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Abstract. The burgeoning of e-commerce and online platforms has led to an ex-
plosion in data volume and diversity of user preferences, making effective recom-
mendation systems crucial for personalizing user experiences. While collaborative
filtering algorithms are traditionally favoured for their ability to leverage user-item
interactions, they grapple with data sparsity and noise challenges. To tackle these
challenges, Various approaches have emerged in recent years to tackle these chal-
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lenges. Recent strides in deep learning, particularly autoencoders and neural net-
works, have shown promise in addressing these issues. However, limitations persist,
such as suboptimal feature extraction and the underutilization of combined nonlin-
ear and linear latent features in traditional autoencoders, as well as the overlooked
impact of active users in recommendations. Addressing these research gaps, this
study introduces a novel recommendation algorithm that synergizes a deep denois-
ing autoencoder with an attention mechanism, aiming to refine recommendation
performance by mitigating data sparsity and enhancing feature extraction. This
fusion approach innovatively combines nonlinear and linear latent features and in-
corporates a neural attention mechanism, significantly improving the precision and
personalization of recommendations. Ultimately, the proposed algorithm’s effective-
ness is assessed and benchmarked against state-of-the-art approaches, demonstrat-
ing its potential to revolutionize recommendation systems by offering more accurate
and user-tailored suggestions.

Keywords: Deep learning, denoising auto-encoder, collaborative filtering, atten-
tion mechanism, recommendation system

1 INTRODUCTION

The advent of cutting-edge technologies such as Big Data, distributed computing,
and the Internet of Things (IoT) has catalyzed an unprecedented expansion in net-
work data [1]. However, this abundance of data brings along the challenge of data
overload. To assist users in efficiently accessing the information they need from this
vast sea of data, recommendation systems have emerged. When users lack clear
search keywords, recommendation systems can analyze their interactive behaviors
with items, such as rating, liking, commenting, and sharing, to uncover their po-
tential preferences and needs. By proactively recommending potentially interesting
items, these systems aim to minimize the amount of time users invest in searching for
pertinent content [2, 3, 4]. Over the past decade, researchers have proposed numer-
ous community detection methods from various perspectives, which are also capable
of uncovering users’ areas of interest and summarizing key information [5, 6, 7].

The crux of recommendation system research lies in the development of recom-
mendation algorithms. An effective recommendation algorithm not only enhances
user satisfaction but also generates significant economic benefits for merchants and
enterprises [8]. Consequently, improving user satisfaction and recommendation ac-
curacy assumes crucial importance, with particular focus on addressing data sparsity
and cold-start issues within the field of recommendation research. In the early 1990s,
Goldberg et al. introduced the collaborative filtering algorithm (CF) [9]. Praised
for its interpretability and real-time personalized recommendations, CF attracted
considerable attention from experts and scholars worldwide [10].

In recent years, the field of recommendation algorithms has witnessed signifi-
cant advancements in accuracy, primarily driven by research focusing on relevance
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within communities and clusters [11, 12, 13]. Furthermore, collaborative filtering
algorithms based on matrix decomposition [14] have gained substantial recognition
as distinguished recommendation algorithms. However, recommendation algorithms
that predominantly rely on the association between users and items often encounter
limitations, particularly when user-item interaction data is incomplete. This inade-
quacy in capturing the full spectrum of users’ preferences can lead to a diminution in
the accuracy of recommendations. On the one hand, these algorithms solely employ
linear models to capture user-item interactions, thus struggling to capture deeper
implicit features of users and items [15]. On the other hand, factors such as high-
dimensional features and the massive scale of the dataset exacerbate the common
issue of sparsity in the user-item rating matrix [16]. Furthermore, these algorithms
rely on similarity calculations between users or items for recommendations, making
them less effective when dealing with new users or items, ultimately affecting system
performance.

Deep learning techniques provide a promising solution to these challenges. First-
ly, deep learning models can unveil implicit features within data using neural network
architectures, enabling a more comprehensive representation and understanding of
the underlying data. Secondly, deep learning allows for the mapping of data with
varying dimensions into a shared feature space, facilitating joint feature represen-
tations of the data [17]. By incorporating deep learning techniques into traditional
recommendation algorithms, it becomes feasible to overcome the challenges faced
by conventional methods in capturing intricate user and item features, as well as
addressing issues related to data sparsity and cold-start problems [18].

