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Abstract. Pedestrian trajectory prediction plays an exceptionally vital role in au-
tonomous driving, enabling advanced analysis and decision-making in certain sce-
narios to ensure driving safety. Predicting pedestrian trajectories is a highly com-
plex task, encompassing static scenes, dynamic scenes, and subjective intent. To
enhance the accuracy of pedestrian trajectory prediction, it is crucial to model
these scenarios, extract relevant features, and fuse them effectively. However, exist-
ing methods only consider some of the scenarios mentioned above and extract static
scene features through manual annotation of road key points, which fails to meet the
demands of autonomous driving in complex traffic scenarios. To overcome these lim-
itations, this paper introduces MINet – a network that employs multi-information
feature fusion. Unlike previous approaches, MINet adopts a more automated ap-
proach to extract static scenes, including sidewalks and lawns. Moreover, the net-
work incorporates pedestrian destination modeling to improve prediction accuracy.
Furthermore, to tackle the challenge of collision avoidance in crowded spaces, this
paper incorporates the extraction of dynamic scene changes through relative veloc-
ity modeling of objects. The proposed network achieved an improvement of 47.7%
in the ADE metric and 62.6% in the FDE metric on the ETH/UCY dataset. In the
SDD dataset, there was an improvement of 18.4% in the ADE metric and 35.2%
in the FDE metric.
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1 INTRODUCTION

Pedestrian trajectory prediction plays a crucial role in diverse fields, including au-
tonomous driving, intelligent transportation, video surveillance, and human-compu-
ter interaction [1, 2, 3, 4]. It enables autonomous vehicles to analyze current and
historical scene information, proactively react to road conditions, and ensure the
safety of passengers and other road users [5, 6, 7, 8]. Moreover, by accurately pre-
dicting pedestrian trajectories, monitoring devices can effectively detect abnormal
behavior, leading to timely identification and handling of security incidents. There-
fore, conducting thorough research in the area of pedestrian trajectory prediction is
highly necessary to advance these fields and enhance overall safety measures.

However, pedestrian trajectory prediction is a complex process influenced by
many factors, mainly including the following:

1. Destination: Pedestrians usually choose an optimal path to reach their desti-
nation. Although they may change their trajectory based on the state of other
objects in the scene, such as evading obstacles, the overall path generally extends
towards the destination, as shown in Figure 1 a) [9, 10].

2. Static Scene: A static scene typically refers to sidewalks, intersections, lawns,
rivers, and other static obstacles [8, 11]. When pedestrians encounter static
obstacles, they usually “detour” around them instead of crossing them (such as
traffic barriers, lawns, and rivers), as shown in Figure 1 b).

3. Dynamic Scene: A dynamic scene includes other objects such as pedestrians,
bicycles, and vehicles. In crowded spaces, people are easily influenced by the
movements of surrounding pedestrians. To avoid collisions with others, pedes-
trians will change their movement direction [5, 6, 12]. As shown in Figure 1 c),
when a target pedestrian is walking towards other objects, they will adjust their
speed, trajectory, and direction to avoid colliding with surrounding pedestrians.

4. Subjective Awareness: Pedestrians’ subjective awareness and emotional state
can affect their movement trajectory. For example, when two pedestrians are
performing evasive actions, the decision of who takes the evasive action is influ-
enced by subjective awareness and emotional state. Another example is when
a pedestrian crosses the street, they may choose to cross at the current inter-
section or wait until the next intersection, which is strongly influenced by their
subjective awareness, as shown in Figure 1 d).

Therefore, to accurately predict pedestrian trajectories, it is essential to con-
sider and comprehensively analyze multiple factors. Currently, pedestrian trajec-
tory prediction algorithms commonly rely on rule-based traditional machine learn-
ing [13, 14, 15], or deep learning methods [5, 6, 11, 16], but they only take into
account a subset of the aforementioned factors. As a result, their accuracy and
generalization capability are inadequate.

This paper proposes a new pedestrian trajectory prediction method based on
a multi-information feature fusion network (MINet). The main contribution of this
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Figure 1. Some examples of pedestrian walking

study includes:

1. To address the limitation of relying on manual labeling of road key points to
describe static scenes, this paper utilizes optical flow to track the rough trajecto-
ries of pedestrians and combines them with real trajectories to extract features
of static scenes.

