 2016. Springer, Cham, Lecture Notes
in Computer Science, Vol. 9905, 2016, pp. 21–37, doi: 10.1007/978-3-319-46448-0 2.

[8] Li, S.—Liu, Y.—Wu, S.—Zhang, S.: MDM-YOLO: Research on Object Detec-
tion Algorithm Based on Improved YOLOv4 for Marine Organisms. Computing and
Informatics, Vol. 42, 2023, No. 1, pp. 210–233, doi: 10.31577/cai 2023 1 210.

[9] Reis, D.—Kupec, J.—Hong, J.—Daoudi, A.: Real-Time Flying Object Detec-
tion with YOLOv8. CoRR, 2023, doi: 10.48550/arXiv.2305.09972.

[10] Pan, X.—Jia, N.—Mu, Y.—Gao, X.: Survey of Small Object Detection. Journal
of Image and Graphics, Vol. 28, 2023, No. 9, pp. 2587–2615, doi: 10.11834/jig.220455
(in Chinese).

[11] Chen, X.—Wan, M.—Ma, C.—Chen, Q.—Gu, G.: Recognition of Small Targets
in Remote Sensing Image Using Multi-Scale Feature Fusion-Based Shot Multi-Box
Detector. Optics and Precision Engineering, Vol. 63, 2021, No. 11, pp. 2672–2682 (in
Chinese).

[12] Zhou, B.—Khosla, A.—Lapedriza, A.—Oliva, A.—Torralba, A.: Learn-
ing Deep Features for Discriminative Localization. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2921–2929, doi:
10.1109/CVPR.2016.319.

[13] Lin, T.Y.—Dollár, P.—Girshick, R.—He, K.—Hariharan, B.—
Belongie, S.: Feature Pyramid Networks for Object Detection. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 936–944,
doi: 10.1109/CVPR.2017.106.

[14] Ji, C.—Zhang, F.—Huang, X.—Song, Z.—Hou, W.—Wang, B.—Chen, G.:
STAE-YOLO: Intelligent Detection Algorithm for Risk Management of Construc-
tion Machinery Intrusion on Transmission Lines Based on Visual Perception. IET
Generation, Transmission & Distribution, Vol. 18, 2024, No. 3, pp. 542–567, doi:
10.1049/gtd2.13093.

[15] Liu, Z.—Lin, Y.—Cao, Y.—Hu, H.—Wei, Y.—Zhang, Z.—Lin, S.—Guo, B.:
Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows.

https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.31577/cai_2023_1_210
https://doi.org/10.48550/arXiv.2305.09972
https://doi.org/10.11834/jig.220455
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1049/gtd2.13093


YOLO-DTO: Automotive Door Panel Fastener Detection Algorithm Based on DL 405

2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021,
pp. 9992–10002, doi: 10.1109/ICCV48922.2021.00986.

[16] Pan, H.—Guan, S.—Zhao, X.—Xue, Y.: Edge Computing-Based Vehicle De-
tection in Intelligent Transportation Systems. Computing and Informatics, Vol. 42,
2023, No. 6, pp. 1339–1359, doi: 10.31577/cai 2023 6 1339.

[17] Pan, R.—Lin, T.—Li, C.—Hu, B.: Research on Multi Size Automobile Rim Weld
Detection and Positioning System Based on Depth Learning. Optics and Precision
Engineering, Vol. 65, 2023, No. 8, pp. 1174–1187 (in Chinese).

[18] Woo, S.—Park, J.—Lee, J.Y.—Kweon, I. S.: CBAM: Convolutional Block At-
tention Module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (Eds.):
Computer Vision – ECCV 2018. Springer, Cham, Lecture Notes in Computer Sci-
ence, Vol. 11211, 2018, pp. 3–19, doi: 10.1007/978-3-030-01234-2 1.

[19] Liu, S.—Huang, D.—Wang, Y.: Learning Spatial Fusion for Single-Shot Object
Detection. CoRR, 2019, doi: 10.48550/arXiv.1911.09516.

[20] Sunkara, R.—Luo, T.: No More Strided Convolutions or Pooling: A New CNN
Building Block for Low-Resolution Images and Small Objects. In: Amini, M.R.,
Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (Eds.): Machine
Learning and Knowledge Discovery in Databases (ECML PKDD 2022). Springer,
Cham, Lecture Notes in Computer Science, Vol. 13715, 2023, pp. 443–459, doi:
10.1007/978-3-031-26409-2 27.

[21] Li, Y.—Hou, Q.—Zheng, Z.—Cheng, M.M.—Yang, J.—Li, X.: Large Se-
lective Kernel Network for Remote Sensing Object Detection. 2023 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), 2023, pp. 16748–16759, doi:
10.1109/ICCV51070.2023.01540.

[22] Zheng, Z.—Wang, P.—Ren, D.—Liu, W.—Ye, R.—Hu, Q.—Zuo, W.: En-
hancing Geometric Factors in Model Learning and Inference for Object Detection
and Instance Segmentation. IEEE Transactions on Cybernetics, Vol. 52, 2022, No. 8,
pp. 8574–8586, doi: 10.1109/TCYB.2021.3095305.