This paper builds upon our previous research [19]. It enhances the dynamic
collaborative filtering recommendation algorithm by integrating a deep denoising
auto-encoder and introducing an attention mechanism to mitigate the impact of
active users on experimental results. This enables the exploration and learning of
both linear and nonlinear user and item features. The main contributions of this
paper are outlined as follows:

1. Development of an Enhanced Deep Denoising Auto-Encoder Network: This
study introduces an enhanced structure of the conventional auto-encoder net-
work to make it more adaptable for representing and learning complex feature
patterns. By introducing noise following a Gaussian distribution and then de-
noising it, we enhance the generalization capability and robustness of the orig-
inal auto-encoder network. This enhancement effectively tackles problems like
overfitting and improves the model’s prediction capability and recommendation
accuracy.

2. Advanced Feature Analysis Using Enhanced Deep Denoising Auto-Encoder:
This study introduces a Deep Denoising Autoencoder Convolution and Multi-
Layer Perceptron (DAE-CMLP) algorithm, which extracts and analyzes both
linear and nonlinear latent features from the user-item rating matrix. By distill-
ing these features into a lower-dimensional space, we enhance the collaborative
filtering algorithm’s ability to discern nuanced user-item relationships. This ap-
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proach not only addresses the cold-start problem by analyzing user interactions
but also integrates an attention mechanism to balance the impact of active users,
resulting in more accurate and unbiased recommendations.

3. We conducted experiments on two publicly available datasets to validate the
performance of our algorithm. The experimental results demonstrate that our
proposed algorithm outperforms the current state-of-the-art comparison algo-
rithms, significantly improving the performance of traditional recommendation
algorithms and effectively addressing issues related to data sparsity and insuffi-
cient feature extraction.

The remainder of the paper is organized as follows. Section 2 provides a sum-
mary and analysis of the current state of research on collaborative filtering algo-
rithms, deep learning models, and hybrid algorithms. Section 3 introduces the
improved deep denoising auto-encoder network structure. Section 4 introduces the
fusion method of linear and non-linear features of the scoring matrix. Section 5
presents the recommendation algorithm combining deep denoising autoencoder and
attention mechanism. Section 6 presents the design of the experiments and the
analysis of the results. Section 7 summarises the conclusions and future work.

2 RELATED WORK

By analyzing users’ past behaviors and preferences, identifying their latent interests,
and providing recommendations aligned with these interests, collaborative filtering
rules have found widespread application in research on recommendation systems.
They have become a fundamental paradigm in this field and have achieved signifi-
cant success. In the research conducted by Wu et al. [20], they extensively discuss
the developmental journey of recommendation algorithms based on collaborative
filtering rules. They also delve into the potential challenges associated with such
algorithms and provide corresponding solutions. They posit that the success of this
approach is partly attributed to its adeptness at harnessing valuable information
from user-item interactions to generate personalized recommendations. Neverthe-
less, challenges like data sparsity, cold-start issues, and recommendations for new
users and items continue to pose difficulties for this method to address the chal-
lenges as mentioned above related to cold start and quantifiability, Han et al. [21]
proposed a collaborative filtering algorithm that combines user information features
and temporal factors to enhance recommendation accuracy. Additionally, Cheng
et al. [22] introduced a collaborative filtering hybrid imputation algorithm to tackle
information sparsity issues. This algorithm achieves information extraction by filling
sparse matrices from both user and item perspectives.

To enhance rating prediction within the recommendation system, the research
report [23] introduced the Matrix Factorization (MF) model as the foundational
model for boosting the Adaboost algorithm. By setting a threshold, the rating
prediction problem can be transformed into a classification problem. This approach
involves partitioning the continuous range of ratings into distinct categories, making



180 Z. Han, L. Shi, Q. Sun, X. Huang, B. Lei, L. Liu, Y. Lu

it easier for the recommendation system to interpret and manage the recommenda-
tion results. The experimental results demonstrated enhanced predictive accuracy
when compared to the classic algorithm. Additionally, the study [24] integrated aux-
iliary information into the Bayesian Matrix Factorization (BMF) method, thereby
effectively improving the accuracy of recommendation outcomes.

Deep learning has demonstrated substantial potential in artificial intelligence
research, with numerous scholars exploring its feature learning capabilities within
the realm of recommendation systems [25, 26, 27, 28]. In addition to collaborative
filtering, the ascent of deep learning technology has unlocked fresh opportunities
in the field of recommendation systems. Deep learning models possess the ability
to autonomously acquire intricate feature representations, consequently enhancing
their capacity to capture the inherent relationships between users and items. The
fusion of deep learning with collaborative filtering has spawned a range of robust
hybrid models, further propelling the evolution of recommendation systems. For
instance, Sedhain et al. [29] pioneered the application of auto-encoders in collabo-
rative filtering with their AutoRec model, which reconstructs the user-item rating
matrix through encoding and decoding processes, minimizing reconstruction errors
to train the model. Strub et al. [30] utilized a stacked noise reduction auto-encoder
to learn latent representations of users and items. They addressed data sparsity is-
sues by assigning unobserved data in the rating matrix as zero and enhanced model
robustness by introducing noise to the rating vector. Wu et al. [31] introduced a col-
laborative noise reduction auto-encoder model that takes into account user person-
ality differences, introducing personalization factors to augment the performance of
personalized recommendations.