2. The proposed method employs pedestrian destinations to constrain the model
to generate trajectories that are more in line with reality, in which Variational
Autoencoder (VAE) is used to predict destinations of pedestrian in short-term.

3. The proposed method employs an interactive influence factor graph to extract
interaction information among people. This can effectively solve the problem of
avoiding pedestrians when they approach each other.

By incorporating these enhancements, the proposed MINet method significantly
improves the accuracy and generalization capability of pedestrian trajectory predic-
tion.

2 RELATED WORK

Pedestrian trajectory prediction plays a crucial role in the fields of autonomous
driving and intelligent robotics [17, 18, 19], offering a wide range of applications.
Currently, two primary methods are employed for pedestrian trajectory prediction:
traditional knowledge-based modeling approaches [13, 14, 15, 20] and data-driven
deep learning methods [5, 6, 7, 21, 22, 23].

Traditional knowledge-based modeling methods involve the manual design of
rules and functions to capture the mutual interactions between pedestrians. These
methods typically consider various data such as velocity, acceleration, direction,
and distance, often utilizing models like attraction-repulsion models and velocity-
obstacle models. While these methods demonstrate effectiveness in predicting pedes-
trian trajectories in simple scenarios, their performance tends to be unsatisfactory in
complex traffic environments. On the other hand, data-driven deep learning methods
leverage abundant positional information datasets to analyze the factors influencing
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pedestrian walking trajectories. By modeling these factors, these methods achieve
more accurate predictions of pedestrian trajectories.

Data-driven deep learning methods encompass a range of models, including:

Pedestrian Interaction Model. In crowded environments, when two pedestrians
come close to each other, it is common for one of them to adjust their trajectory
and avoid the other by changing direction. This observed phenomenon has in-
spired researchers to incorporate it into pedestrian trajectory prediction tasks.
For instance, Social LSTM [5] introduces a social pooling module that gathers
information about the neighbouring states of the target pedestrian, enabling
the capture of subtle movements between individuals. In [24], a novel pedes-
trian encoding method called APG is introduced, which utilizes one-dimensional
grids in polar space to effectively capture the interaction between pedestrians.
SS-LSTM [21], on the other hand, proposes a circular shape neighborhood as an
alternative to the traditional rectangular neighborhood used in social scale mod-
els. Additionally, Social Attention [25] incorporates an attention mechanism to
accurately assess the relative importance of each neighbouring individual around
the target pedestrian. While the aforementioned methods focus on simple in-
teractions between pedestrians, real-life scenarios often involve more complex
interactions that encompass not only pedestrians but also objects such as cars
and bicycles.

Person-Scene Model. Scenes play a crucial role in shaping pedestrian walking
trajectories, as individuals dynamically adjust their paths based on the sur-
rounding environment. In the context of trajectory prediction, Scene-LSTM [8]
partitions static scenes into Manhattan grids and utilizes LSTM to forecast
pedestrian locations. CAR-Net [26] proposes an attention network that lever-
ages scene semantic CNN to predict human trajectories. Study [24] introduces
a binary two-dimensional occupancy grid, where static obstacles are represented
by 1 and walkable areas by 0, effectively describing the scene’s layout. On the
other hand, MI-LSTM [27] is a network tailored for predicting cyclists’ tra-
jectories, employing manually labeled road key points to delineate road scene
boundaries. By incorporating road boundaries, the predicted trajectory for cy-
clists can be confined to the correct road. Notably, existing methods rely on
manual labeling to capture scene information, which may lack robustness. In
this study, road features are automatically extracted, enabling a more compre-
hensive depiction of scene influence on pedestrian movement.

Pedestrian Intention Modeling. Pedestrians typically determine their walking
trajectory based on their intended destination and the current scene conditions.
In the field of pedestrian trajectory prediction, researchers have incorporated
pedestrian intention into their models. For instance, in the study [28] the re-
searchers aim to infer pedestrian intentions by predicting the direction of the
pedestrian’s head. Another approach, known as the Next model [11], treats the
prediction of pedestrian’s future behavior as an auxiliary task, aiding the model
in inferring more realistic trajectories. However, given the countless variations
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in human behaviors, accurately classifying all of them presents a significant chal-
lenge. In the study [29] a discrete choice model is introduced to calculate the
pedestrian’s next decision, further enhancing intention prediction. Another ap-
proach, [30] assesses the pedestrian’s intention based on their current posture,
leveraging stereo-based 3D deep pose estimation. Furthermore, [9] predicts the
short-term endpoint of the pedestrian using a latent encoder and utilizes this
predicted endpoint as a constraint for generating trajectories. These diverse ap-
proaches highlight the efforts to incorporate pedestrian intention into trajectory
prediction models, aiming to enhance the accuracy and realism of the predicted
trajectories.