[23] Ma, S.—Xu, Y.: MPDIoU: A Loss for Efficient and Accurate Bounding Box Re-
gression. CoRR, 2023, doi: 10.48550/arXiv.2307.07662.

[24] Howard, A.—Sandler, M.—Chen, B.—Wang, W.—Chen, L.C.—Tan, M.—
Chu, G.—Vasudevan, V.—Zhu, Y.—Pang, R.—Adam, H.—Le, Q.: Searching
for MobileNetV3. 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), 2019, pp. 1314–1324, doi: 10.1109/ICCV.2019.00140.

[25] Zou, Z.—Chen, K.—Shi, Z.—Guo, Y.—Ye, J.: Object Detection in 20 Years:
A Survey. Proceedings of the IEEE, Vol. 111, 2023, No. 3, pp. 257–276, doi:
10.1109/JPROC.2023.3238524.

[26] Rezatofighi, H.—Tsoi, N.—Gwak, J.—Sadeghian, A.—Reid, I.—
Savarese, S.: Generalized Intersection over Union: A Metric and a Loss for
Bounding Box Regression. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 658–666, doi: 10.1109/CVPR.2019.00075.

[27] Zhang, Y. F.—Ren, W.—Zhang, Z.—Jia, Z.—Wang, L.—Tan, T.: Focal and
Efficient IOU Loss for Accurate Bounding Box Regression. Neurocomputing, Vol. 506,
2021, pp. 146–157, doi: 10.1016/j.neucom.2022.07.042.

https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.31577/cai_2023_6_1339
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.48550/arXiv.1911.09516
https://doi.org/10.1007/978-3-031-26409-2_27
https://doi.org/10.1109/ICCV51070.2023.01540
https://doi.org/10.1109/TCYB.2021.3095305
https://doi.org/10.48550/arXiv.2307.07662
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.1109/JPROC.2023.3238524
https://doi.org/10.1109/CVPR.2019.00075
https://doi.org/10.1016/j.neucom.2022.07.042


406 X. Wang, Y. Jia, F. Guo

[28] Gevorgyan, Z.: SIoU Loss: More Powerful Learning for Bounding Box Regression.
CoRR, 2022, doi: 10.48550/arxiv.2205.12740.

[29] Tong, Z.—Chen, Y.—Xu, Z.—Yu, R.: Wise-IoU: Bounding Box Regression Loss
with Dynamic Focusing Mechanism. CoRR, 2023, doi: 10.48550/arXiv.2301.10051.

[30] Li, C.—Li, L.—Jiang, H.—Weng, K.—Geng, Y. et al.: YOLOv6: A Single-
Stage Object Detection Framework for Industrial Applications. CoRR, 2022, doi:
10.48550/arXiv.2209.02976.

[31] Chen, Y.—Li, Y.—Ma, Z.—Wang, H.—Zhang, L.: Method for Wind Direction
Self-Graph Recognition Based on Residual Network. Computer Engineering and De-
sign, Vol. 42, 2021, No. 8, pp. 2373–2380, doi: 10.16208/j.issn1000-7024.2021.08.037
(in Chinese).

[32] Yang, G.—Lei, J.—Tian, H.—Feng, Z.—Liang, R.: Asymptotic Feature
Pyramid Network for Labeling Pixels and Regions. IEEE Transactions on Cir-
cuits and Systems for Video Technology, Vol. 34, 2024, No. 9, pp. 7820–7829, doi:
10.1109/TCSVT.2024.3376773.

[33] Li, K.—Wan, G.—Cheng, G.—Meng, L.—Han, J.: Object Detection in Op-
tical Remote Sensing Images: A Survey and a New Benchmark. ISPRS Jour-
nal of Photogrammetry and Remote Sensing, Vol. 159, 2020, pp. 296–307, doi:
10.1016/j.isprsjprs.2019.11.023.

https://doi.org/10.48550/arxiv.2205.12740
https://doi.org/10.48550/arXiv.2301.10051
https://doi.org/10.48550/arXiv.2209.02976
https://doi.org/10.16208/j.issn1000-7024.2021.08.037
https://doi.org/10.1109/TCSVT.2024.3376773
https://doi.org/10.1016/j.isprsjprs.2019.11.023


YOLO-DTO: Automotive Door Panel Fastener Detection Algorithm Based on DL 407

Xiaohui Wang is Associate Professor at the North China Elec-
tric Power University, Ph.D., he currently teaches at the School
of Computer Science of the North China Electric Power Univer-
sity. He has been actively researching and applying intelligent
monitoring of power systems.

Yunshuo Jia is currently a Master’s student in computer sci-
ence and technology at the School of Control and Engineering,
North China Electric Power University, with research interests
in deep learning and software engineering.

Fengjuan Guo is Lecturer at the North China Electric Power
University, Master’s degree. She has been engaged in computer
vision related scientific research and education for many years,
and is currently working at the North China Electric Power Uni-
versity and the Hebei Provincial Key Laboratory of Energy and
Power Knowledge Computing.