In practical scenarios, the user-item interaction function can often be too in-
tricate to be adequately learned through traditional dot products alone. Neural
Collaborative Filtering (NCF) [32] employs a multilayer perceptron to grasp the
user-item interaction function, thereby enhancing the model’s capacity to capture
nonlinear relationships. To address the limitations of multilayer perceptrons in cap-
turing linear relationships, NeuMF combines generalized matrix decomposition and
multilayer perceptrons into a unified model. Outer Product-based Neural Collabora-
tive Filtering (ONCF) [33] introduces the use of outer products to explicitly model
pairwise associations between embedded spatial dimensions, resulting in a more
expressive and semantically meaningful two-dimensional interaction map. Build-
ing upon this two-dimensional interaction graph, ConvNCF utilizes a convolutional
neural network to learn higher-order correlations between embedding dimensions.

3 IMPROVED DEEP DENOISING AUTO-ENCODER NETWORK

In traditional collaborative filtering algorithms, the implicit feature vectors of users
and items are typically initialized randomly [34]. However, it is worth noting that
there exist numerous nonlinear features within real items that cannot be effectively
learned by conventional algorithmic models. Autoencoders can not only reduce and
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compress high-dimensional data but also learn deep nonlinear features [35]. By
stacking multiple encoder and decoder layers, autoencoders can build deep neu-
ral networks, thereby more effectively capturing abstract features within the data.
Consequently, autoencoders find extensive application and play a significant role
in recommendation system research. Hence, we contemplate the utilization of the
auto-encoder network to extract nonlinear item features and integrate them into
the dynamic collaborative filtering algorithm, with the aim of enhancing the perfor-
mance of the conventional recommendation model.
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Figure 1. Improved six-layer depth denoising auto-encoder network structure

In order to further enhance the generalization capability and robustness of the
traditional auto-encoder model, this section expands upon the original network
structure of the conventional three-layer auto-encoder, as illustrated in Figure 1,
into a six-layer deep network. The improved six-layer deep denoising autoencoder
introduces more hidden layers, increases the network depth, and thereby enhances
its capability for representation learning and noise reduction. Each hidden layer is
connected to the preceding and succeeding layers, forming a deep encoder-decoder
structure. The input data first passes through the encoder section, undergoing layer-
by-layer feature extraction and representation learning, and then goes through the
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decoder section for reconstruction and recovery. The dimensions of the hidden layers
gradually decrease and then increase, aiding the network in extracting higher-level
abstract features and restoring input data during the decoding process.

In denoising autoencoders, input data is subjected to some noise, such as Gaus-
sian noise or random dropout. By training the network to recover the original
noise-free input data, the network can learn useful features within the data and
filter out the noisy components. Through the increased depth of the network, the
improved six-layer deep denoising autoencoder can better learn the representation
of complex data, thereby enhancing denoising performance. This modification al-
lows the backpropagation algorithm to better accommodate the representation and
learning of intricate feature patterns, effectively mitigating issues such as overfitting.

Encoding stage: X0 is the original user item scoring matrix, and Gaussian noise
is added to X0 with the noise rate τ ∈ [0, 1], and the black data in the figure is
the added Gaussian noise. After adding Gaussian noise to ensure that the expected
value of the original scoring matrix does not change, the original user item scoring
matrix needs to be zeroed, specifically the probability of containing noisy data in
the scoring matrix is set to zero, that is, the data other than noise is magnified 1

1−τ

times, X1 is the final user item scoring matrix after the noise addition process, as
shown in Equation (1).

X1 =

{
X1 | X1 =

X0

1− τ

}
. (1)

The noise-added high-dimensional user-item rating matrix X1 is used as input,
and the low-dimensional dense matrix of the user’s implied feature vector y is com-
puted through the hidden layer with a dimensionality reduction and compression
operation, as shown in Equation (2):

y = f (W ·XS + b) , (2)

where y is the low-dimensional dense matrix of the hidden layer; f (·) is the sigmoid
activation function f (x) = 1

1+e−x ; W is the m × n dimensional weight matrix; s is
the number of layers corresponding to the model and b is the offset at encoding.