However, Existing methods for pedestrian trajectory prediction only consider
a subset of the factors that influence pedestrian trajectories, leading to incomplete
models and unsatisfactory prediction outcomes. To address this limitation, this
study aims to enhance the prediction accuracy by incorporating a comprehensive
set of factors. Specifically, the study will integrate both static and dynamic scene
information, along with destination features, into the pedestrian trajectory predic-
tion framework. By considering a wider range of factors, this research endeavors
to improve the overall prediction performance and provide more reliable trajectory
estimations.

3 PROPOSED APPROACH

The current approaches in predicting pedestrian trajectories are limited in consider-
ing only a few factors, resulting in unsatisfactory prediction results. Therefore, there
is a need for improved methods to enhance the accuracy of pedestrian trajectory pre-
dictions. This paper introduces a novel approach that integrates multiple influential
factors for accurate prediction of pedestrian walking paths. The overall framework
of the proposed method is depicted in Figure 2. It focuses on extracting relevant
features from four dimensions: road scene S, pedestrian interaction I, historical
trajectory T , and destination D. By combining these features, a multi-channel
tensor is constructed. The road scene dimension encompasses comprehensive three-
dimensional information, encompassing static obstacles and road boundaries. The
pedestrian interaction dimension captures the mutual influence among pedestrians.
The historical trajectory dimension incorporates pertinent characteristics from past
pedestrian walking paths. Lastly, the destination dimension reflects the intentions
of the pedestrians.

The proposed network architecture comprises four main components: the scene
feature encoding module, the interaction feature encoding module, the destination
encoding module, and the historical trajectory encoding module.

The scene feature encoding module employs optical flow [31] to track pedestrians
and derive a preliminary trajectory TR. It combines this trajectory with the original
pedestrian trajectory data TGroundTruth from the dataset to generate a “walkable
area” map, from which it extracts rich road information features S. This approach
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surpasses previous manual methods [24, 27] in terms of robustness and flexibility,
allowing for rapid adaptation to diverse scenes.

The primary objective of the interaction feature encoding module is to extract
the interaction features I among pedestrians. This module employs a grid-based
approach to represent the neighbouring individuals around the target pedestrian,
effectively modeling them through directed pooling [32].

The goal of the destination encoding module is to extract the intended desti-
nations D of pedestrians. To achieve this, the module utilizes a VAE to sample
potential destinations [9]. The VAE parameters are trained using actual destina-
tion data, enabling the module to generate accurate destinations during prediction
to guide trajectory generation. It is worth noting that the destinations generated
by the destination encoding module pertain to the short-term goals of pedestrians
rather than their long-term destinations.

The historical trajectory encoding module utilizes a multi-layer perceptron to
extract informative features T from pedestrian historical trajectories.
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Figure 2. Overall model architecture

3.1 Scene Encoder

Figure 3 illustrates the scene feature encoding module developed in this paper, which
is responsible for extracting a feature S representing the “walkable area”. It is well
known that different static scenes, such as sidewalks, lawns, motor lanes, and static
obstacles, exert varying influences on pedestrian trajectories. For instance, pedes-
trians typically prefer walking on sidewalks rather than on lawns, motor lanes, or
static obstacles. In this context, the sidewalk represents the “walkable area”, while
the lawn, motor lane, or static obstacle represents “non-walkable areas”. By incor-
porating the feature S of the “walkable area”, this module significantly improves
the model’s prediction performance by constraining the predicted region.

The initial step involves acquiring the corner points Cpedestrian of pedestrians and
employing optical flow to track them, resulting in a trajectory optical flow map F .
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The process begins by gathering scene videos captured over a specific duration,
assuming the existence of N frames in total. For each frame Ni, where i ∈ [1, N ],
corner detection [33, 34] is performed, yielding a set of detected corners denoted as
Ci = Ci

1, C
i
2, . . . , C

i
K . Here, Ci

j represents the jth corner detected in the ith frame
image.

The majority of points in Ci correspond to pedestrians’ heads or feet, although
there are also corner points unrelated to pedestrians. In Figure 4 a), the red dots
represent the detected corner points. These points are not only found on pedestrians’
heads, hands, and feet but also on buildings and fences, referred to as Ci

Static. The
presence of Ci

Static can impact the determination of the final walkable area. As shown
in Figure 4 c), the three elliptical areas in the upper left corner are non-walkable
areas, necessitating the removal of Ci

Static. To distinguish between pedestrian corners
Ci

Pedestrian and static corners Ci
Static, we utilize the Euclidean distance d as a criterion.

If the distance d between two corners falls below a specific threshold, we classify the
corner point as static and include it in the set of Ci

Static. Within frame i, pedestrian
corners are represented as Equation (1):

Ci
Pedestrian = Ci − Ci

Static. (1)

Subsequently, we employ the optical flow algorithm to track Ci
Pedestrian and

compute the displacement of pedestrian corners between frame i and frame i + 1,
resulting in the corner displacement matrix V i = V i

1 , V
i
2 , . . . , V

i
K , where V i

j denotes

the trajectory displacement length of the jth corner point from the ith frame image.
Utilizing V i, we obtain a rough trajectory optical flow map denoted as F i

R Finally,
we combine all the F i

R to generate the final rough trajectory optical flow map, FR.

FR = F 1
R + F 2

R + · · ·+ FN
R . (2)
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Figure 4. Visual analysis of Arxiepiskopi flock.avi: corner detection, trajectory flow, and
noise reduction in KDE

FR illustrates the road outline, as depicted in Figure 4 b). To obtain an accurate
trajectory optical flow map, FGroundTruth, we rely on the true pedestrian trajec-
tories annotated in the dataset. By merging FR with FGroundTruth, we generate a
comprehensive trajectory optical flow map denoted as F .

F = FR + FGroundTruth. (3)

The second step is to perform Kernel Density Estimation (KDE) [35] on the
trajectories in F , in order to obtain a “pixel-level” probability distribution of the
trajectories.

p(x, y) =
1

Rh2

R∑
i=1

max

1

h
− 1

h2

√(
x− pix

h

)2

+

(
y − piy

h

)2

, 0

 . (4)

Here, R is the number of trajectories in F , and h is the bandwidth. KDE pro-
vides a “pixel-level” probability distribution of the “walkable area” in the predicted
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scene. This probability distribution can be used to generate the walkable area map,
as shown in Figure 4 d), thereby constraining the region for pedestrian trajectory
prediction. Finally, a CNN is used to obtain the scene representation S:

S = CNN (KDE (F )). (5)

3.2 Interaction Encoder

The interaction feature encoding module focuses on capturing nuanced interactions
among individuals through the use of an interaction influence factor map. This
module employs directed pooling [32], utilizing relative velocity as a metric, to
aggregate the hidden states of nearby crowds. The hidden state mimics the effects of
factors such as the positions of neighbors, distances, relative velocities, and motion
directions on pedestrian trajectories. The interaction influence factor map, which
showcases these interactions, is depicted in Figure 5.
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Figure 5. Graphical representation of close-Range and long-Range impact

The interaction influence factor map consists of a square grid with a side length
of L, which determines the range of influence on the target pedestrian. It comprises
16 grids divided into two layers: inside and outside. L represents the influence over
long distances, while C represents the influence over close ranges. At each time
step t, all neighbouring individuals Om possess a position vector P . This position
vector, represented using one-hot encoding, has a size of 16 × 1, as illustrated in
Figure 6. It indicates the position of Om in the interaction influence factor map,
reflecting their relative position to the target pedestrian. For instance, if neighbor
O2 is present in grid 2, then element 1 of the P vector is set to 1, while all other
elements are set to 0.

The position vector P solely encompasses the relative positional details of the
neighbors. However, this module requires a more comprehensive neighbor state
vector, incorporating semantic information from both the inner and outer layers of
the interaction influence factor map, along with velocity, direction, and distance.
Previous studies have demonstrated that factors such as the direction, speed, and
proximity of neighbors significantly influence the motion trajectory of the target
pedestrian. Hence, it is essential to fuse these factors to generate a richer neighbor
state vector.
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Figure 6. Target pedestrians and neighbors in grid:position encoding with one-Hot vectors

Neighbors can be broadly classified into two categories: “same-direction walk-
ing” and “opposite-direction walking”. When the target pedestrian moves in the
same direction as their neighbors, the influence of these neighbors on their tra-
jectory diminishes, warranting lower weights to be assigned. Conversely, when
the target pedestrian walks in the opposite direction to their neighbors, varying
weights are set based on Θ, which represents the angle between the relative ve-
locities of the neighbor and the target pedestrian, as well as the distance between
them.