Decoding stage: the noise-added high-dimensional scoring data is compressed
and downscaled by the hidden layer y to obtain the low-dimensional scoring data X4,
and then reconstructed by the three-layer decoder to produce the output matrix X6

with the same scale as the original scoring matrix, as shown in Equation (3):

XS = f ′ (W ′ · y + b′) , (3)

where XS is the data at layer s of the decoding stage; f ′ (·) is the mapping function;
W ′ is the weight matrix of n×m dimensions; b′ is the offset at decoding.

The objective function of the improved depth denoising auto-encoder is shown in
Equations (4) and (5) based on the original scoring matrixX0 and the reconstruction
matrix X6 to reconstruct the error between the two.

arg min
W,W ′,b,b′

L (X0, X6) +R (W,W ′, b, b′) , (4)
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L (X0, X6) =
1

N

N∑
i=1

∥X0 −X6∥22, (5)

where L is the loss function of the depth-denoising auto-encoder; R (W,W ′, b, b′) is
the regular term, which controls the complexity of the model; N is the number of
elements of the user-item scoring matrix.

The improved depth-denoising auto-encoder network augments the depth of the
conventional model and introduces noise to further enhance the generalization ca-
pability and robustness of the original conventional auto-encoder network.

4 LINEAR AND NONLINEAR FEATURE FUSION
OF SCORING MATRICES

In traditional recommendation algorithms, implicit feature vectors of users and items
are typically initialized randomly. However, real-world items often possess not only
observable linear features but also unobservable nonlinear implicit features. The
deep denoising autoencoder model is capable of learning the nonlinear features of
rating data, while the dynamic collaborative filtering algorithm excels at extracting
the linear features of users and items. Consequently, in this section, we explore how
to integrate these two types of features to address the challenge faced by traditional
recommendation algorithms in capturing the deeper latent features of users and
items.

To begin with, an enhanced deep denoising autoencoder network is employed to
acquire the nonlinear features from the user-item scoring matrix. Figure 2 illustrates
the model that combines linear and nonlinear features within the scoring matrix.
By inputting the original user-item scoring matrix into the enhanced deep denoising
autoencoder network, we can achieve dimensionality reduction of high-dimensional
sparse scoring data, as illustrated in Equation (6):

q′′ = f (W ·X + bn) , (6)

where q′′ is the low-dimensional nonlinear feature vector of the user and item after
compression by the depth-denoising auto-encoder; f is the activation function of
the depth-denoising auto-encoder; W represents the weight matrix for both encod-
ing and decoding processes, while X denotes the initial feature vector of the item.
Additionally, bn signifies the offset.

Subsequently, the low-dimensional nonlinear features resulting from the depth
denoising autoencoder compression process are merged with the item-based collab-
orative filtering algorithm, as illustrated in Equation (7):

r̂ui = µ+ bu + bi + γ · q′′ + q′, (7)

where r̂ui is the predicted score of user u for item i; µ is the average of the scores;
bu and bi are the offset values relative to user u and item i; γ is the hyperparameter,
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Figure 2. Linear and nonlinear feature fusion model for scoring matrix

which mainly controls the weights of the feature vectors extracted by the depth-
denoising auto-encoder; q′ is the linear feature vector of user and item learned by
the collaborative filtering model.

A dynamic collaborative filtering algorithm is employed to extract the linear
features from the user-item rating matrix. The chosen optimization objective is
the CMLP model, which is a deep dynamic collaborative filtering algorithm [19].
This model enhances MLP-based collaborative filtering by incorporating explicit
and implicit feedback as well as local associations. It achieves this by incorporating
embedded implicit similarity groups to calculate user and item similarities. The
model is represented in Equation (8):

q′ = [an, bn, cn] , (8)

where an is the connection processing of two vectors of users and items, bn is the
higher-order interaction vector obtained from implicitly similar user groups and
items after MLP learning and cn is the higher-order interaction vector between
users and implicitly similar item groups; [an, bn, cn] means connecting the three
vectors.

The improved deep denoising auto-encoder effectively captures the nonlinear
features of both users and items, as exemplified in Equation (9). The CMLP model
integrates the prediction function of the enhanced deep denoising auto-encoder.
Consequently, the collaborative filtering model, incorporating the deep denoising
auto-encoder, can extract nonlinear item features using the enhanced deep denois-
ing auto-encoder, alongside linear features using the dynamic collaborative filtering
algorithm. Furthermore, the user’s implicit features are represented by the items
they have historically interacted with, which mitigates the cold start problem to



Collaborative Filtering Algorithm 185

some extent.
r̂ui = µ+ bu + bi + γ · q′′ + [an, bn, cn] . (9)

5 A RECOMMENDATION ALGORITHM INCORPORATING
DEEP DENOISING AUTO-ENCODER
AND ATTENTION MECHANISM

While the collaborative filtering model incorporating the deep denoising auto-en-
coder effectively captures both linear and nonlinear user features, it falls short
in distinguishing between various historical interaction items and fails to account
for a user’s preference for different attribute items. For instance, when predict-
ing a user’s preference for a disaster movie, the historical interactions with disaster
movies should carry more weight, whereas when predicting the user’s preference
for a costume movie, the weight of disaster movies in historical interactions should
decrease. Additionally, ignoring the influence of active users on recommendation re-
sults makes it challenging to recommend diverse topics to users, ultimately affecting
the overall recommendation quality.