If Θ is small and falls within grid C, it implies a higher likelihood of the target
pedestrian evading at that moment, thus necessitating a larger weight assignment.
On the other hand, neighbors in grid L or those whose directional angles deviate from
that of the target pedestrian exhibit reduced influence factors and are consequently
assigned lower weights.

By incorporating the position vector P in this manner, we derive a hidden state
vector I for each neighbor at time t, encompassing comprehensive information about
their positions, directions, and more.

3.3 Destination Encoder

The destination encoding module plays a critical role in extracting destination fea-
tures and utilizing them to enhance the precision of trajectory predictions. As
depicted in Figure 7, the destination encoding module consists of two parts: the red
segment represents the training stage. In this stage, the module is trained using the
historical trajectory Ti = T 1

i , T
2
i , . . . , T

obs
i and the corresponding destination Di of

the pedestrian. Here, Ti represents the trajectory of pedestrian i from time t = 0
to t = obs. Subsequently, the trained VAE is employed to generate destinations for
testing purposes.

During the training stage, we initiate the process by extracting the pedestrian’s
historical trajectory Ti and the associated destination Di. Two MLP, denoted as
Mt and Md, resulting in the encoded representations Mt(Ti) and Md(Di). These
encodings are then fused and input into the latent encoder, Mlatent, producing
Mlatent(Mt(Ti) + Md(Di)). This fused representation is utilized to train the mean
µ and variance σ of the VAE, generating the distribution z = N(µ, σ2). The mod-
ule samples potential destinations from the distribution N(µ, σ2), which are subse-
quently concatenated with Mt(Ti) and decoded using the decoder, Dlatent, to obtain
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the predicted pedestrian destination, D̂i.

D̂i = Dlatent(Mlatent(Mt(Ti) +Md(Di)) +Mt(Ti)). (6)

We utilize Md to encode D̂i, the predicted destination, and connect it with
Mt(Ti) to generate the destination feature Fd.

Fd = Mt(Ti) +Md(D̂i). (7)

During the testing phase, as the model does not have access to the actual des-
tinations of pedestrian trajectories, it directly samples destination samples from
a normal distribution. Subsequently, similar to the training phase, the sampled des-
tinations are concatenated with Mt(T ), and the trained decoder Dlatent is employed
to predict D̂i. Finally, the features Mt(Ti) and Md(D̂i) are fused to form destination
features, which are then fed into the main network.

4 EXPERIMENTS

4.1 Datasets

In this section, we conducted training and testing of our model using publicly avail-
able datasets, namely ETH/UCY [36, 37] and SDD [38]. These datasets encompass
various challenging social behaviors, such as group walking, crowd crossing, and
following, among others.

The ETH/UCY dataset is a collection of datasets from ETH [36] and UCY [37],
consisting of five distinct scenarios: UNIV, Zara1, Zara2, ETH, and HOTEL. In
total, this dataset comprises 1 536 human trajectories. Locations of pedestrians
are marked in the real world, with meters as the unit of measurement. Video
resolutions differ among the datasets: 720×576 for UCY and HOTEL, and 640×480
for ETH. For training and testing data separation, we employed a leave-one-out
strategy [5, 6, 7, 39], utilizing data from four scenes for training and testing on the
remaining one.

The SDD [38] serves as a recognized benchmark for evaluating the performance
of human trajectory prediction. This dataset includes trajectory videos from 20 di-
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verse scenarios, captured from a bird’s-eye view using a drone. Besides pedestrians,
it features cyclists, cars, skateboarders, buses, and other moving objects, totaling
11 200 pedestrians and 64 000 bicycles, with over 20 000 targets in total. This dataset
enables effective observation and analysis of interactions between moving objects.
To maintain consistency with prior works [6, 7, 9, 23, 40], the training and testing
sets were divided accordingly.

4.2 Implementation Details

The network in this study was implemented using PyTorch and trained on a Linux
server equipped with a Tesla K80 graphics card. For both training and testing,
we set the batch size to 100, and each training run consisted of 650 epochs. The
learning rate was set at 0.0003, and we used the ADAM optimizer.

In the Scene Feature Encoding module, we adopted the culling method described
in Section 3.1 to remove static corner points. Table 1 provides the settings for the
Euclidean distance threshold d used in different scenes within the ETH/UCY.

ETH HOTEL UNIV ZARA

d (meters) 0.36 0.15 0.32 0.4

Table 1. d for static corner point elimination in the ETH/UCY dataset

In our study, we first removed noise from the trajectory optical flow map. Sub-
sequently, we applied KDE to obtain the “Walkable Area” map for each scenario,
as illustrated by the green area in the right part of Figure 8. For the purpose
of illustration, we utilized the ETH/UCY dataset, and the process is depicted in
Figure 8.

Figure 8. Scene visualization and walkable area maps

The process of extracting the walkable area from the raw video involves three
primary steps: corner detection, optical flow tracking, and kernel density estimation.
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To obtain the walkable area maps for the eight scenes in the SDD, we adopt the same
approach. Furthermore, in Section 3.2, we set the side length L of the interaction
influence factor map to 40 px.

For pedestrian trajectory prediction tasks, we aim to predict the next 12 time
steps (4.8 s) of the trajectory based on observations from the previous 8 time steps
(3.2 s), following the setup outlined in reference [5], which we also adhere to in this
paper. In terms of the coefficients for the loss function, we set β1 = 1 and β2 = 1.

The network employs MLP with non-linear ReLU functions for both the encoders
and decoders. Additionally, the scene feature encoding module utilizes a CNN to
handle the walkable area. The structures of these components are detailed in Ta-
ble 2.

Encoder/Decoder Architecture

Scene CNN Encoder
(1, 64, 3× 3) → (64, 30, 3× 3) → (30, 20, 3× 3)
→ (20, 10, 3× 3)

Scene MLP Encoder 1024 → 512 → 256 → 128 → 64 → 16

Trajectory MLP Encoder 16 → 512 → 256 → 16

Destination MLP Encoder 2 → 8 → 16 → 16

Latent MLP Encoder 32 → 8 → 50 → 32

Latent MLP Decoder 32 → 1 024 → 512 → 1 024 → 2

Interaction MLP Encoder 8 → 256 → 128 → 64 → 16

Predict MLP Encoder 64 → 1 024 → 512 → 256 → 22

Table 2. Structure of the encoders and decoders mentioned in this article

Metrics: In our evaluation of the model’s performance, we utilize two widely used
metrics in pedestrian trajectory prediction tasks: the Average Displacement Er-
ror (ADE) and the Final Displacement Error (FDE) [5]. The ADE represents
the average L2 distance between the predicted trajectory and the actual trajec-
tory, while the FDE is the L2 distance between the final predicted point and the
actual point. The formal expressions for these metrics are as follows:

ADE =

∑
i

∑
t ∥(xi

t, y
i
t)− (x̂l

t, ŷ
l
t)∥2

N ∗ Tpred

, (8)

FDE =

∑
i ∥(xi

t, y
i
t)− (x̂l

t, ŷ
l
t)∥2

N
. (9)

We also employed the Best of N approach, as mentioned in [6], which involves
selecting the minimum ADE and FDE from K randomly sampled trajectories.
This method has become widely adopted in pedestrian trajectory prediction
tasks.
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Loss Function: For the end-to-end training of the entire network, we employ the
following loss function:

Loss = ∥T̂ − T∥2 + β1∥D̂ −D∥22 + β2DKL(N(µ, σ)∥N(0, I)). (10)

In this equation, the first term represents the mean trajectory loss, which is used
for training the entire network. The second term corresponds to the mean desti-
nation loss, utilized for training the destination encoder’s Multilayer Perceptron
(MLP) section. The third term, the KL divergence, is applied for training the
variational autoencoder.

Baseline: We have selected 8 previously published baseline models for comparison
with our MINet, and they are detailed below:

• Social LSTM [5]: Alahi et al. proposed an LSTMmodel that includes a social
pooling layer, enabling the model to automatically learn interactions among
pedestrians.

• Conv2D [41]: Zamboni et al. introduced a novel two-dimensional convolution
model. This recurrent model showcases both high prediction accuracy and
quick computation.