In order to address this issue, it is necessary to emphasize the varying impact of
a user’s historical interactions with different items on the prediction results and dis-
tinguish the degree of influence of different historical interaction items. Inspired by
the work of He et al. [36], the introduction of a neural network attention mechanism
can effectively address this limitation in the model. Therefore, the collaborative
filtering model incorporating the depth denoising auto-encoder is integrated into
the neural network attention weight Wij. This results in the final recommenda-
tion algorithm that combines the depth-denoising auto-encoder and the attention
mechanism. The prediction function of this model is presented in Equation (10):

r̂ui = µ+ bu + bi + γ · q′′ +Wij [an, bn, cn] . (10)

Here, Wij represents the weight assigned to item j which user u has previously
interacted with, in the context of predicting the user u’s preference for the target
item i. However, there is a special case here when there is no user in the training set
that has interacted with item i and item j, then the weight Wij cannot be obtained.
To solve this problem, we can consider linking qj with the fused features γ · q′′i + q′i
obtained by the improved deep denoising auto-encoder and the collaborative filtering
algorithm, where qj is the implied eigenvector of the interacted item j vector and
redefining the weights by the fused features of the target item i with the features of
the already interacted item j.

Figure 3 illustrates the network architecture of the attention model. In this
paper, the primary function of this attention mechanism is to compute the similarity
between the target item i and the historical interaction item j. It accomplishes
this by performing the dot product of the feature vectors of the target item i and
historical interaction item j, which is then input into a three-layer MLP network for
training, ultimately yielding the attention weight Wij. The experiment employs the
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scaled exponential linear unit (SeLU) as the model’s activation function, as depicted
in Equation (11). This function is an enhanced variant of the exponential linear unit
(eLU) and includes its own normalization mechanism [36]. The attention weight and
the attention function are presented in Equation (12).

SeLu (x) = α

ε (ex − 1) , x < 0,

x, x > 0,
(11)


Wij =

exp [f ((q′i + γ · q′′i ) , qj )]
[
∑

exp [f ((q′i + γ · q′′i ) , qj )]]
ξ
,

f ((q′i + γ · q′′i ) , qj) = SeLU [w ((q′i + γ · q′′i )⊙ qj) + b] .

(12)

From the literature [1], α ≈ 1.0507 and ε ≈ 1.6733 are the optimal parameter
configurations for this activation function. ξ is the smoothing exponent, which is
used to reduce the over-punishment of active users. When ξ = 1, the formula is
a softmax function that normalizes the weights, and when 0 < ξ < 1, active users
are not over-punished. w is the matrix of weights for the input projection to the
hidden layer and b is the offset.

i
q q +  j

q

( )i i j
q q q + 

ij
W

MLP Level 1

MLP Level 2

MLP Level 3

Figure 3. Network structure of the attentional model

In the implicit feedback model, learning can be viewed as a binary problem.
This involves defining the user-item interaction history set as positive instances
and non-interactions as negative instances. Predicted scores are normalized using
the Sigmoid function to obtain the probabilistic output. Subsequently, the loss is
calculated through cross-entropy, combining the deep denoising auto-encoder and
the attention mechanism. The loss function for the recommendation algorithm is
presented in Equation (13):

L = − 1

N

[∑
log δ (r̂ui) +

∑
log (1− δ (r̂ui))

]
+ λ ∥θ∥2 , (13)
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where N is the number of training sets; δ is the probability of possible interaction
between user u and target item i, obtained from the sigmoid function; λ is the
regular term coefficient.

Figure 4 illustrates the recommendation algorithm model that combines the
deep denoising autoencoder and the attention mechanism. The logical relationships
between parameters are depicted as shown in the upper-left corner, with thick solid
lines representing vector inner product relationships, and thin dashed lines and thick
dashed lines denoting the network’s inputs and outputs, respectively.

The model takes the prediction of the user u’s preference for target item num-
ber 1 as an example, the lower left side of the figure indicates a row vector of the user
u’s historical interaction matrix, q2 indicates the implicit feature vector of the user
u’s interaction item number 2, S12 indicates the similarity between target item 1
and interaction item 2, W12 is the attention weight of target item 1 and interaction
item 2 obtained by neural network training, and other parameters are the same. q′′1
denotes the nonlinear feature vector of target item 1 learned by the deep denoising
auto-encoder. q′1 denotes the linear feature vector of target item 1 mined by the
CMLP model.
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0 0 1 1 0 1 ···

0.5 0.7 0.3 0.2 0.1 ···
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Figure 4. A recommendation algorithm incorporating deep denoising auto-encoder and
attention mechanism
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6 EXPERIMENTS

6.1 Experimental Environment

The experiment was conducted on a personal computer equipped with an NVIDIA
GeForce GTX 1650 graphics card, 16GB of RAM, and an AMD Ryzen 5 3500X
processor. TensorFlow, a deep learning framework developed by the Google AI team,
was utilized for development, with programming carried out in Python. Detailed
parameter configurations can be found in Table 1.

Name Configuration

CPU AMD Ryzen 5 3500X 6-Core Processor 3.59GHz
GPU NVIDIA GeForce GTX 1650
RAM 16GB
Operating System Windows 10 Professional
Programming Languages Python 3.9
Deep Learning Framework TensorFlow 2.11.0

Table 1. Experimental environment parameters

6.2 Data Set

In this experiment, two widely employed public datasets within the field of recom-
mendation systems were chosen: the MovieLens dataset [37] and Pinterest [38]. The
MovieLens dataset is sourced from a platform dedicated to aggregating user movie
reviews and offering movie recommendations, while Pinterest is an image-centric
platform where users can share images of their interests. Specifically, the MovieLens-
1M dataset comprises a substantial one million movie reviews, each rated on a scale
of 1 to 5, resulting in a dataset density of 4.19%. To accurately reflect user-movie
interactions, preprocessing steps were applied to the MovieLens dataset, as outlined
in Equation (14). Precisely, this operation entails the transformation of explicit rat-
ings within the user-movie interaction matrix into implicit ratings. Implicit ratings
are designated as 1 when a user has interacted with a movie and 0 when there is no
interaction. rui indicates the user rating of the item.{

1, rui > 0,

0, rui = 0.
(14)

The Pinterest dataset is centered around image recommendations on a social
networking site. This dataset is extensive yet sparse, with over 20% of users having
only performed a single ”pin” action. Consequently, preprocessing of the Pinterest
dataset involves retaining users with 20 or more pin operations. The statistical
information regarding the experimental dataset is presented in Table 2.
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Data Set Users Items Ratings Sparsity

MovieLens 1M 6 040 3 706 1 000 000 95.80%
Pinterest 55 187 9 916 1 500 809 99.70%

Table 2. Data set information

The experiments are categorized according to the timestamps provided in the
dataset. The test set comprises the most recent historical rating records for each
user, excluding this data from the training set. This process involves combining each
test set with 99 other randomly sampled training sets. Each algorithm generates
predicted scores for 100 movies, and the evaluation of each test set is performed
using HR and NDCG metrics.

6.3 Comparative Algorithms and Evaluation Indicators

In order to evaluate the performance of this algorithm, several traditional algo-
rithms and more advanced algorithms of recent years were selected for comparison
experiments, and the experimental comparison model is as follows:

1. FISM [39]: Recommendation algorithm based on item similarity. This algorithm
leverages a user’s historical interaction data to indirectly incorporate singular
value decomposition techniques into an item-based similarity algorithm.

2. Knn-basic [40]: Standard neighborhood-based collaborative filtering based on
a user-based approach.

3. NeuMF (Neural Matrix Factorization) [41]: Combining the two models of gen-
eralized matrix factorization and MLP, which is the model with the strongest
performance in the promotion of the NCF framework.

4. ConvMF (Convolutional Matrix Factorization) [42]: Fusion of convolutional neu-
ral networks and PMF.

5. SVD++ [43]: An optimized Singular Value Decomposition (SVD) algorithm
has been developed to enhance prediction accuracy through the generation of
implicit feedback.

6. CMLP [19]: A collaborative filtering model has been created, combining Con-
volutional Neural Networks with a Multi-layer Perceptron. This integrated ap-
proach effectively captures both local correlations and explicit as well as implicit
feedback information.

7. DAE-CMLP: A recommendation algorithm that integrates a deep denoising
auto-encoder and an attention mechanism.

To assess the performance of the recommendation model, standard evaluation
metrics in the recommendation algorithm, namely NDCG (Normalized Discounted
Cumulative Gain) and HR (Hit Rate), were employed as indicated in Equation (15).
Here, HR represents the proportion of items recommended in the final list of rec-
ommendations compared to the total number of items in the entire test set. This
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metric provides insight into the percentage of recommended items within the overall
test set.