• Social GAN [6]: Gupta et al. combined sequence prediction with Generative
Adversarial Networks, proposing a multimodal human trajectory prediction
GAN. They trained a variety of losses to encourage diversity and utilized
a new pooling mechanism to aggregate information between individuals.

• SR-LSTM [16]: Zhang et al. employed a data-driven state-refinement LSTM
network that utilizes a message-passing mechanism to leverage the current
intentions of neighbors.

• NEXT [11]: Liang et al. proposed an end-to-end multi-task learning sys-
tem, which capitalizes on rich visual features about human behavior and
interaction with the surrounding environment.

• SoPhie [7]: Sadeghian et al. combined scene context information with social
interactions among agents to obey the environment’s physical constraints.

• SimAug [42]: Liang et al. introduced a novel method that learns robust
representations by augmenting simulated training data, enabling these rep-
resentations to better generalize to unseen real-world test data.

• DESIRE [43]: Lee et al. proposed a trajectory planning method based on
inverse optimal control. This approach utilizes a refinement structure to
predict trajectories.

4.3 Comparison with Related Methods

In this section, we conduct a comprehensive comparison and discussion of our model
with the aforementioned baseline networks using the ADE and FDE metrics.

In Table 3, we present the results of each model across various scenarios on the
ETH/UCY dataset, following the leave-one-out evaluation methodology as described
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Model Eth Hotel Univ Zara1 Zara2 AVG

Social LSTM 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54

Conv2D 0.56/1.11 0.24/0.46 0.58/1.23 0.46/0.99 0.35/0.75 0.44/0.91

Social GAN 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21

SR-LSTM 0.63/1.25 0.37/0.74 0.51/1.10 0.41/0.90 0.32/0.70 0.45/0.94

NEXT 0.73/1.65 0.30/0.95 0.60/1.27 0.38/0.81 0.31/0.68 0.46/1.00

SoPhie 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15

Ours-D 0.58/0.96 0.19/0.34 0.39/0.67 0.23/0.39 0.24/0.35 0.32/0.54

Ours-D-S 0.49/0.72 0.15/0.20 0.18/0.28 0.21/0.32 0.16/0.26 0.24/0.36

Ours-D-S-I 0.46/0.65 0.14/0.18 0.18/0.27 0.21/0.31 0.16/0.28 0.23/0.34

Table 3. Comparison of baseline model and MINet on the ETH/UCY

in [5, 6, 7, 39]. The experiments were conducted with a K value of 20, meaning the
trajectory with the smallest ADE and FDE values was selected from 20 generated
trajectories. Our observations demonstrate that MINet exhibited strong compet-
itiveness, significantly outperforming the state-of-the-art Conv2D and SR-LSTM
models. Specifically, Conv2D achieved an average error of 0.44 on ADE and 0.91
on FDE, whereas MINet achieved a remarkable 47.7% improvement on ADE and
62.6% improvement on FDE.

In addition to comparing with baseline models, we conducted ablation exper-
iments on our model by progressively including different modules. Starting with
only the destination encoding module (Ours-D), we sequentially added the scene
feature encoding module (Ours-D-S) and the interaction feature encoding module
(Ours-D-S-I). The experimental results show a steady increase in performance, af-
firming the effectiveness of each module. Particularly, Ours-D-S achieved an average
improvement of 23.5% on the ADE metric and 33.3% on the FDE metric compared
to Ours-D.

Interestingly, Ours-D-S-I exhibited little improvement over the Ours-D-S model
across all scenarios. For the Univ, Zara1, and Zara2 scenes, the ADE metric for
Ours-D-S remained consistent. To investigate the possible reasons, we examined
the original videos of the dataset. We observed that there were fewer pedestrian
interactions in these three scenes, resulting in insufficient training data for the model,
which explains the slight performance improvement.

SoPhie SimAug Ours-D Ours-D-S Ours-D-S-I DESIRE Ours-D-S-I

K 20 20 20 20 20 5 1

ADE 16.27 10.27 10.25 8.38 8.38 19.25 16.36

FDE 29.38 19.71 16.72 12.76 12.77 34.05 30.15

Table 4. Comparison of the baseline model and MINet on SDD when setting different K

SDD: In Table 4, we present a comprehensive comparison of our approach with
previous baselines on the SDD dataset. Our approach showcases notable improve-
ments over prior state-of-the-art methods [6, 7, 42], as evident from both the ADE
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and FDE metrics. With K set to 20, our proposed MINet achieved an impressive
18.4% improvement on ADE and 35.2% improvement on FDE, outperforming the
leading SimAug. Moreover, even when K is set to 1, MINet still achieves superior
results, surpassing the DESIRE model with K = 5 and even outperforming the
Social GAN with K = 20.