HR@n =
NumberofHits@n

TestSets
. (15)

As shown in Equation (16), the ranking of the recommendation list is represented
by the cumulative gain CGn. Since the actual recommendation needs to rank the
results with high relevance to the recommendation first, it is necessary to introduce
a position influence factor on top of CGn, which is represented by the discounted
cumulative gain DCGn as shown in Equation (17). The best-recommended result
returned by the user in the recommendation list is the maximum value of DCGn,
denoted by IDCGn. This is normalized so that the final Normalised Discounted
Cumulative Gain (NDCG) is shown in Equation (18).

CGn =
n∑
i

rel i, (16)

DCGn =
n∑

i=1

2reli − 1

log2 (i+ 1)
, (17)

NDCGn =
DCGn

IDCGn

. (18)

6.4 Experimental Protocol and Parameter Settings

The experiments were conducted using a recommendation model that takes into
account both explicit and implicit feedback. The algorithm can be outlined in the
following steps.

Step 1: The dataset has undergone preprocessing. To investigate the interaction
between users and items, it was imperative to transform the data from explicit
ratings to implicit ratings. In this transformation, instances, where users in-
teracted with items in the dataset, were assigned a value of 1, while instances
without interaction were assigned a value of 0.

Step 2: The item information from the user-item dataset is fed into a modified
deep denoising auto-encoder for training. The backpropagation algorithm is
employed for multiple iterations to learn the nonlinear implicit feature vector of
the items.

Step 3: Input the obtained non-linear feature vectors of the items to the FISM
model for feature fusion, and then input the fused features to the attention
network, and adjust their weights by the attention network.

Step 4: The prediction value of the target item is computed based on the attention
weight. Subsequently, the output prediction score is normalized using the Sig-
moid function to derive the probability output of the prediction score. Following
this, the loss is calculated using cross-entropy.
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To evaluate the overall performance of the proposed new algorithm, we con-
ducted experiments in three different scenarios, which are detailed as follows:

Scenario 1: Evaluate the performance of various algorithms on the same dataset
by comparing performance metrics, including NDCG@5, NDCG@10, HR@5,
and HR@10, across different algorithms on both the MovieLens and Pinterest
datasets.

Scenario 2: Evaluate the performance of a specific algorithm on diverse datasets
by comparing its performance metrics, including NDCG@5, NDCG@10, HR@5,
and HR@10, across two distinct datasets, MovieLens and Pinterest.

Scenario 3: Study the impact of this paper’s attention mechanism on recommen-
dation performance. A baseline algorithm is selected and iterated 50 times on
the MovieLens dataset and the Pinterest dataset respectively to compare the
NDCG@10 and HR@10 performance evaluation metrics of this paper with and
without attention.

All three schemes of the experiment were compared at the same parameter
settings by default, as shown in Table 3 for the default parameter settings of the
improved depth denoising auto-encoder network.

Parameter Name Parameter Values

Number of neurons 1 024, 512, 256
Noise addition rate (ρ) 5
Learning rate 1 (lr1) 0.1
Embedding size 16
Smoothing index (ξ) 0.45
Number of negative feedback (num neg) 4
Learning rate 2 (lr2) 0.01
Number of iterations (epochs) 50

Table 3. Experimental default parameter settings

6.5 Analysis of Experimental Results

To comprehensively demonstrate the performance and applicability of our algorithm
in this study, we conducted experiments from two aspects: comparing different algo-
rithms on the same dataset and contrasting the same algorithm on different datasets.
We computed the NDCG and HR evaluation metrics under both 5 and 10 recom-
mendation conditions. The bar charts for NDCG and HR evaluation metrics are
depicted in Figures 5 and 6, respectively.

First, the performance of different algorithms on the same dataset is compared.
Here we take the classic SVD++ algorithm and the more recent FISM algorithm
as examples. With 5 and 10 recommendations, the HR of DAE-CMLP on the
MovieLens dataset is 14.16% and 13.45% higher than that of the SVD++ model,
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and 4.2% and 4.25% higher than that of the FISM model, respectively. With 5 and
10 recommendations, the HR of DAE-CMLP on the Pinterest dataset is 19.26%
higher than that of the SVD++ algorithm. The HR of DAE-CMLP is 19.26% and
20.32% better than the SVD++ algorithm, and 2.27% and 1.95% better than the
FISM model, respectively.

 
a) HR evaluation metrics for the MovieLens
dataset

 
b) NDCG evaluation metrics for the MovieLens
dataset

Figure 5. HR@10 and NDCG@10 metrics for the first 50 iterations of the MovieLens
dataset

 
a) HR evaluation metrics for the Pinterest dataset

 
b) NDCG evaluation metrics for the Pinterest
dataset

Figure 6. HR@10 and NDCG@10 metrics for the first 50 iterations of the Pinterest dataset