The significance of the destination in pedestrian trajectory prediction is un-
derscored by the performance of solely Ours-D, which outperformed the baseline,
highlighting the critical role of the destination in the trajectory prediction process.
Additionally, Ours-D-S further improved upon Ours-D, revealing the essential con-
tribution of the scene feature encoding module. However, the performance of Ours-
D-S-I was found to be comparable to Ours-D-S, likely due to the spaciousness of the
SDD dataset locations, resulting in fewer “avoidance” instances and consequently,
limited training and testing data.

Previous experiments [9] have shown that in the “Best of N” method, the larger
the value of K, the smaller the ADE and FDE error metrics, signifying better model
performance with lower ADE and FDE values under the same conditions. Our
model’s noteworthy performance, even under the condition of K = 1, outperforms
DESIRE with K = 5 and Social GAN with K = 20, highlighting the significant
advantages of our model in pedestrian trajectory prediction tasks.

During our ablation experiments, two significant issues emerged. Firstly, when
the network is superimposed on the scene feature encoding module, the network
training speed becomes very slow. This slowdown predominantly stems from the
necessity of image feature extraction within the scene feature encoding module,
where the choice of CNN significantly influences training speed. Excessive depth
within the network prolongs both training and prediction times, jeopardizing real-
time applicability. Conversely, overly shallow networks compromise the precision of
scene feature extraction, consequently diminishing prediction efficacy. Hence, future
endeavors should meticulously balance CNN depth with prediction accuracy.

Secondly, when the network is superimposed to the interactive feature encoding
module, the improvement in prediction accuracy is relatively small. Plausible expla-
nations for this phenomenon include the heightened complexity induced by module
integration, leading to diminished generalization performance. Alternatively, insuf-
ficient interaction data within the dataset may impede the module’s capacity to
discern interaction cues, consequently limiting the network’s performance improve-
ment. Subsequent research could explore optimizing interaction feature extraction
modules with enhanced generalization capabilities or augmenting dataset diversity
by incorporating additional interaction scenarios for network training.

5 CONCLUSIONS AND FUTURE WORK

This paper proposed a novel Multi-Information fusion Network, MINet, designed
for pedestrian trajectory prediction. To better simulate the real walking environ-
ment of pedestrians, we incorporate a “walkable area” that encompasses not only
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the pedestrian-accessible space but also the opposing “non-walkable area”, including
static obstacles and buildings, to enrich scene information. Additionally, we utilize
an interaction feature encoding module to capture pedestrian interactions in dense
scenes. Furthermore, a destination feature encoding module is integrated to extract
pedestrians’ destinations and describe their intentions. In our study, we also con-
ducted ablation experiments on these modules, and the results clearly demonstrate
the superiority of MINet over existing baseline models on both the ETH/UCY and
SDD datasets. The incorporation of the scene feature encoding module, the in-
teraction feature encoding module, and the destination feature encoding module
collectively contribute to the improved performance of MINet in pedestrian trajec-
tory prediction tasks.

The proposed network in our study exhibits promising capabilities, yet there
remain avenues for refinement. Firstly, the incorporation of multiple influencing
factors in pedestrian trajectory prediction contributes to network bloating and pro-
longed computation times, potentially compromising real-time performance. There-
fore, optimizing the network’s computational efficiency or reducing complexity with-
out sacrificing prediction accuracy stands as a pivotal next step. Secondly, our ex-
perimentation solely revolves around specific datasets, necessitating the collection
of additional scene information for broader applicability, thereby fortifying robust-
ness. Lastly, while our interaction module effectively captures interactions, its scope
is somewhat limited, failing to encompass the diverse array of objects prevalent in
modern traffic scenarios, including wheelchairs, skateboards, bicycles, carts, etc. En-
hancing the interaction module to accommodate the complexities of contemporary
traffic environments remains imperative. Moving forward, we are committed to ad-
dressing these shortcomings to refine our network model and present a more robust
and effective solution.
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