With 5 and 10 recommendations, the NDCG of DAE-CMLP on the MovieLens
dataset was 15.23% and 12.67% better than the SVD++ algorithm, and 4.28% and
2.76% better than the FISM algorithm, respectively. The NDCG of DAE-CMLP on
the MovieLens dataset was 25.55% and 37.74% better than the SVD++ algorithm,
and 4.23% and 3.29% better than the FISM algorithm, respectively.
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Then, the performance of the same algorithm on different datasets is compared.
Taking DAE-CMLP as an example, the performance of DAE-CMLP on the Movie-
Lens dataset is generally lower than that on the Pinterest dataset, both in terms of
HR and NDCG evaluation metrics. The reason for this situation may be related to
the sparsity of the dataset and the number of samples. During data pre-processing,
the difference in sample density between the two datasets was caused by the fact
that the Pinterest dataset was highly sparse, retaining only users with pin operations
greater than or equal to 20.

DAE-CMLP significantly outperforms the classical SVD++ algorithm and the
famous FISM algorithm in terms of NDCG@5, NDCG@10, and HR@5, HR@10
recommendation performance indicators on both MovieLens and Pinterest datasets,
and outperforms the original improved algorithm CMLP, which can fully illustrate
the performance of the attention mechanism and the advancement of the algorithm
in this paper.

To illustrate the performance of the attention mechanism in this paper, FISM
was chosen as the baseline algorithm and the HR and NDCG evaluation metrics were
compared between DAE-CMLP and CMLP for the first 50 iterations of training on
two different datasets. The default number of recommendations for this experiment
is Top 10, i.e. the top 10 items are recommended to the target user.

As shown in Figures 7 and 8, the HR and NDCG evaluation metrics for the first
50 iterations of the three compared algorithms on two different datasets, MovieLens
and Pinterest, can be seen from the curves that DAE-CMLP significantly outper-
forms both the traditional FISM model and CMLP in both HR and NDCG evalua-
tion metrics, indicating that the performance of CMLP can be effectively improved
by introducing deep denoising auto-encoders to extract the non-linear features of
the data.

The CMLP algorithm outperforms the DAE-CMLP algorithm for about the first
8 iterations of the MovieLens dataset and about the first 6 iterations of the Pinterest
dataset, which is since the attention model requires a process of parameter training.
With the MovieLens dataset and the default optimal parameter settings, DAE-
CMLP outperformed CMLP by 1.51% and 2.12% in the HR@10 and NDCG@10
evaluation metrics, respectively. The two algorithms converge quickly and itera-
tively in the first 10 training iterations, and then slowly increase until they level off.
As the training iterations progress, the performance of DAE-CMLP consistently
improves and stabilizes across all metrics. This observation strongly supports the
notion that the incorporation of the attention mechanism effectively enhances to the
recommendation performance.

7 CONCLUSION AND FUTURE WORK

This study enhances traditional three-layer autoencoders by introducing a six-layer
deep denoising autoencoder, significantly improving the network’s generalization
ability and robustness. This advanced architecture facilitates more effective learning
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a) HR@10 evaluation metrics for the MovieLens dataset

b) NDCG@10 evaluation metrics for the MovieLens
dataset

Figure 7. HR@10 and NDCG@10 metrics for the first 50 iterations of the MovieLens
dataset

of latent item features from the user rating matrix, addressing challenges related to
data sparsity and sparse rating matrices. Consequently, it refines the performance
of the recommendation system.

The algorithm integrates low-dimensional latent item features, obtained through
dimensionality reduction, into a dynamic collaborative filtering framework, enabling
the capture of both linear and nonlinear item features. Further, by analyzing user
item interactions, it addresses the cold start problem. The inclusion of a neural net-
work attention mechanism refines the algorithm’s robustness and efficiency, reducing
bias from active users and enhancing recommendation accuracy.



Collaborative Filtering Algorithm 195

 
a) HR@10 evaluation metrics for the Pinterest dataset

b) NDCG@10 evaluation metrics for the Pinterest dataset

Figure 8. HR@10 and NDCG@10 metrics for the first 50 iterations of the Pinterest dataset

The proposed algorithm significantly improves traditional recommendation sys-
tems, effectively overcoming data sparsity and feature extraction challenges. More-
over, traditional auto-encoder models can handle high-dimensional sparse raw data,
but may require increased computational resources when additional data sources are
involved. Addressing this, model downsizing or complexity reduction offers a viable
solution to balance performance and computational resource requirements.
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